

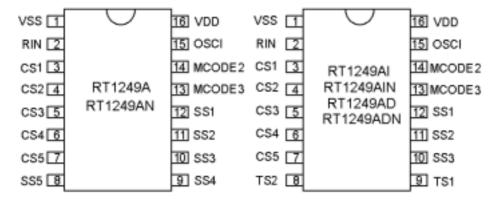
RATO Technology Inc.,

RT1249

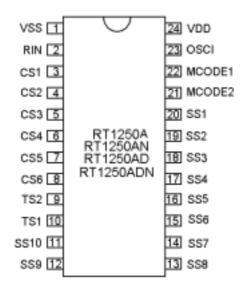
■ DESCRIPTION:

RT1249/RT11250 serials are infra-red(IR) remote control receiver utilizing CMOS technology, it can be used with RT1248. The RT1249 series are packaged in 16 pins(RT1249) and 24 pins(RT1250) DIP. This series are capable of controlling several functions, such as non-inverse/inverse select IR signal input format, and independent/dependent toggle signal output, etc.

■ FEATURES:


- 1. Operating Voltage: 2.2 5.0V.
- 2. Low power dissipation.
- 3. High noise immunity.
- A oscillator can be constructed by connecting a RC circuit.
 (The frequency is 22KHz 54KHz)
- 5. Three kinds of output format are single-shot signal, continuous signal and toggle signal.
- 6. Able to output parallels multiple keying signals from the transmitter. (The maximum of RT1249 is 5 signals, and RT1250 is 6 signals.)

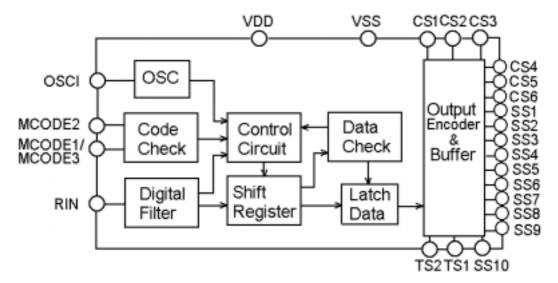
■ APPLICATIONS:


- 1. Audio equipment remote control.
- 2. Video compact disk (VCD) remote control.
- 3. Television (TV) remote control.
- 4. Videocassette recorder (VCR) remote control.
- 5. Other remote control system.

■ PIN CONFIGURATION:

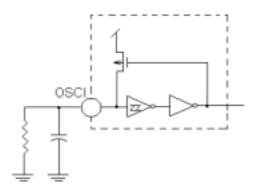
1. RT1249:

2.RT1250:

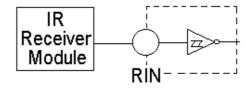

[Note]:Production number and parameter description:

Production number	Description		
RT1249A/RT1250A	Advanced version		
RT1249AN/RT1250AN	Advanced version, inverted RIN input		
RT1249AI	Advanced version, independent toggle output		
DT4040AIN	Advanced version, inverted RIN input,		
RT1249AIN	independent toggle output		
RT1249AD/RT1250AD	Advanced version, dependent toggle output		
RT1249ADN/RT1250ADN	Advanced version, inverted RIN input,		
	dependent toggle output		

■ PIN DESCRIPTION:


PIN DESCRIPTION:							
		PIN NO.	DT10504				
		RT1249AI	RT1250A	.,_	-		
PIN NAME	RT1249A	RT1249AIN	RT1250AN	1/0	Description		
	RT1249AN		RT1250AD				
	_	RT1249ADN		_			
VSS	1	1	1		Negative power supply.		
RIN	2	2	2	I	Receiver Input.		
					Continuous signal output.		
CS1 CS5	3 7	3 7	3 7		If the proper signal is received,		
				0	the output signal is held at 'H'		
					level.		
CS6	-	-	8		(After key is released, this output		
					will be 'L' level after 160ms)		
					Toggle signal output.		
TS2	_	8	9		When receiving signal is inputted,		
				0	TS1/TS2 will change its state.		
					(From "H" level to "L" level or		
TS1		9	10		from "L" level to "H" level)。		
SS1 SS3	10 12	10 12	18 20		Single-shot signal output.		
SS4	9	-	17		When receiving signal is inputted,		
SS5	8	-	16		These output will be at 'H' level		
				0	only a fixed duration of time(about		
SS6 SS10	_	-	11 15		107ms), then it will return to 'L'		
					level.		
MCODE1	-	-	22		Match code input.		
MCODE3	13	13	-		Transmitter code is compared		
				ı	with a code set at these terminals.		
MCODE2	14	14	21		If the code matched, input is		
					accepted.		
					OSC input/output.		
					A capacitor and a resistor are		
			23	1/	connected between this terminal		
OSCI	15	15			and VSS.		
					(User can change the frequency		
					between 22KHz and 54KHz.)		
VDD	16	16	24	ı	Positive power supply.		

■ BLOCK DIAGRAM:


■ FUNCTIONAL DESCRIPTION :

1. Oscillation Circuit:

- (1) A capacitor and resistor are connected between this terminal and VSS to be a oscillator.
- (2) The user can change the frequency, but the frequency must be during 25KHz 54KHz.

2. Receiving Signal Input Circuit:

- (1) The IR receiver module must demodulation the IR signal at first stage.
- (2) We used a Schmit trigger to Higher the noise immunity
- (3) There are two kinds of IR receiver module demodulation signals (non-inversing and inversing), so we use bounding options to choice the

non-inversing/inversing input format.

■ Code comparison:

- 1.The connection of matching Code of RT1248/RT1249 and RT1248/RT1250 are different.
 - (1) The relation of matching code between RT1248 and RT1249:

RT1	249	RT1248				
MCODE2	MCODE3	S1	S2	S3		
GND	GND	Diode	NC	NC		
GND	NC	Diode	NC	Diode		
NC	GND	Diode	Diode	NC		
NC	NC	Diode	Diode	Diode		

(2) The relation of matching code between RT1248 and RT1250:

RT1	1250	RT1248				
MCODE1	MCODE2	S1	S2	S3		
GND	GND	NC	NC	Diode		
GND	NC	NC	Diode	Diode		
NC	GND	Diode	NC	Diode		
NC	NC	Diode	Diode	Diode		

[Note]: ①NC: This is a floating pin for RT1248.

This is a floating or connecting a capacitor between this pin terminal and VSS.

②GND: Connect to VSS.

⑤Diode: To connect a diode between this terminal (for RT1248) and MCODE.

4S1,S2,S3 are the pin names of RT1248.

(2) Receiving signal check:

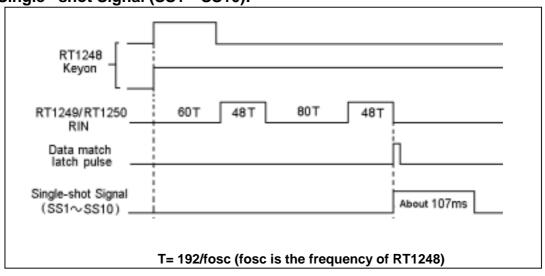
The receiving signal check is used to check 2 cycle transmitting signals sent from the transmitter to determine if it is a normal signal.

The receiving signal check step:

Step1. Receiving the data:

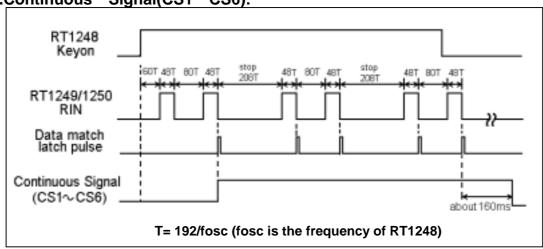
It will receive the first 12-bit data, and the data is stored in 10-bit shift register.

Step2. Match code check:

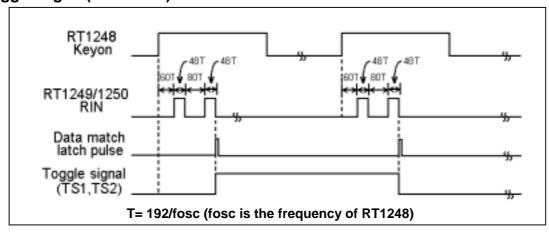

When the data is sent to the 10-bit shift register, the 3-bit match code will be pushed out the shift register. We will compare the 3-bit match-code with the RT1249/RT1250 external match code.

Step3. Other Data check:

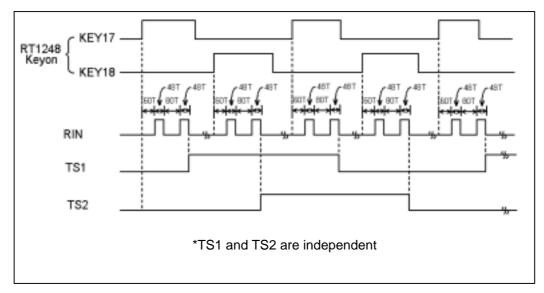
The 10-bit shift register will store the last 10 bits data, and when the second cycle data are set into the 10-bit shift register, the first cycle data (the last 10-bit) will be pushed out the shift register. And we will compare the first cycle data with the second cycle data. If the two cycle data are the same data, it will provide a data match latch pulse to latch the data.


■ Output format:

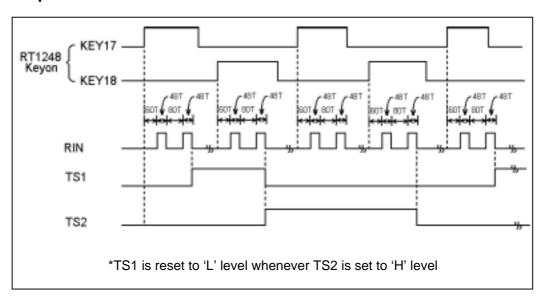
1. Single -shot Signal (SS1 SS10):


After we push the KEY7 KEY16 of RT1248, RT1249/RT1250 (SS1 SS10) will generate a single pulse output.

2.Continuous Signal(CS1 CS6):


After we push the KEY1 KEY6 of RT1248. The RT1249/RT1250 (CS1 CS6) output will from 'L' level to 'H' level. If we release the key of RT1248, the RT1249/RT1250 (CS1 CS6) output will keep at 'H' level about 160ms. (We calculate the 160ms after the two cycle data is received complicity.)

2..Toggle Signal(TS1 TS2):



After we push the KEY17, KEY18 of RT1248. The RT1249/RT1250 (TS1, TS2) output will from 'L' to 'H' level, and the RT1249/RT1250 (TS1, TS2) output will keep at 'H' level, until we push the same key of RT1248 again, the RT1249/RT1250 (TS1, TS2) output will from 'H' level to 'L' level.

[Note]:The relationship between TS1 and TS2 is shown in the diagram below: **1.Independent:**

2.Dependent:

■ Code table:

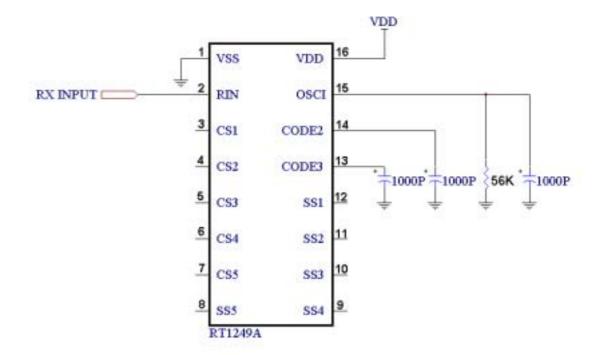
Key	RT1248 DATA BITS							FUNCTION (OF			
No.	Н0	P1	P2	D1	D2	D3	D4	D5	D6	INSTRUCTION		
	S1	S2	S 3	K 1	K2	K 3	K4	K5	K6	(RT1249/1250)		
KEY1	1	0	0	1	0	0	0	0	0	Continuous Signal CS1		
KEY2	1	0	0	0	1	0	0	0	0	Continuous Signal	CS2	
KEY3	1	0	0	0	0	1	0	0	0	Continuous Signal	CS3	
KEY4	1	0	0	0	0	0	1	0	0	Continuous Signal	CS4	
KEY5	1	0	0	0	0	0	0	1	0	Continuous Signal CS5		
KEY6	1	0	0	0	0	0	0	0	1	Continuous Signal CS6		
KEY7	0	1	0	1	0	0	0	0	0	Single-shot Signal SS1		
KEY8	0	1	0	0	1	0	0	0	0	Single-shot Signal SS2		
KEY9	0	1	0	0	0	1	0	0	0	Single-shot Signal SS3		
KEY10	0	1	0	0	0	0	1	0	0	Single-shot Signal	SS4	
KEY11	0	1	0	0	0	0	0	1	0	Single-shot Signal	SS5	
KEY12	0	1	0	0	0	0	0	0	1	Single-shot Signal	SS6	
KEY13	0	0	1	1	0	0	0	0	0	Single-shot Signal	SS7	
KEY14	0	0	1	0	1	0	0	0	0	Single-shot Signal SS8		
KEY15	0	0	1	0	0	1	0	0	0	Single-shot Signal SS9		
KEY16	0	0	1	0	0	0	1	0	0	Single-shot Signal SS10		
KEY17	0	0	1	0	0	0	0	1	0	Toggle Signal TS1		
KEY18	0	0	1	0	0	0	0	0	1	Toggle Signal TS2		

[Note]:

- (1) The "Key No." of the table is the key number of RT1248.
- (2) RT1250 serials (RT1250A/AN/AD/AND) can use 18 keys.
- (3) RT1249A/AN can use KEY1 KEY5 and KEY7 KEY11。
- (4) RT1249/AI/AIN/AD/AND can use KEY1 KEY5,KEY7 KEY9 and KEY17 ,KEY18。

■ Maximum Rating:

(Temp=25)


CHARACTERISTIC	SYMBOL	RATINC	UNIT
Supply Voltage	$V_{ extsf{DD}}$	5.5	V
Input/Output Voltage	V _{I/O}	Vss-0.3 to V _{DD} +0.3	V
Power Dissipation	P_{D}	200	mW
Operating Temperature	T _{OP}	0~+70	
Storage Temperature	T _{EST}	-40~+125	

■ Electrical Characteristics

(Unless otherwise specified, $V_{DD}=5V$ and Temp=25)

CHARACTERISTICS	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Supply Voltage	V_{DD}	All Function Operations	2.2	-	5.0	V
Operating Supply Current	I _{DD}	Key on without Load	-	ı	1.0	mA
RC oscillation Frequency	f _{OSC}	V _{DD} =4.5 5.5V Temp=0 70	22	33	54	KHz
Output source current	I _{OH}	V _O =4V	-	-	-1.0	mΑ
Output sink current	I_{OL}	V _O =1V	1.0	•	•	mΑ
Pull-up Resistor	R_{UP}		100	200	400	K
RIN Input Circuit Threshold Voltage	V_{IN}		2.0	2.5	3.0	V
RIN Input Hysterestic Voltage	V _{IHS}		-	0.6	-	V

■ APPLICATION CIRCUIT

