

SNOS611E - AUGUST 1999-REVISED MARCH 2013

LMC6042 CMOS Dual Micropower Operational Amplifier

Check for Samples: LMC6042

FEATURES

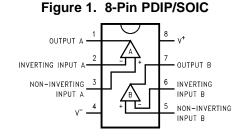
- Low Supply Current: 10 μA/Amp (typ)
- Operates from 4.5V to 15V Single Supply
- Ultra Low Input Current: 2 fA (typ)
- Rail-to-Rail Output Swing
- Input Common-Mode Range Includes Ground

APPLICATIONS

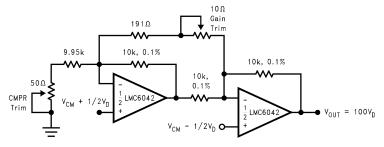
- Battery Monitoring and Power Conditioning
- Photodiode and Infrared Detector Preamplifier
- Silicon Based Transducer Systems
- Hand-Held Analytic Instruments
- pH Probe Buffer Amplifier
- Fire and Smoke Detection Systems
- Charge Amplifier for Piezoelectric Transducers

DESCRIPTION

Ultra-low power consumption and low input-leakage current are the hallmarks of the LMC6042. Providing input currents of only 2 fA typical, the LMC6042 can operate from a single supply, has output swing extending to each supply rail, and an input voltage range that includes ground.


The LMC6042 is ideal for use in systems requiring ultra-low power consumption. In addition, the insensitivity to latch-up, high output drive, and output swing to ground without requiring external pull-down resistors make it ideal for single-supply batterypowered systems.

Other applications for the LMC6042 include bar code reader amplifiers, magnetic and electric field detectors, and hand-held electrometers.


This device is built with TI's advanced Double-Poly Silicon-Gate CMOS process.

See the LMC6041 for a single, and the LMC6044 for a quad amplifier with these features.

Connection Diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

LMC6042

SNOS611E-AUGUST 1999-REVISED MARCH 2013

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Absolute Maximum Ratings (1)(2)

±Supply Voltage
16V
See ⁽³⁾
See ⁽⁴⁾
260°C
±5 mA
±18 mA
35 mA
See ⁽⁵⁾
-65°C to +150°C
110°C
500V
(V ⁺) + 0.3V, (V [−]) − 0.3V

- (1)Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Conditions indicate conditions for which the device is intended to be functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed.
- If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.
- (3)Do not connect output to V⁺when V⁺ is greater than 13V or reliability may be adversely affected.
- (4) Applies to both single-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 110°C. Output currents in excess of ±30 mA over long term may adversely affect reliability. The maximum power dissipation is a function of $T_{J(Max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient (5)
- temperature is $P_D = (T_{J(Max)} T_A)/\theta_{JA}$. Human body model, 1.5 k Ω in series with 100 pF.
- (6)

Operating Ratings

Temperature Range	LMC6042AI, LMC6042I	−40°C ≤ T _J ≤ +85°C
Supply Voltage		4.5V ≤ V ⁺ ≤ 15.5V
Power Dissipation	See ⁽¹⁾	
Thermal Resistance (θ_{JA}), ⁽²⁾	8-Pin PDIP	101°C/W
	8-Pin SOIC	165°C/W
	8-Pin CDIP	115°C/W

(1) For operating at elevated temperatures the device must be derated based on the thermal resistance θ_{JA} with $P_D = (T_J - T_A)/\theta_{JA}$.

(2)All numbers apply for packages soldered directly into a PC board.

Electrical Characteristics

Unless otherwise specified, all limits ensured for $T_A = T_J = 25^{\circ}$ C. **Boldface** limits apply at the temperature extremes. V⁺ = 5V, V^- = 0V, V_{CM} = 1.5V, V_O = V⁺/2 and R_L > 1M unless otherwise specified.

Symbol	Parameter	Denemator Conditions	Typical ⁽¹⁾	LMC6042AI	LMC6042I	Units
		Conditions		Limit ⁽²⁾	Limit ⁽²⁾	(Limit)
V _{OS}	Input Offset Voltage		1	3	6	mV
				3.3	6.3	Max
TCV _{OS}	Input Offset Voltage		1.3			μV/°C
	Average Drift					
I _B	Input Bias Current		0.002	4	4	pA (Max)
I _{OS}	Input Offset Current		0.001	2	2	pA (Max)
R _{IN}	Input Resistance		>10			TeraΩ

Typical values represent the most likely parametric norm. (1)

- All limits are specified at room temperature (standard type face) or at operating temperature extremes (bold face type). (2)
- 2 Submit Documentation Feedback

SNOS611E - AUGUST 1999-REVISED MARCH 2013

www.ti.com

Electrical Characteristics (continued)

Unless otherwise specified, all limits ensured for $T_A = T_J = 25^{\circ}$ C. **Boldface** limits apply at the temperature extremes. V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V_O = V⁺/2 and R_L > 1M unless otherwise specified.

Symbol	Parameter	Condition	e	Typical ⁽¹⁾	LMC6042AI	LMC6042I	Units
Symbol	Faidilielei			Limit ⁽²⁾	Limit ⁽²⁾	(Limit)	
CMRR	Common Mode	$0V \le V_{CM} \le 12.0V$	$0V \le V_{CM} \le 12.0V$		68	62	dB
	Rejection Ratio	V ⁺ = 15V			66	60	Min
+PSRR	Positive Power Supply	$5V \le V^+ \le 15V$		75	68	62	dB
	Rejection Ratio	$V_{O} = 2.5V$			66	60	Min
-PSRR	Negative Power Supply	$0V \le V^- \le -10V$		94	84	74	dB
	Rejection Ratio	$V_{O} = 2.5V$			83	73	Min
CMR	Input Common-Mode	$V^{+} = 5V$ and 15V		-0.4	-0.1	-0.1	V
	Voltage Range	For CMRR ≥ 50 dB			0	0	Max
				V ⁺ -1.9V	V ⁺ - 2.3V	V ⁺ - 2.3V	V
					V ⁺ - 2.5V	V ⁺ - 2.4V	Min
A _V	Large Signal	$R_L = 100 \text{ k}\Omega^{(3)}$	Sourcing	1000	400	300	V/mV
	Voltage Gain				300	200	Min
			Sinking	500	180	90	V/mV
					120	70	Min
		$R_L = 25 \text{ k}\Omega^{(3)}$	Sourcing	1000	200	100	V/mV
					160	80	Min
			Sinking	250	100	50	V/mV
					60	40	Min
Vo	Output Swing		4.987	4.970	4.940	V	
		$R_L = 100 \text{ k}\Omega \text{ to V}^+/2$	$R_L = 100 \text{ k}\Omega \text{ to V}^+/2$			4.910	Min
				0.004	0.030	0.060	V
					0.050	0.090	Max
		V ⁺ = 5V		4.980	4.920	4.870	V
		$R_L = 25 \text{ k}\Omega \text{ to } V^+/2$			4.870	4.820	Min
				0.010	0.080	0.130	V
					0.130	0.180	Max
		V ⁺ = 15V		14.970	14.920	14.880	V
		$R_L = 100 \text{ k}\Omega \text{ to V}^+/2$			14.880	14.820	Min
				0.007	0.030	0.060	V
					0.050	0.090	Max
		V ⁺ = 15V		14.950	14.900	14.850	V
		$R_L = 25 \text{ k}\Omega \text{ to } V^+/2$			14.850	14.800	Min
				0.022	0.100	0.150	V
					0.150	0.200	Max
I _{SC}	Output Current	Sourcing, $V_0 = 0V$		22	16	13	mA
	V ⁺ = 5V				10	8	Min
		Sinking, V _O = 5V		21	16	13	mA
					8	8	Min
I _{SC}	Output Current	Sourcing, $V_0 = 0V$		40	15	15	mA
-	V ⁺ = 15V				10	10	Min
		Sinking, $V_0 = 13V^{(4)}$		39	24	21	mA
					8	8	Min

(3) $V^+ = 15V$, $V_{CM} = 7.5V$ and R_{L} connected to 7.5V. For Sourcing tests, $7.5V \le V_{O} \le 11.5V$. For Sinking tests, $2.5V \le V_{O} \le 7.5V$. (4) Do not connect output to V⁺when V⁺ is greater than 13V or reliability may be adversely affected.

SNOS611E - AUGUST 1999-REVISED MARCH 2013

Electrical Characteristics (continued)

Unless otherwise specified, all limits ensured for $T_A = T_J = 25^{\circ}C$. **Boldface** limits apply at the temperature extremes. V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V_O = V⁺/2 and R_L > 1M unless otherwise specified.

Symbol	Parameter	Conditions	Typical ⁽¹⁾	LMC6042AI	LMC6042I	Units
Symbol	Falameter	Conditions		Limit ⁽²⁾	Limit ⁽²⁾	(Limit)
I _S	Supply Current	Both Amplifiers	20	34	45	μA
		$V_{O} = 1.5V$		39	50	Max
		Both Amplifiers	26	44	56	μA
		V ⁺ = 15V		51	65	Max

AC Electrical Characteristics

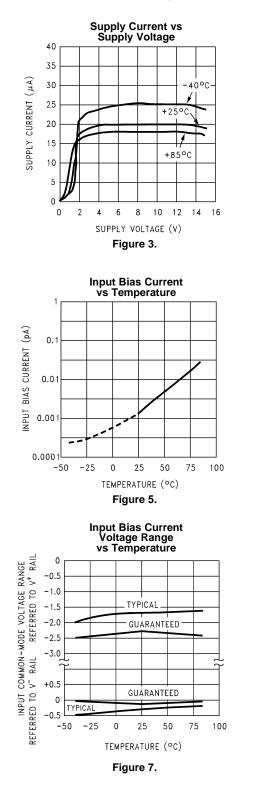
Unless otherwise specified, all limits ensured for $T_A = T_J = 25^{\circ}C$. **Boldface** limits apply at the temperature extremes. V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V_O = V⁺/2 and R_L > 1M unless otherwise specified.

0 milest	Demonster	O an allilian a	Typ ⁽¹⁾	LMC6042AI	LMC60421	Units	
Symbol	Parameter	Conditions		Limit ⁽²⁾	Limit ⁽²⁾	(Limit)	
SR	Slew Rate	See ⁽³⁾	0.02	0.015	0.010	V/µs	
				0.010	0.007	Min	
GBW	Gain-Bandwidth Product		100			kHz	
φ _m	Phase Margin		60			Deg	
	Amp-to-Amp Isolation	See ⁽⁴⁾	115			dB	
e _n	Input-Referred Voltage Noise	f = 1 kHz	83			nV/√Hz	
i _n	Input-Referred Current Noise	f = 1 kHz	0.0002			pA/√Hz	
T.H.D.	Total Harmonic Distortion	$f = 1 \text{ kHz}, A_V = -5$					
		R_L = 100 k Ω , V_O = 2 V_{PP}	0.01			%	
		±5V Supply					

(1) Typical values represent the most likely parametric norm.

All limits are ensured at room temperature (standard type face) or at operating temperature extremes (bold face type). (2)

 V^+ = 15V. Connected as Voltage Follower with 10V step input. Number specified is the slower of the positive and negative slew rates. Input referred V^+ = 15V and R_L = 100 k Ω connected to $V^+/2$. Each amp excited in turn with 100 Hz to produce V_0 = 12 V_{PP} . (3)


(4)

SNOS611E - AUGUST 1999-REVISED MARCH 2013

Typical Performance Characteristics

 $V_S = \pm 7.5 V$, $T_A = 25^{\circ}C$ unless otherwise specified

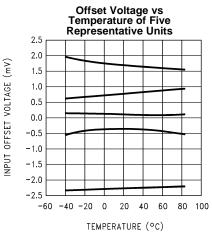


Figure 4.

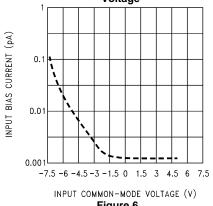
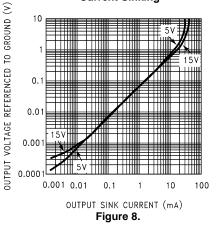



Figure 6.

Output Characteristics Current Sinking

10

0.

0.0

0.00

0.000

60

80

100

120

140

120

110

100

90

80

70

60

50

-40

-20 0 20

CMMR (dB)

1

CROSSTALK REJECTION (dB)

REFERENCED TO POSITIVE SUPPLY (V)

OUTPUT VOLTAGE

Output Characteristics Current Sourcing

₽

OUTPUT SOURCE CURRENT (mA)

1

RL = 25

0.1

Figure 9.

Crosstalk Rejection vs Frequency

100

FREQUENCY (Hz) Figure 11.

CMRR vs Temperature 1k

60 80

40

TEMPERATURE (°C)

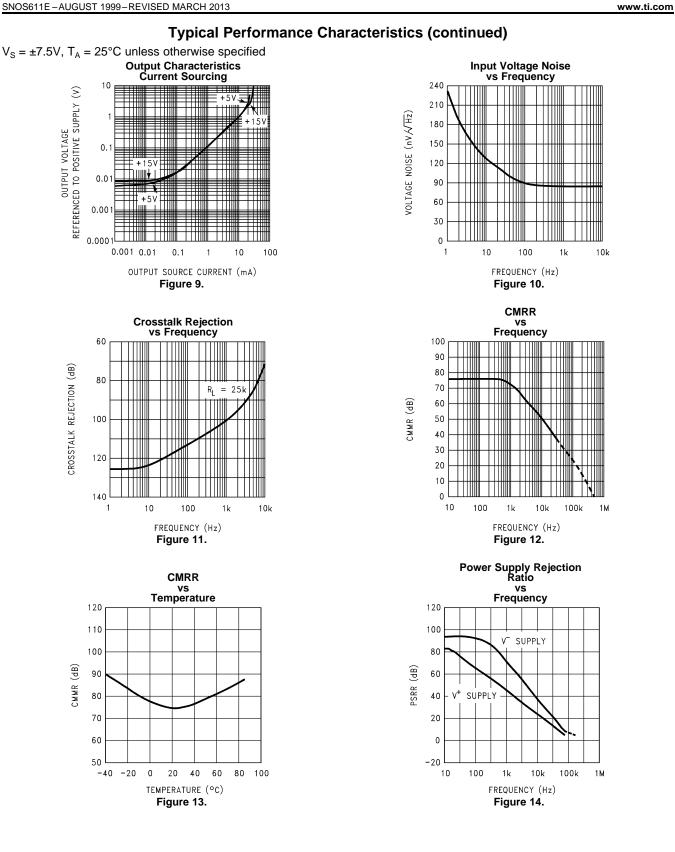
Figure 13.

10

ТП

+15\

+5\

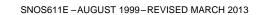

П

0.001 0.01

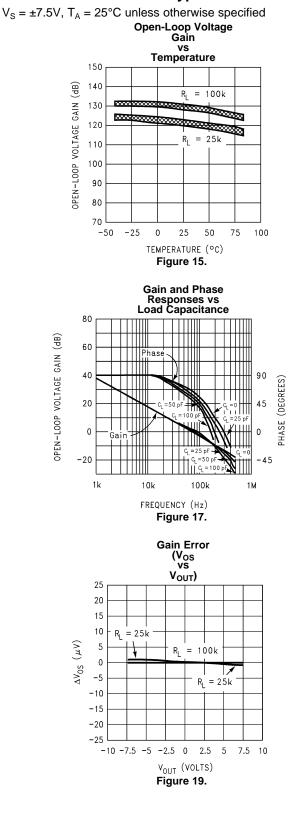
+5V

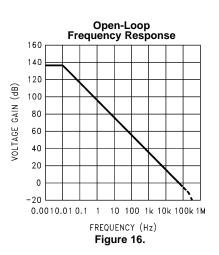
Ш

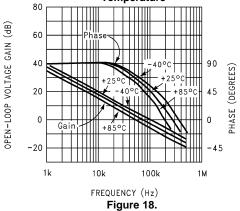
10

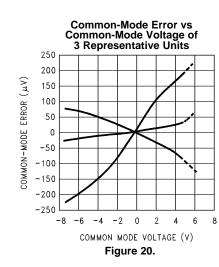


Texas


NSTRUMENTS


6




Typical Performance Characteristics (continued)

EXAS NSTRUMENTS

60 80 100

SNOS611E - AUGUST 1999-REVISED MARCH 2013

0.040

0.035

0.030

0.025 0.020

0.015

0.010

0.005

INPUT VOLTAGE (V)

OUTPUT VOLTAGE (V)

INPUT VOLTAGE (V)

OUTPUT VOLTAGE (V)

8

5

0

6 4

2

0

6

1

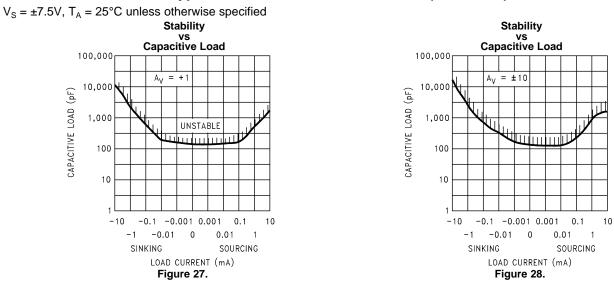
8 6

4

2

0

-40


SLEW RATE $(V/\mu s)$

SNOS611E-AUGUST 1999-REVISED MARCH 2013

www.ti.com

APPLICATIONS HINTS

AMPLIFIER TOPOLOGY

The LMC6042 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6042 both easier to design with, and provide higher speed than products typically found in this ultra-low power class.

COMPENSATING FOR INPUT CAPACITANCE

It is quite common to use large values of feedback resistance with amplifiers with ultra-low input curent, like the LMC6042.

Although the LMC6042 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.

When high input impedances are demanded, guarding of the LMC6042 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High Impedance Work).

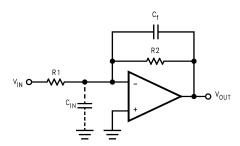


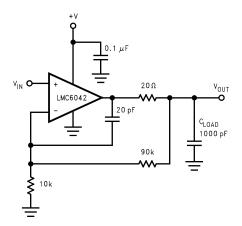
Figure 29. Cancelling the Effect of Input Capacitance

The effect of input capacitance can be compensated for by adding a capacitor. Place a capacitor, C_f , around the feedback resistor (as in Figure 29) such that:

$$\frac{1}{2\pi \text{R1 C}_{\text{IN}}} \ge \frac{1}{2\pi \text{R2 C}_{\text{f}}}$$
(1)

or

R1 $C_{IN} \leq$ R2 C_f


(2)

Since it is often difficult to know the exact value of C_{IN} , C_f can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and the LMC662 for a more detailed discussion on compensating for input capacitance.

CAPACITIVE LOAD TOLERANCE

Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unity-gain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 30.

Figure 30. LMC6042 Noninverting Gain of 10 Amplifier, Compensated to Handle Capacitive Loads

In the circuit of Figure 30, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

Capacitive load driving capability is enhanced by using a pull up resistor to V⁺ (Figure 31). Typically a pull up resistor conducting 10 μ A or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

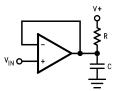
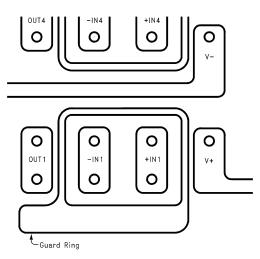


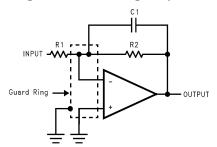
Figure 31. Compensating for Large Capacitive Loads with a Pull Up Resistor

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK


It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6042, typically less than 2 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.

To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6042's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals etc. connected to the op-amp's inputs, as in Figure 32. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12}\Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6042's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11}\Omega$ would cause only 0.05 pA of leakage current. See Figure 36 for typical connections of guard rings for standard op-amp configurations.

TEXAS INSTRUMENTS


www.ti.com

SNOS611E - AUGUST 1999-REVISED MARCH 2013

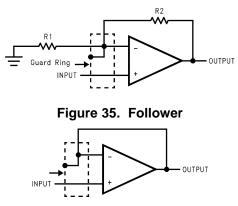
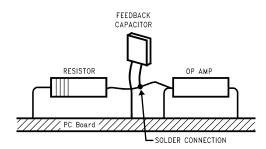



Figure 36. Typical Connections of Guard Rings

The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 37.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

Figure 37. Air Wiring

Typical Single-Supply Applications

 $(V^+ = 5.0 V_{DC})$

The extremely high input impedance, and low power consumption, of the LMC6042 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers.

The circuit in Figure 38 is recommended for applications where the common-mode input range is relatively low and the differential gain will be in the range of 10 to 1000. This two op-amp instrumentation amplifier features an independent adjustment of the gain and common-mode rejection trim, and a total quiescent supply current of less than 20 μ A. To maintain ultra-high input impedance, it is advisable to use ground rings and consider PC board layout an important part of the overall system design (see Printed-Circuit-Board Layout for High Impedance Work). Referring to Figure 38, the input voltages are represented as a common-mode input V_{CM} plus a differential input V_D.

Rejection of the common-mode component of the input is accomplished by making the ratio of R1/R2 equal to R3/R4. So that where,

$$\frac{R_3}{R_4} = \frac{R_2}{R_1}$$

$$V_{OUT} = \frac{R_4}{R_3} \left(1 + \frac{R_3}{R_4} + \frac{R_2 + R_3}{R_0} \right) V_D$$
(3)

A suggested design guideline is to minimize the difference of value between R1 through R4. This will often result in improved resistor tempco, amplifier gain, and CMRR over temperature. If RN = R1 = R2 = R3 = R4 then the gain equation can be simplified:

$$V_{OUT} = 2\left(1 + \frac{RN}{R0}\right)V_{D}$$
(4)

Due to the "zero-in, zero-out" performance of the LMC6042, and output swing rail-rail, the dynamic range is only limited to the input common-mode range of 0V to V_S – 2.3V, worst case at room temperature. This feature of the LMC6042 makes it an ideal choice for low-power instrumentation systems.

A complete instrumentation amplifier designed for a gain of 100 is shown in Figure 39. Provisions have been made for low sensitivity trimming of CMRR and gain.

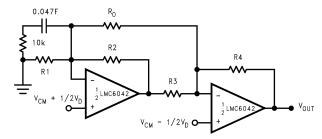
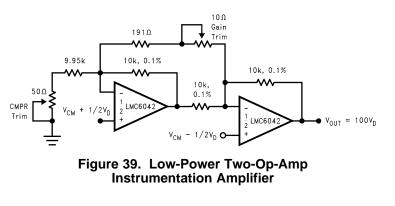



Figure 38. Two Op-Amp Instrumentation Amplifier

SNOS611E-AUGUST 1999-REVISED MARCH 2013

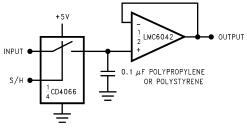
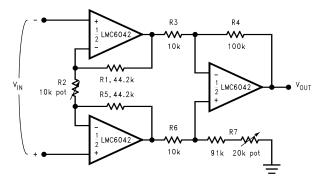



Figure 40. Low-Leakage Sample and Hold

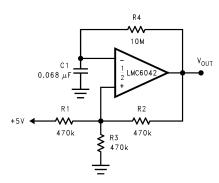


Figure 42. 1 Hz Square Wave Oscillator

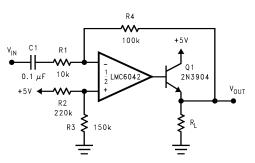


Figure 43. AC Coupled Power Amplifier

SNOS611E-AUGUST 1999-REVISED MARCH 2013

REVISION HISTORY

Ch	nanges from Revision D (March 2013) to Revision E	Page
•	Changed layout of National Data Sheet to TI format	. 15

Copyright © 1999–2013, Texas Instruments Incorporated

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LMC6042AIJ	ACTIVE	CDIP	NAB	8	40	TBD	Call TI	Call TI		LMC6042AIJ	Samples
LMC6042AIM	NRND	SOIC	D	8	95	TBD	Call TI	Call TI	-40 to 85	LMC60 42AIM	
LMC6042AIM/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LMC60 42AIM	Samples
LMC6042AIMX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LMC60 42AIM	Samples
LMC6042AIN/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	-40 to 85	LMC60 42AIN	Samples
LMC6042IM	NRND	SOIC	D	8	95	TBD	Call TI	Call TI	-40 to 85	LMC60 42IM	
LMC6042IM/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LMC60 42IM	Samples
LMC6042IMX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LMC60 42IM	Samples
LMC6042IN/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	-40 to 85	LMC60 42IN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

17-Mar-2017

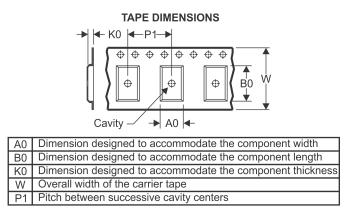
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

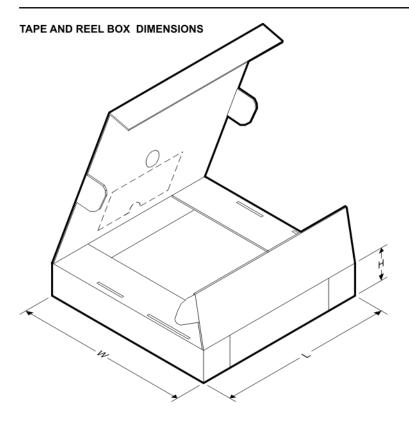

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

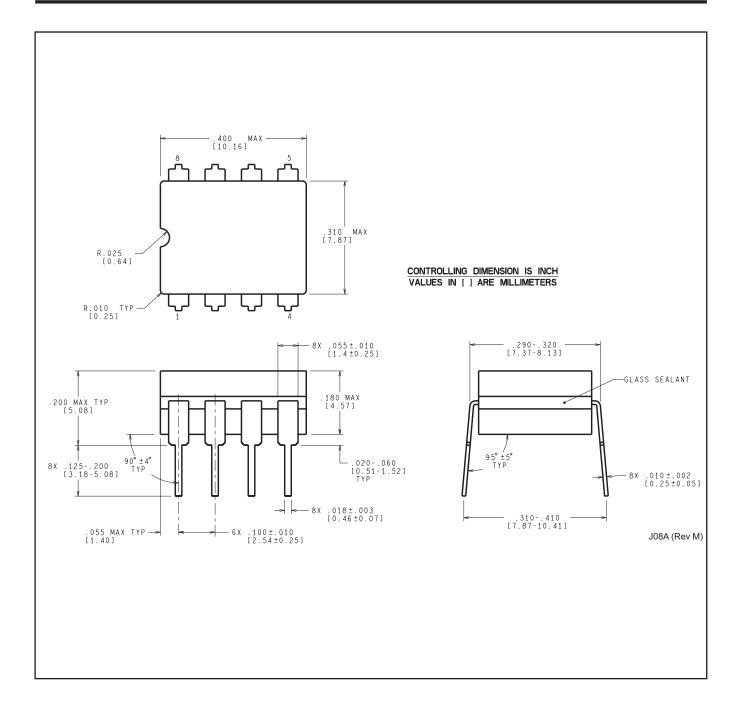

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMC6042AIMX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LMC6042IMX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

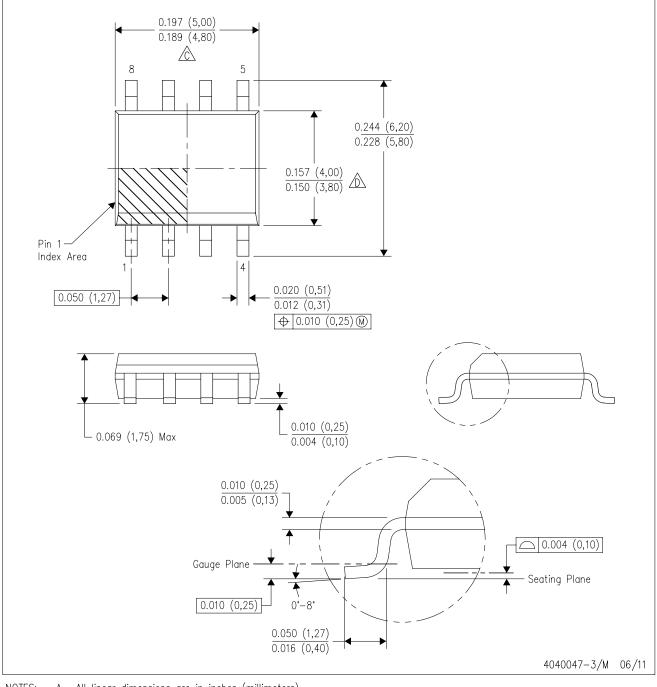
2-Sep-2015



*All dimensions are nominal

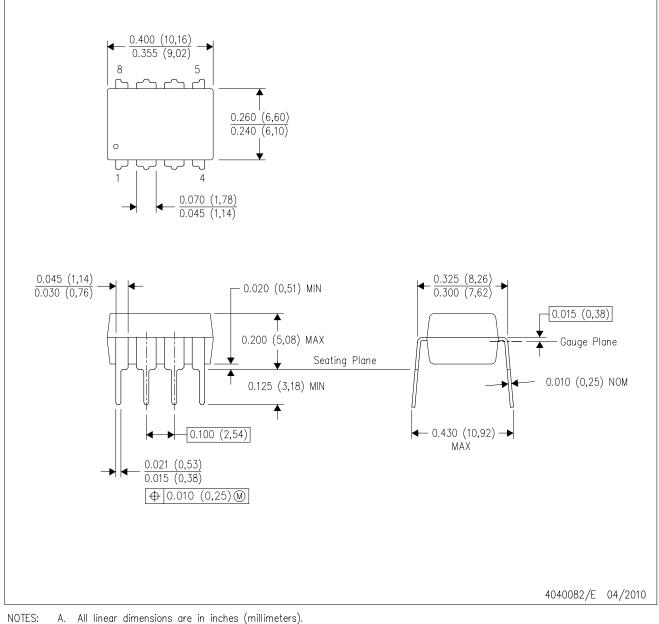
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMC6042AIMX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0
LMC6042IMX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0

MECHANICAL DATA


NAB0008A

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated