

Sample &

Buy

TRS3221

SLLS814A – JULY 2007 – REVISED JUNE 2015

TRS3221 3-V to 5.5-V RS-232 Line Driver and Receiver With ±15-kV ESD Protection

1 Features

- RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM)
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU V.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- Operates up to 250 kbps
- One Driver and One Receiver
- Low Standby Current: 1-µA Typical
- External Capacitors: 4 × 0.1 μF
- Accepts 5-V Logic Input With 3.3-V Supply
- Alternative High-Speed Pin-Compatible Device (1 Mbps)
 - SNx5C3221
- Automatic Power-Down Feature Automatically
 Disables Drivers for Power Savings

2 Applications

- Battery-Powered, Hand-Held, and Portable Equipment
- Notebooks, Subnotebooks, and Laptops
- Digital Cameras
- Mobile Phones and Wireless Devices

3 Description

Tools &

Software

The TRS3221 device consists of one line driver, one line receiver with dedicated enable pin, and a dual charge-pump circuit with \pm 15-kV ESD protection pinto-pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from one 3-V to 5.5-V supply. The TRS3221 device operates at data signaling rates up to 250 kbps and a maximum of 30-V/µs driver output slew rate.

Flexible control options for power management are available when the serial port is inactive. The automatic power-down feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal on the receiver input, the driver output is disabled and the supply current is reduced to 1 μ A. The INVALID output notifies the user if an RS-232 signal is present at the receiver input.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TDC2224	SSOP (32)	6.20 mm x 5.30 mm
1833221	TSSOP (32)	5.00 mm × 4.40 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1	Feat	ures 1
2	Арр	lications 1
3	Desc	cription 1
4	Revi	sion History 2
5	Pin (Configuration and Functions 3
6	Spee	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 5
	6.5	Electrical Characteristics—Power 5
	6.6	Electrical Characteristics—Driver 5
	6.7	Electrical Characteristics—Receiver 6
	6.8	Electrical Characteristics—Status 6
	6.9	Switching Characteristics—Driver 6
	6.10	Switching Characteristics—Receiver7
	6.11	Switching Characteristics—Status7
	6.12	Typical Characteristics 7
7	Para	meter Measurement Information

8	Deta	iled Description	11		
	8.1	Overview	11		
	8.2	Functional Block Diagram	11		
	8.3	Feature Description	11		
	8.4	Device Functional Modes	12		
9	App	lication and Implementation	13		
	9.1	Application Information	13		
	9.2	Typical Application	13		
10	Pow	ver Supply Recommendations	15		
11	Layout				
	11.1	Layout Guidelines	15		
	11.2	Layout Example	15		
12	Dev	ice and Documentation Support	16		
	12.1	Community Resources	16		
	12.2	Trademarks	16		
	12.3	Electrostatic Discharge Caution	16		
	12.4	Glossary	16		
13	Mec	hanical, Packaging, and Orderable			
-	Infor	mation	16		

4 Revision History

2

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cr	nanges from Original (July 2007) to Revision A					
•	Added Thermal Information table,	Typical Characteristics section,	Detailed Desc			

Original (July 2007) to Povision A ~

,	Added Thermal Information table, Typical Characteristics section, Detailed Description section, Application and	
	Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation	
	Support section, and Mechanical, Packaging, and Orderable Information section	. 1
	Deleted Ordering Information table.	. 1
	Changed Typical Operating Circuit and Capacitor Values image	13

XAS STRUMENTS

www.ti.com

Page

TRS3221 SLLS814A – JULY 2007–REVISED JUNE 2015

5 Pin Configuration and Functions

DB or PW Package 16-Pin SSOP or TSSOP Top View					
EN (C1+ (C1+ (C1- (C2+ (C2+ (C2- (V-(RIN (1 2 3 4 5 6 7 8	16 15 14 13 12 11 10 9	FORCEOFF V _{cc} GND DOUT FORCEON DIN INVALID ROUT		

Pin Functions

PIN		TYPE	DESCRIPTION		
NAME	NO.	ITE	DESCRIPTION		
C1+	2	—	Desitive terminals of the voltage doubler shares nump conscitute		
C2+	5	—	Positive terminals of the voltage-doubler charge-pump capacitors		
C1-	4	—	Nagative terminale of the voltage doubler shares nump conseiters		
C2–	6	—	Negative terminals of the voltage-doubler charge-pump capacitors		
DIN	11	I	Driver input		
DOUT	13	0	RS-232 driver output		
EN	1	I	Low input enables receiver ROUT output. High input sets ROUT to high impedance.		
FORCEOFF	16	I	Automatic power-down control input		
FORCEON	12	I	Automatic power-down control input		
GND	14	GND	Ground		
INVALID	10	0	Invalid output pin. Output is low when all RIN inputs are unpowered.		
RIN	8	I	RS-232 receiver input		
ROUT	9	0	Receiver output		
V _{CC}	15	—	3-V to 5.5-V supply voltage		
V+	3	0	5.5-V supply generated by the charge pump		
V–	7	0	-5.5-V supply generated by the charge pump		

Specifications 6

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
	V _{CC} to GND		-0.3	6	V
	V+ to GND		-0.3	7	V
	V- to GND		0.3	-7	V
	$V++ V- ^{(2)}$			13	V
V	Input voltage	DIN, EN, FORCEOFF, and FORCEON to GND	-0.3	6	V
VI		RIN to GND		±25	V
V		DOUT to GND		±13.2	V
۷O	Oulput voltage	ROUT to GND	-0.3	V _{CC} + 0.3	v
TJ	Junction temperature ⁽³⁾			150	°C
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

V+ and V- can have maximum magnitudes of 7 V, but their absolute difference cannot exceed 13 V. Maximum power dissipation is a function of $T_J(max)$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A) / R_{\theta JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. (3)

6.2 ESD Ratings

				VALUE	UNIT
		Llumon hody model (LIDM) nor	All pins except Pin 8 and Pin 13	±3000	
V _(ESD)	Electrostatic discharge	ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	Pin 8, Pin 13 (RS232 ports)	±15000	V
- (LOD)		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	All pins	±1500	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. (2)

6.3 Recommended Operating Conditions

(see Figure 9)⁽¹⁾

				MIN	NOM	MAX	UNIT
	Supply voltogo		$V_{CC} = 3.3 V$	3	3.3	3.6	V
	Supply voltage		$V_{CC} = 5 V$	4.5	5	5.5	v
VIH	Driver high level input veltage	DIN, FORCEOFF,	$V_{CC} = 3.3 V$	2			V
VН	FORCEON, EN	FORCEON, EN	$V_{CC} = 5 V$	2.4			v
VIL	Driver low-level input voltage	DIN, FORCEOFF, FORCEON, EN				0.8	V
VI	Driver input voltage	DIN, FORCEOFF, FORCEON, EN		0		5.5	V
- 1	Receiver input voltage			-25		25	
т	Operating free air temperature		TRS3221C	0		70	
ΙA	Operating free-air temperature		TRS32211	-40		85	-0

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

6.4 Thermal Information

		TRS	3221	
	THERMAL METRIC ⁽¹⁾	DB (SSOP)	PW (TSSOP)	UNIT
		16 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	98.0	106.4	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	48.3	41.1	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	48.7	51.4	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	10.1	3.9	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	48.1	50.9	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics—Power

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PAR	AMETER	TEST	CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I _I	Input leakage current	FORCEOFF, FORCEON, EN				±0.01	±1	μΑ
		Automatic power down disabled		No load, $\overline{\text{FORCEOFF}}$ and FORCEON at V_{CC}		0.3	1	mA
lee	Supply current	Powered off	No load,	No load, FORCEOFF at GND		1	10	
		Supply current Auto-powerdown enabled	$V_{CC} = 3.3$ V to 5 V	No load, FORCEOFF at V_{CC} , FORCEON at GND, All RIN are open or grounded		1	10	μA

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (1)

(2)

6.6 Electrical Characteristics—Driver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CO	ONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT	
V _{OH}	High-level output voltage	D_{OUT} at $R_L = 3 k\Omega$ to GND,	D _{IN} = GND	5	5.4		V	
V _{OL}	Low-level output voltage	D_{OUT} at $R_L = 3 k\Omega$ to GND,	$D_{IN} = V_{CC}$	-5	-5.4		v	
I _{IH}	High-level input current	$V_{I} = V_{CC}$			±0.01	±1		
I _{IL}	Low-level input current	V _I at GND			±0.01	±1	μΑ	
	Short-circuit output current ⁽³⁾	V _{CC} = 3.6 V	$V_0 = 0 V$		±35	±60	m (
IOS		V _{CC} = 5.5 V	$V_0 = 0 V$		±35	±60	mA	
r _O	Output resistance	V_{CC} , V+, and V- = 0 V	$V_0 = \pm 2 V$	300	10M		Ω	
I _{off}	Output leakage current			$V_{O} = \pm 12 V,$ $V_{CC} = 3 V \text{ to } 3.6 V$			±25	
		FORCEOFF = GND	$V_{O} = \pm 12 V,$ $V_{CC} = 4.5 V \text{ to } 5.5 V$			±25	μΑ	

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

XAS

6.7 Electrical Characteristics—Receiver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	V _{CC} – 0.6	V _{CC} – 0.1		V
V _{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	v
V _{IT+}	Depitive going input threshold voltage	V _{CC} = 3.3 V		1.5	2.4	V
	Positive-going input threshold voltage	$V_{CC} = 5 V$		1.8	2.4	v
.,	Negative going input threahold voltage	$V_{CC} = 3.3 V$	0.6	1.1		
VIT-	Negative-going input threshold voltage	$V_{CC} = 5 V$	0.8	1.4		V
V _{hys}	Input hysteresis (V _{IT+} – V _{IT–})			0.5		
I _{off}	Output leakage current	FORCEOFF = 0 V		±0.05	±10	μA
r _i	Input resistance	$V_1 = \pm 3 \text{ V to } \pm 25 \text{ V}$	3	5	7	kΩ

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (1)

(2)

6.8 Electrical Characteristics—Status

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{T+(valid)}	Receiver input threshold for INVALID high-level output voltage	$\frac{\text{FORCEON} = \text{GND},}{\text{FORCEOFF} = V_{CC}}$			2.7	V
V _{T-(valid)}	Receiver input threshold for INVALID high-level output voltage	$\frac{\text{FORCEON} = \text{GND},}{\text{FORCEOFF} = V_{CC}}$	-2.7			V
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	$\frac{\text{FORCEON} = \text{GND},}{\text{FORCEOFF} = V_{CC}}$	-0.3		0.3	V
V _{OH}	INVALID high-level output voltage	$I_{OH} = -1 \text{ mA},$ FORCEON = GND, $FORCEOFF = V_{CC}$	V _{CC} – 0.6			V
V _{OL}	INVALID low-level output voltage	$I_{OH} = -1 \text{ mA},$ <u>FORCEON</u> = GND, FORCEOFF = V _{CC}			0.4	V

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (1)(2)

6.9 Switching Characteristics—Driver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CO	NDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate	$C_L = 1000 \text{ pF}, R_L = 3 \text{ k}\Omega,$ (see Figure 3)		150	250		kbps
t _{sk(p)}	Pulse skew ⁽³⁾	$C_L = 150$ to 2500 pF, $R_L =$ (see Figure 4)		100		ns	
	Slew rate, transition region	$V_{CC} = 3.3 V,$	$C_{L} = 150 \text{ to } 1000 \text{ pF}$	6		30	
SK(tr)	(see Figure 3)	$R_L = 3 k\Omega$ to 7 k Ω	C _L = 150 to 2500 pF	4		30	v/µs

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device.

6.10 Switching Characteristics—Receiver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	$C_L = 150 \text{ pF},$ (see Figure 5)		150		ns
t _{PHL}	Propagation delay time, high- to low-level output	$C_L = 150 \text{ pF},$ (see Figure 5)		150		ns
t _{en}	Output enable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega,$ (see Figure 6)		200		ns
t _{dis}	Output disable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega,$ (see Figure 6)		200		ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 5		50		ns

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device. (1)

(2)

(3)

Switching Characteristics—Status 6.11

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	MIN	TYP ⁽²⁾	MAX	UNIT
t _{valid}	Propagation delay time, low- to high-level output		1		μs
t _{invalid}	Propagation delay time, high- to low-level output		30		μs
t _{en}	Supply enable time		100		μs

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (1)

(2) All typical values are at $V_{CC} = 3.3$ V or $V_{CC} = 5$ V, and $T_A = 25^{\circ}C$.

6.12 Typical Characteristics

 $V_{CC} = 3.3 V$

7 Parameter Measurement Information

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbps, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbps, Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: $Z_0 = 50 \ \Omega$, 50% duty cycle, $t_r \le 10 \text{ ns}$.

Figure 5. Receiver Propagation Delay Times

Parameter Measurement Information (continued)

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: $Z_0 = 50 \ \Omega$, 50% duty cycle, $t_r \le 10 \ ns$, $t_f \le 10 \ ns$.
- $\label{eq:C.total} C. \quad t_{PLZ} \text{ and } t_{PHZ} \text{ are the same as } t_{dis}.$
- D. t_{PZL} and t_{PZH} are the same as t_{en} .

Figure 6. Receiver Enable and Disable Times

3 V 2.7 V Receiver 0 V Input 0 V ROUT Π -2.7 V 2.7 V -3 \/ Generator ξ **50** Ω (see Note B) ^tvalid ^tinvalid H Vcc 50% V_{CC} 50% V_{CC} INVALID 0 V Output Automatic INVALID ۲en Power Down C_L = 30 pF V+ V+ (see Note A) 0.3 V FORCEOFF -Supply ۷сс Voltages 0 V DOUT DIN 0.3 FORCEON v-**TEST CIRCUIT VOLTAGE WAVEFORMS** Valid RS-232 Level, INVALID High 2.7 V Indeterminate 0.3 V If Signal Remains Within This Region For More Than 30 $\mu s,$ INVALID Is Low $^{(A)}$ 0 V -0.3 V Indeterminate -2.7 V Valid RS-232 Level, INVALID High

Parameter Measurement Information (continued)

- A. Automatic Power Down disables drivers and reduces supply current to 1 μ A.
- B. C_L includes probe abnd jig capacitance.
- C. The pulse generator has the following characteristics: PRR = 5 kbps, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.

Figure 7. INVALID Propagation Delay Times and Driver Enabling Time

EXAS

ISTRUMENTS

www.ti.com

8 Detailed Description

8.1 Overview

The TRS3221 device is a one-driver and one-receiver RS-232 interface device. All RS-232 inputs and outputs are protected up to ± 15 kV using the Human-Body Model. The charge pump requires only four small 0.1-µF capacitors for operation from a 3.3-V supply. The TRS3221 device is capable of running at data rates up to 250 kbps while maintaining RS-232-compliant output levels.

Automatic power down can be disabled when FORCEON and FORCEOFF are high. With automatic power down plus enabled, the device activates automatically when a valid signal is applied to any receiver input. The device can automatically power down the driver to save power when the RIN input is unpowered.

INVALID is high (valid data) if receiver input voltage is greater than 2.7 V or less than -2.7 V, or has been between -0.3 V and 0.3 V for less than 30 μ s. INVALID is low (invalid data) if receiver input voltages are between -0.3 V and 0.3 V for more than 30 μ s. Refer to Figure 7 for receiver input levels.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Power

The power block increases, inverts, and regulates voltage at V+ and V– pins using a charge pump that requires four external capacitors. The automatic power-down feature for the driver is controlled by FORCEON and FORCEOFF inputs. The receiver is controlled by the EN input (see Table 1 and Table 2).

When the TRS3221 device is unpowered, it can be safely connected to an active remote RS232 device.

8.3.2 RS232 Driver

One driver interfaces standard logic level to RS232 levels. DIN input must be valid high or low.

8.3.3 RS232 Receiver

One receiver interfaces RS232 levels to standard logic levels. An open input re<u>sult</u>s in a high output on ROUT. RIN input includes an internal standard RS232 load. A logic high input on the EN pin shuts down the receiver output.

8.3.4 RS232 Status

The INVALID output goes low when RIN input is unpowered for more than 30 μ s. The INVALID output goes high when the receiver has a valid input. The INVALID output is active when V_{cc} is powered regardless of FORCEON and FORCEOFF inputs (see Table 3).

Copyright © 2007–2015, Texas Instruments Incorporated

8.4 Device Functional Modes

Table 1. Driver⁽¹⁾

		INPUTS		OUTPUT	
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATUS
Х	Х	L	Х	Z	Powered off
L	Н	Н	Х	Н	Normal operation with
Н	Н	Н	Х	L	automatic power down disabled
L	L	Н	Yes	Н	Normal operation with
Н	L	Н	Yes	L	automatic power down enabled
L	L	Н	No	Z	Powered off by
Н	L	Н	No	Z	automatic power-down feature

(1) H = high level, L = low level, X = irrelevant, Z = high impedance, Yes = |RIN| > 2.7 V, No = |RIN| < 0.3 V

Table 2. Receiver⁽¹⁾

	INPUTS	5	OUTPUT	
RIN	ĒN	VALID RIN RS-232 LEVEL	ROUT	RECEIVER STATUS
Х	Н	Х	Z	Output off
L	L	Х	Н	
Н	L	Х	L	Normal operation
Open	L	No	Н	

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

Table 3. INVALID⁽¹⁾

		OUTPUT		
RIN	FORCEON	FORCEOFF	EN	INVALID
L	Х	Х	Х	Н
Н	Х	Х	Х	Н
Open	Х	Х	Х	L

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

Figure 8. Logic Diagram

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TRS3232 device is designed to convert single-ended signals into RS232-compatible signals, and vice-versa.

This device can be used in any application where an RS232 line driver or receiver is required. One benefit of this device is its ESD protection, which helps protect other components on the board when the RS232 lines are tied to a physical connector.

9.2 Typical Application

- A. C3 can be connected to V_{CC} or GND.
- B. Resistor values shown are nominal.
- C. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they must be connected as shown.
- D. See Table 4 for capacitor values.

Figure 9. Typical Operating Circuit

Typical Application (continued)

9.2.1 Design Requirements

- Recommended V_{CC} is 3.3 V or 5 V
- 3 V to 5.5 V is also possible
- Maximum recommended bit rate is 250 kbps
- Use capacitors as shown in Figure 9 and Table 4

Table 4. V_{CC} versus Capacitor Values

V _{cc}	C1	C2, C3, and C4
3.3 V ± 0.3 V	0.1 µF	0.1 µF
5 V ± 0.5 V	0.047 µF	0.33 µF
3 V to 5.5 V	0.1 µF	0.47 µF

9.2.2 Detailed Design Procedure

For proper operation, add capacitors as shown in Figure 9 and Table 4.

- DIN, FORCEOFF and FORCEON inputs must be connected to valid low or high logic levels
- Select capacitor values based on V_{CC} level for best performance

ROUT and DIN connect to UART or general purpose logic lines. FORCEON and FORCEOFF may be connected general purpose logic lines or tied to ground or V_{CC} . INVALID may be connected to a general purpose logic line or left unconnected. RIN and DOUT lines connect to a RS232 connector or cable. DIN, FORCEON, and FORCEOFF inputs must not be left unconnected.

9.2.3 Application Curve

 V_{CC} of 3.3 V and 250 kbps alternative bit data stream

Figure 10. 250 kbps Driver to Receiver Loopback Timing Waveform, $V_{\text{CC}}\text{=}$ 3.3 V

10 Power Supply Recommendations

V_{CC} must be between 3 V and 5.5 V. Charge pump capacitors must be chosen using Table 4.

11 Layout

11.1 Layout Guidelines

Keep the external capacitor traces short. This is more important on C1 and C2 nodes, which have the fastest rise and fall times.

11.2 Layout Example

Figure 11. Layout Diagram

12 Device and Documentation Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

17-Jun-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TRS3221CDB	ACTIVE	SSOP	DB	16	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	RS21C	Samples
TRS3221CDBG4	ACTIVE	SSOP	DB	16	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	RS21C	Samples
TRS3221CDBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	RS21C	Samples
TRS3221CPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	RS21C	Samples
TRS3221CPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	RS21C	Samples
TRS3221IDBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	RS211	Samples
TRS3221IPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	RS211	Samples
TRS3221IPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	RS211	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

17-Jun-2015

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRS3221CDBR	SSOP	DB	16	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
TRS3221CPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TRS3221IDBR	SSOP	DB	16	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
TRS3221IPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

17-Jun-2015

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRS3221CDBR	SSOP	DB	16	2000	367.0	367.0	38.0
TRS3221CPWR	TSSOP	PW	16	2000	367.0	367.0	35.0
TRS3221IDBR	SSOP	DB	16	2000	367.0	367.0	38.0
TRS3221IPWR	TSSOP	PW	16	2000	367.0	367.0	35.0

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated