

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

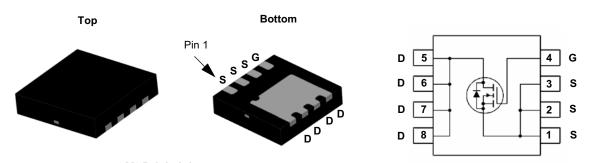
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

N-Channel Power Trench[®] MOSFET 30 V, 13.3 A, 8.5 m Ω

Features

- Max r_{DS(on)} = 8.5 mΩ at V_{GS} = 10 V, I_D = 13.3 A
- Max r_{DS(on)} = 11.5 mΩ at V_{GS} = 4.5 V, I_D = 10.6 A
- High performance technology for extremely low r_{DS(on)}
- Termination is Lead-free and RoHS Compliant



General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been especially tailored to minimize the on-state resistance. This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery Packs.

Application

- DC DC Buck Converters
- Notebook battery power management
- Load switch in Notebook

MOSFET Maximum Ratings $T_A = 25 \degree C$ unless otherwise noted

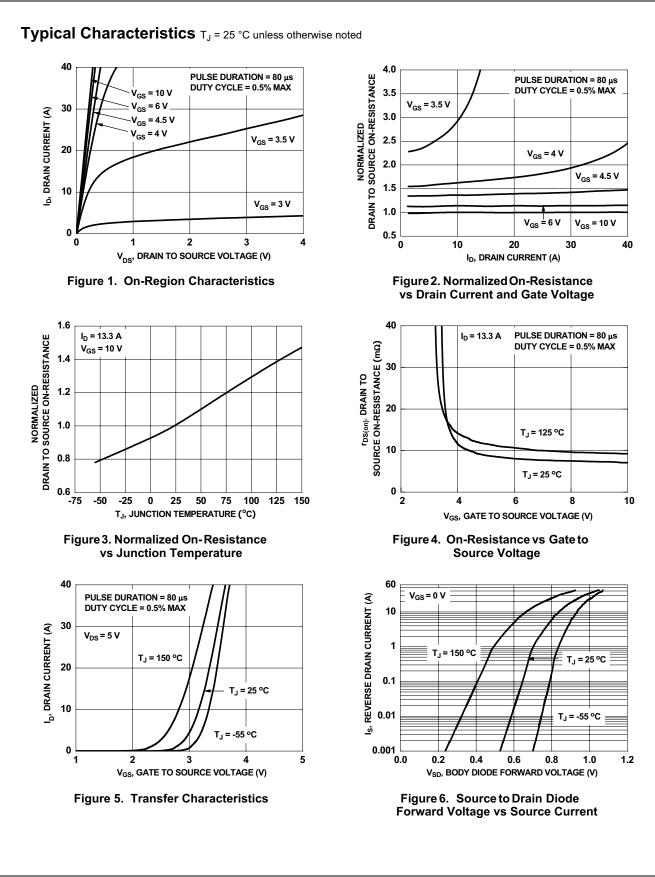
Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage			±20	V	
	Drain Current -Continuous (Package limited)	T _C = 25 °C		16		
I _D	-Continuous	T _A = 25 °C	(Note 1a)	13.3	Α	
	-Pulsed			40		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	58	mJ	
P _D	Power Dissipation	T _C = 25 °C		29	14/	
	Power Dissipation	T _A = 25 °C	(Note 1a)	2.3	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	4.3	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	53	0/11

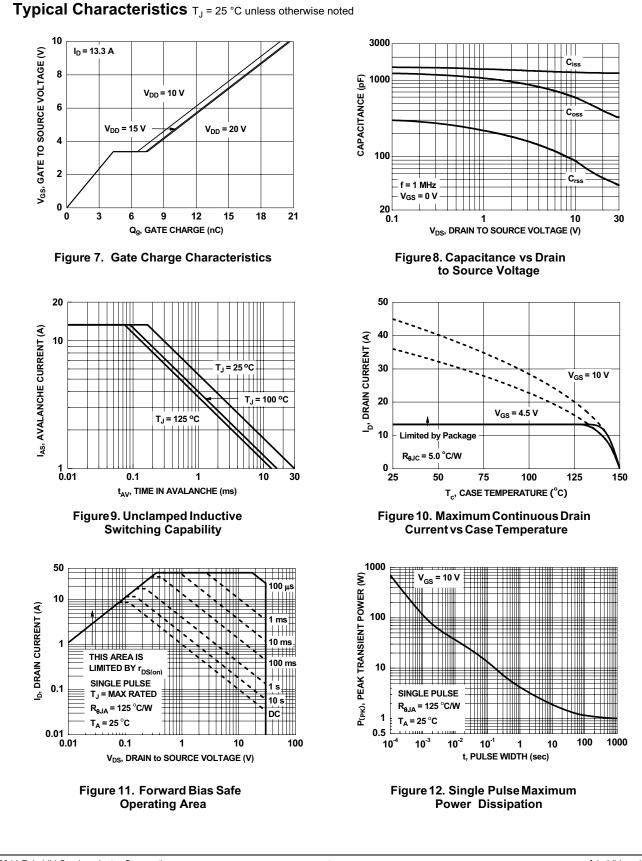
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC7692	FDMC7692	MLP 3.3x3.3	13 "	12 mm	3000 units

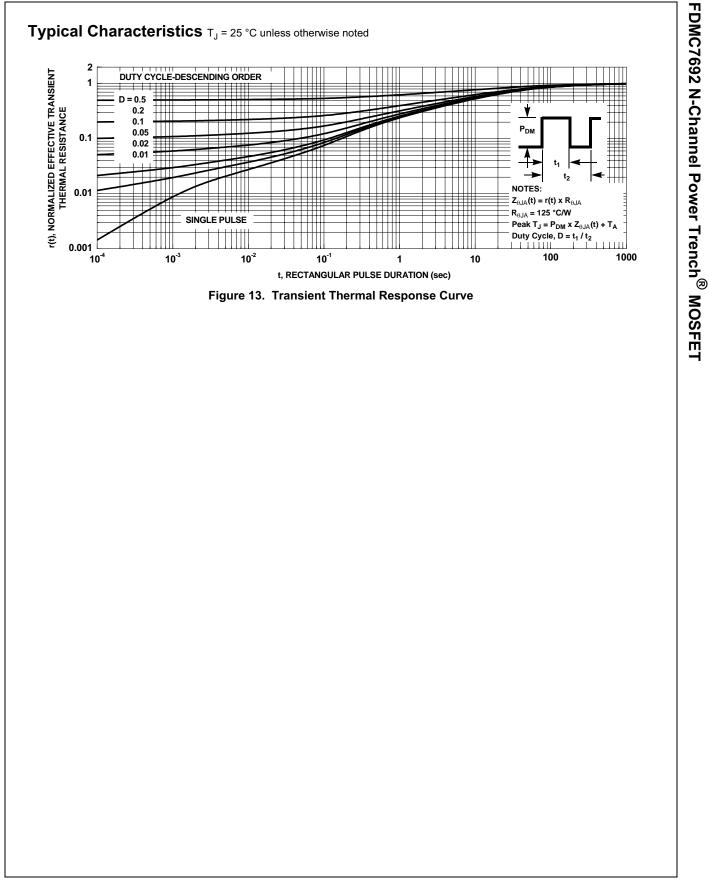

May 2014

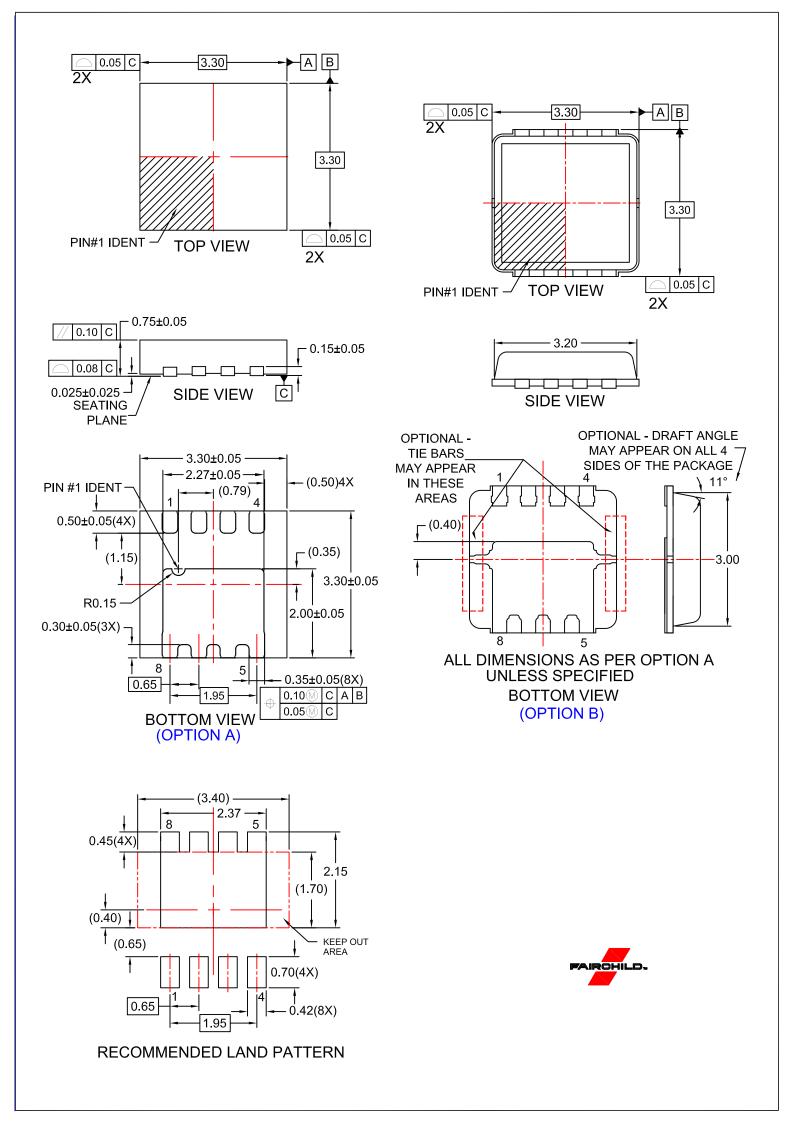
I_{GSS}Gate to Source Leakage Current $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ 1On Characteristics $V_{GS}(th)$ Gate to Source Threshold Voltage $V_{GS} = V_{DS}, I_D = 250 \ \mu\text{A}$ 1.21.93 $\Delta V_{GS}(th)$ Gate to Source Threshold Voltage $I_D = 250 \ \mu\text{A}$, referenced to 25 °C-6-6 $r_{DS}(on)$ Static Drain to Source On Resistance $V_{GS} = 10 \ V, I_D = 13.3 \ A$ 7.2 ϵ g_{FS} Forward Transconductance $V_{DD} = 5 \ V, I_D = 13.3 \ A$ 60-6Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 15 \ V, V_{GS} = 0 \ V, I_D = 13.3 \ A$ 1260 C_{rss} Reverse Transfer Capacitance $f = 1 \ MHz$ 48065 R_g Gate Resistance0.92	16 mV/°C 1 μA 250 μA 100 nA .2 1.9 3.0 V -6 mV/°C 7.2 8.5 mV/°C 9.5 11.5 mΩ 9.5 12.0 5 1260 1680 pF 480 635 pF 65 100 pF	$\begin{array}{c c} BV_{DSS} & Dra \\ \hline \Delta BV_{DSS} & Bre \\ \hline \Delta T_J & Coe \\ I_{DSS} & Zerc \\ I_{GSS} & Gat \\ \hline \mathbf{On \ Character} \\ \hline V_{GS(th)} & Gat \\ \hline \Delta V_{GS(th)} & Gat \\ \end{array}$	in to Source Breakdown Voltage akdown Voltage Temperature fficient o Gate Voltage Drain Current e to Source Leakage Current istics	I_D = 250 µA, referenced to 25 °C V_{DS} = 24 V, V_{GS} = 0 V	30	16	250	mV/°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} \Delta BV_{DSS} & Bre.\\ \hline \Delta T_J & Coe \\ \hline D_{DSS} & Zerc \\ \hline \\ \hline \\ G_{SS} & Gat \\ \hline \\ \hline \\ On Character \\ \hline \\ \hline \\ V_{GS(th)} & Gat \\ \hline \\ \Delta V_{GS(th)} & Gat \\ \hline \end{array}$	akdown Voltage Temperature efficient o Gate Voltage Drain Current e to Source Leakage Current istics	I_D = 250 µA, referenced to 25 °C V_{DS} = 24 V, V_{GS} = 0 V	30	16	250	mV/°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} \Delta BV_{DSS} & Bre.\\ \hline \Delta T_J & Coe \\ \hline D_{DSS} & Zerc \\ \hline \\ \hline \\ G_{SS} & Gat \\ \hline \\ \hline \\ Dn \ Character \\ \hline \\ \hline \\ V_{GS(th)} & Gat \\ \hline \\ \Delta V_{GS(th)} & Gat \\ \hline \end{array}$	akdown Voltage Temperature efficient o Gate Voltage Drain Current e to Source Leakage Current istics	I_D = 250 µA, referenced to 25 °C V_{DS} = 24 V, V_{GS} = 0 V		16	250	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ΔTJ Coe DSS Zero GSS Gat Dn Character Gat ΔV _{GS(th)} Gat	officient o Gate Voltage Drain Current e to Source Leakage Current istics	V _{DS} = 24 V, V _{GS} = 0 V		16	250	
DSSZero Gate Voltage Drain CurrentTTTTTGSSGate to Source Leakage Current $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ 1On Characteristics $V_{GS}(th)$ Gate to Source Threshold Voltage Temperature Coefficient $V_{GS} = V_{DS}, I_D = 250 \mu \text{A}$ 1.21.93 $\Delta V_{GS}(th)$ Gate to Source Threshold Voltage Temperature Coefficient $V_{GS} = 10 \text{ V}, I_D = 13.3 \text{ A}$ 7.26 $DS(on)$ Static Drain to Source On Resistance $V_{GS} = 10 \text{ V}, I_D = 13.3 \text{ A}$ 7.28 $V_{GS} = 10 \text{ V}, I_D = 13.3 \text{ A}$ 7.2 8 $V_{GS} = 10 \text{ V}, I_D = 13.3 \text{ A}$ 9.5 1 $V_{GS} = 10 \text{ V}, I_D = 13.3 \text{ A}$ 9.5 1 $V_{GS} = 10 \text{ V}, I_D = 13.3 \text{ A}$ 9.5 1 $V_{GS} = 10 \text{ V}, I_D = 13.3 \text{ A}$ 60 0 D_{FS} Forward Transconductance $V_{DS} = 5 \text{ V}, I_D = 13.3 \text{ A}$ 60 O_{SS} Output Capacitance $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ 1260 Me C_{rss} Reverse Transfer Capacitance $f = 1 \text{ MHz}$ 65 1 R_g Gate Resistance 0.9 2	μA 250 μA 100 nA .2 1.9 3.0 V -6 mV/°C 7.2 8.5 mΩ 9.5 11.5 mΩ 9.5 12.0 S 1260 1680 pF 480 635 pF 65 100 pF 0.9 2.4 Ω 9 18 ns	$\begin{array}{c c} & \\ \hline GSS & \\ \hline GSS & \\ \hline \mbox{On Character} \\ \hline \\ V_{GS(th)} & \\ \hline \\ \Delta V_{GS(th)} & \\ \hline \\ Gat \\ \hline \end{array}$	e to Source Leakage Current				250	μA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	250 1 100 nA .2 1.9 3.0 V -6 mV/°C 7.2 8.5 mΩ 9.5 11.5 mΩ 9.5 12.0 S 1260 1680 pF 480 635 pF 0.9 2.4 Ω 9 18 ns	M_{GSS} Gat Dn Character $M_{GS(th)}$ Gat $\Delta V_{GS(th)}$ Gat	e to Source Leakage Current	T _J = 125 °C V _{GS} = 20 V, V _{DS} = 0 V				μΑ
Dn Characteristics $V_{GS(th)}$ Gate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$ 1.21.93 $\Delta V_{GS(th)}$ Gate to Source Threshold Voltage Temperature Coefficient $I_D = 250 \ \mu A$, referenced to 25 °C-6 $T_{DS(on)}$ Static Drain to Source On Resistance $V_{GS} = 10 \ V$, $I_D = 13.3 \ A$ 7.26 g_{FS} Forward Transconductance $V_{GS} = 10 \ V$, $I_D = 10.6 \ A$ 9.51 $Q_{FS} = 10 \ V$, $I_D = 13.3 \ A$, $T_J = 125 \ ^{\circ}$ C9.51 $Q_{FS} = 10 \ V$, $I_D = 5 \ V$, $I_D = 13.3 \ A$ 60Optimized Characteristics C_{iss} Input Capacitance $V_{DS} = 15 \ V$, $V_{GS} = 0 \ V$, $f = 1 \ MHz$ 126016 C_{rss} Reverse Transfer Capacitance $V_{DS} = 15 \ V$, $V_{GS} = 0 \ V$, $f = 1 \ MHz$ 651	.2 1.9 3.0 V -6 mV/°C 7.2 8.5 9.5 11.5 9.5 12.0 60 S 1260 1680 95 100 95 2.4 0.9 2.4 9 18	Dn Character $V_{GS(th)}$ Gat $\Delta V_{GS(th)}$ Gat	istics	$V_{GS} = 20 V, V_{DS} = 0 V$				
$ \begin{array}{c c c c c c c c c } \hline & Gate to Source Threshold Voltage & V_{GS} = V_{DS}, \ I_D = 250 \ \mu A & 1.2 & 1.9 & 3 \\ \hline & \Delta V_{GS(th)} \\ \hline & \Delta T_J & Gate to Source Threshold Voltage \\ \hline & Temperature Coefficient & I_D = 250 \ \mu A, referenced to 25 \ ^{\circ}C & -6 & V_{GS} = 10 \ V, \ I_D = 13.3 \ A & 7.2 & 6 \\ \hline & V_{GS} = 10 \ V, \ I_D = 13.3 \ A & 7.2 & 6 \\ \hline & V_{GS} = 10 \ V, \ I_D = 10.6 \ A & 9.5 & 1 \\ \hline & V_{GS} = 10 \ V, \ I_D = 13.3 \ A, \ T_J = 125 \ ^{\circ}C & 9.5 & 1 \\ \hline & V_{GS} = 10 \ V, \ I_D = 13.3 \ A, \ T_J = 125 \ ^{\circ}C & 9.5 & 1 \\ \hline & V_{GS} = 10 \ V, \ I_D = 13.3 \ A, \ T_J = 125 \ ^{\circ}C & 9.5 & 1 \\ \hline & V_{GS} = 10 \ V, \ I_D = 13.3 \ A & 60 & 0 \\ \hline \hline & Opnamic Characteristics & V_{DD} = 5 \ V, \ I_D = 13.3 \ A & 60 & 0 \\ \hline \hline & Opnamic Characteristics & V_{DS} = 15 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz & 65 & 1 \\ \hline & G_{rss} & Reverse \ Transfer \ Capacitance & f = 1 \ MHz & 65 & 1 \\ \hline & R_g & Gate \ Resistance & 0.9 \ 2 & 0.9 \ $	-6 mV/°C 7.2 8.5 9.5 11.5 9.5 12.0 60 S 1260 1680 9.5 100 60 S 9.5 12.0 60 S 9.5 12.0 9.5 12.0 9.5 12.0 9.5 12.0 9 1680 9 18	V _{GS(th)} Gat ∆V _{GS(th)} Gat					100	nA
$ \begin{array}{c c c c c c c c c } \hline & Gate to Source Threshold Voltage & V_{GS} = V_{DS}, \ I_D = 250 \ \mu A & 1.2 & 1.9 & 3 \\ \hline & \Delta V_{GS(th)} \\ \hline & \Delta T_J & Gate to Source Threshold Voltage \\ \hline & Temperature Coefficient & I_D = 250 \ \mu A, referenced to 25 \ ^{\circ}C & -6 & V_{GS} = 10 \ V, \ I_D = 13.3 \ A & 7.2 & 6 \\ \hline & V_{GS} = 10 \ V, \ I_D = 13.3 \ A & 7.2 & 6 \\ \hline & V_{GS} = 10 \ V, \ I_D = 10.6 \ A & 9.5 & 1 \\ \hline & V_{GS} = 10 \ V, \ I_D = 13.3 \ A, \ T_J = 125 \ ^{\circ}C & 9.5 & 1 \\ \hline & V_{GS} = 10 \ V, \ I_D = 13.3 \ A, \ T_J = 125 \ ^{\circ}C & 9.5 & 1 \\ \hline & V_{GS} = 10 \ V, \ I_D = 13.3 \ A, \ T_J = 125 \ ^{\circ}C & 9.5 & 1 \\ \hline & V_{GS} = 10 \ V, \ I_D = 13.3 \ A & 60 & 0 \\ \hline \hline & Opnamic Characteristics & V_{DD} = 5 \ V, \ I_D = 13.3 \ A & 60 & 0 \\ \hline \hline & Opnamic Characteristics & V_{DS} = 15 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz & 65 & 1 \\ \hline & Gate Resistance & 0.9 & 2 \\ \hline \hline & R_g & Gate Resistance & 0.9 & 2 \\ \hline \end{array}$	-6 mV/°C 7.2 8.5 9.5 11.5 9.5 12.0 60 S 1260 1680 9.5 100 60 S 9.5 12.0 60 S 9.5 12.0 9.5 12.0 9.5 12.0 9.5 12.0 9 1680 9 18	V _{GS(th)} Gat ∆V _{GS(th)} Gat						
$ \begin{array}{c c} \underline{\Delta V_{GS}(tn)} \\ \overline{\Delta T_J} \end{array} & \begin{array}{c} \mbox{Gate to Source Threshold Voltage} \\ \mbox{Temperature Coefficient} \end{array} & I_D = 250 \ \mu \mbox{A, referenced to 25 °C} \end{array} & \begin{array}{c} \mbox{-6} \\ \mbox{V}_{GS} = 10 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	-6 mV/°C 7.2 8.5 9.5 11.5 9.5 12.0 60 S 1260 1680 9.5 100 60 S 9.5 12.0 60 S 9.5 12.0 9.5 12.0 9.5 12.0 9.5 12.0 9 1680 9 18	∆V _{GS(th)} Gat			1.0	4.0	0.0	
$ \begin{array}{c c c c c c c } \hline Temperature Coefficient & I_D = 250 \ \mu\text{A}, \ referenced to 25 \ ^{\circ}\text{C} & 1 \ ^{\circ}\text{b} \\ \hline I_D = 250 \ \mu\text{A}, \ referenced to 25 \ ^{\circ}\text{C} & 1 \ ^{\circ}\text{b} \\ \hline I_D = 13.3 \ \text{A} & 7.2 \ & 8 \\ \hline V_{GS} = 10 \ \text{V}, \ I_D = 13.3 \ \text{A} & 9.5 \ & 1 \\ \hline V_{GS} = 10 \ \text{V}, \ I_D = 10.6 \ \text{A} & 9.5 \ & 1 \\ \hline V_{GS} = 10 \ \text{V}, \ I_D = 13.3 \ \text{A}, \ T_J = 125 \ ^{\circ}\text{C} & 9.5 \ & 1 \\ \hline V_{GS} = 10 \ \text{V}, \ I_D = 13.3 \ \text{A}, \ T_J = 125 \ ^{\circ}\text{C} & 9.5 \ & 1 \\ \hline V_{DD} = 5 \ \text{V}, \ I_D = 13.3 \ \text{A} & 60 \\ \hline \hline \text{Oynamic Characteristics} \\ \hline \hline \text{Oynamic Characteristics} \\ \hline \hline C_{rss} & \text{Reverse Transfer Capacitance} \\ \hline \hline C_{rss} & \text{Reverse Transfer Capacitance} \\ \hline R_g & \text{Gate Resistance} & 0.9 \ & 2 \\ \hline \end{array}$	7.2 8.5 9.5 11.5 9.5 12.0 60 S 1260 1680 95 100 90 18		-	V _{GS} = V _{DS} , I _D = 250 μA	1.2	1.9	3.0	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9.5 11.5 mΩ 9.5 12.0 5 60 S 1260 1680 pF 480 635 pF 65 100 pF 0.9 2.4 Ω 9 18 ns			I_D = 250 μ A, referenced to 25 °C		-6		mV/°C
	9.5 11.5 mΩ 9.5 12.0 5 60 S 1260 1680 pF 480 635 pF 65 100 pF 0.9 2.4 Ω 9 18 ns			$V_{re} = 10 V_{re} = 13.3 A_{re}$		72	85	
VGS = 10 V, ID = 13.3 A, TJ = 125 °C9.51.5OFSForward Transconductance $V_{DD} = 5 V$, $ID = 13.3 A$ 60Opnamic CharacteristicsCissInput Capacitance $V_{DS} = 15 V$, $V_{GS} = 0 V$, f = 1 MHz1260160CissOutput Capacitance $V_{DS} = 15 V$, $V_{GS} = 0 V$, f = 1 MHz1260160CissGate Resistance 0.9 2	9.5 12.0 60 S 1260 1680 pF 480 635 pF 65 100 pF 0.9 2.4 Ω 9 18 ns	Stat	ic Drain to Source On Resistance					mO
D_{FS} Forward Transconductance $V_{DD} = 5 \text{ V}, \text{ I}_D = 13.3 \text{ A}$ 60Opnamic Characteristics C_{iss} Input Capacitance $V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$ 126016 C_{rss} Reverse Transfer Capacitance $f = 1 \text{ MHz}$ 651 R_g Gate Resistance0.92	60 S 1260 1680 pF 480 635 pF 65 100 pF 0.9 2.4 Ω 9 18 ns	DS(on)						11152
Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ 126016 C_{oss} Output Capacitance $f = 1 \text{ MHz}$ 4806 C_{rss} Reverse Transfer Capacitance651 R_g Gate Resistance0.92	1260 1680 pF 480 635 pF 65 100 pF 0.9 2.4 Ω 9 18 ns	Eon	ward Transconductance				12.0	S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	480 635 pF 65 100 pF 0.9 2.4 Ω 9 18 ns	JFS TOR		VDD - 3 V, 1D - 13.3 A		00		0
C_{oss} Output Capacitance $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ 4806 C_{rss} Reverse Transfer Capacitance $f = 1 \text{ MHz}$ 651 R_g Gate Resistance0.92	480 635 pF 65 100 pF 0.9 2.4 Ω 9 18 ns	Oynamic Cha	racteristics					
z_{oss} Output Capacitancef = 1 MHz40060 C_{rss} Reverse Transfer Capacitance651 R_g Gate Resistance0.92	65 100 pF 0.9 2.4 Ω 9 18 ns	C _{iss} Inpu	It Capacitance			1260	1680	pF
Crss Reverse Transfer Capacitance 65 1 Rg Gate Resistance 0.9 2	0.9 2.4 Ω 9 18 ns	C _{oss} Out	put Capacitance			480	635	pF
	9 18 ns	C _{rss} Rev	erse Transfer Capacitance			65	100	pF
		R _g Gate	e Resistance			0.9	2.4	Ω
Switching Characteristics		Switching Ch	aracteristics					
d _(on) Turn-On Delay Time 9	4 10 ns	d(on) Turi	n-On Delay Time			9	18	ns
			e Time	V _{DD} = 15 V, I _D = 13.3 A,		4	10	ns
	21 33 ns	d(off) Turi	ı-Off Delay Time			21	33	ns
	3 10 ns		Time			3	10	ns
Total Gate Charge V _{GS} = 0 V to 10 V 21 2	21 29 nC	Tota	al Gate Charge	V _{GS} = 0 V to 10 V		21	29	nC
$V_{g(TOT)}$ Total Gate Charge $V_{GS} = 0 V \text{ to } 4.5 V V_{DD} = 15 V$ 10 1	10 14 nC	J _{g(TOT)} Tota	al Gate Charge	V _{GS} = 0 V to 4.5 V V _{DD} = 15 V		10	14	nC
		Q _{gs} Tota	al Gate Charge	I _D = 13.3 A		5		nC
	5 nC		e to Drain "Miller" Charge			3		nC
			Diada Characteriatian					
		Jrain-Source	Diode Characteristics			0.00	4.0	1
	3 nC	Sou	rce to Drain Diode Forward Voltage					V
V _{GS} = 0 V, I _S = 13.3 A (Note 2) 0.86 1	3 nC			$V_{GS} = 0 V, I_S = 1.9 A$ (Note 2)				
$V_{SD} \qquad \text{Source to Drain Diode Forward Voltage} \frac{V_{GS} = 0 \text{ V}, \text{ I}_{S} = 13.3 \text{ A}}{V_{GS} = 0 \text{ V}, \text{ I}_{S} = 1.9 \text{ A}} (\text{Note 2}) \qquad 0.86 1000 \text{ A}$	3 nC 0.86 1.2 V 0.75 1.2 V			– I _F = 13.3 A, di/dt = 100 A/μs				
V_{SD} Source to Drain Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_S = 13.3 \text{ A}$ (Note 2)0.861 $V_{GS} = 0 \text{ V}, \text{ I}_S = 1.9 \text{ A}$ (Note 2) 0.751 rr Reverse Recovery Time $I_r = 13.3 \text{ A}$ $di/dt = 100 \text{ A/us}$ 24	3 nC 0.86 1.2 0.75 1.2 24 38		erse Recovery Charge			1	14	nC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3 10 21 29	$\begin{array}{c c} & \mbox{Fall} \\ \hline q_{g(TOT)} & \mbox{Tota} \\ \hline Q_{gs} & \mbox{Tota} \\ \hline Q_{gd} & \mbox{Gat} \\ \hline \mbox{Drain-Source} \\ \hline V_{SD} & \mbox{Sou} \\ \hline \mbox{t}_{rr} & \mbox{Rev} \end{array}$	Time al Gate Charge al Gate Charge al Gate Charge e to Drain "Miller" Charge Diode Characteristics urce to Drain Diode Forward Voltage	$\begin{array}{c} V_{GS} = 0 \ V \ to \ 10 \ V \\ V_{GS} = 0 \ V \ to \ 4.5 \ V \\ I_D = 13.3 \ A \end{array}$		3 21 10 5 3 0.86 0.75	1(29 14 1.1 1.1)) 1 2 2 2 3
$V_{\rm GS} = 0.0000 \text{ m/s}^{-1}$	10 14 nC	Tota	Total Gate Charge $V_{GS} = 0 V \text{ to } 4.5 V V_{DD}$			10	14	nC
<u>ys</u>		3-		I _D = 13.3 A				nC
Agd Gate to Drain "Miller" Charge 3	5 nC	Q _{gd} Gat	e to Drain "Miller" Charge			3		nC
9- i - i i i i		3-						
rain Sauraa Diada Charactariatiaa		rain-Source	Diode Characteristics			,		
	3 nC	Sou	rce to Drain Diode Forward Voltage					V
Source to Drain Diode, Forward Voltage, $V_{GS} = 0 \text{ V}, \text{ I}_{S} = 13.3 \text{ A}$ (Note 2) 0.86 1	3 nC			$v_{GS} = 0 v, I_S = 1.9 A$ (Note 2)				
V _{SD} Source to Drain Diode Forward Voltage $V_{GS} = 0 V, I_S = 13.3 A$ (Note 2) 0.86 1 $V_{GS} = 0 V, I_S = 1.9 A$ (Note 2) 0.75 1	3 nC 0.86 1.2 V 0.75 1.2 V			I _F = 13.3 A, di/dt = 100 A/μs				
V_{SD}Source to Drain Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_S = 13.3 \text{ A}$ (Note 2)0.861rReverse Recovery Time $V_{GS} = 0 \text{ V}, \text{ I}_S = 1.9 \text{ A}$ (Note 2)0.751Ir $I_T = 13.3 \text{ A}$ di/dt = 100 A/us2433	3 nC 0.86 1.2 0.75 1.2 24 38		erse Recovery Charge			1	14	nC

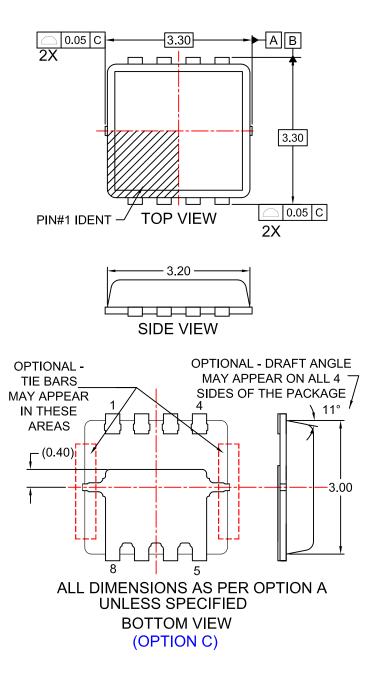
2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0 %.


3. E_{AS} of 58 mJ is based on starting T_J = 25 °C, L = 1 mH, I_{AS} = 10.8 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 21 A.

FDMC7692 N-Channel Power Trench[®] MOSFET




©2011 Fairchild Semiconductor Corporation FDMC7692 Rev.C2


www.fairchildsemi.com

©2011 Fairchild Semiconductor Corporation FDMC7692 Rev.C2 FDMC7692 N-Channel Power Trench[®] MOSFET

NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC REGISTRATION MO-240.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN
- E. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. BURRS OR MOLD FLASH SHALL NOT EXCEED 0.10MM.
 F. DRAWING FILENAME: MKT-MLP08Wrev3.
- G. OPTION A SAWN MLP, OPTIONS B & C PUNCH MLP.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC