

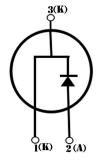
G5S12010C

1200V/10A Silicon Carbide Power Schottky Barrier Diode

Features

- Zero reverse recovery current
- Zero forward recovery voltage
- Temperature independent switching behavior
- High temperature operation
- High frequency operation

Key Characteristics		
V_{RRM}	1200	V
I _{F,} T _c ≤154°C	10	Α
Qc	55	nC


Benefits

- Unipolar rectifier
- Substantially reduced switching losses
- No thermal run-away with parallel devices
- Reduced heat sink requirements

Applications

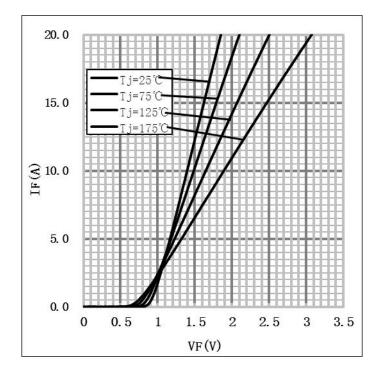
- SMPS, e.g., CCM PFC;
- Motor drives, Solar application, UPS, Wind turbine, Rail traction, EV/HEV

Part No.	Package Type	Marking
G5S12010C	TO-252	G5S12010C

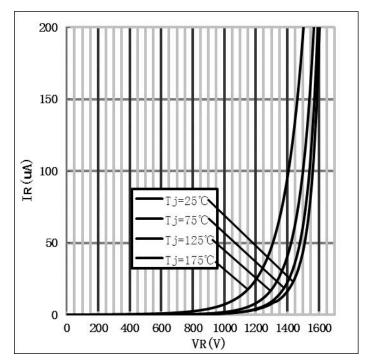
Maximum Ratings

Parameter	Symbol	Test Condition	Value	Unit
Repetitive Peak Reverse Voltage	V_{RRM}		1200	V
Surge Peak Reverse Voltage	V_{RSM}		1200	V
DC Blocking Voltage	V_{DC}		1200	V
Continuous Forward Current	I _F	T _C =25°C T _C =125°C T _C =154°C	31.3 16.9 10	А
Repetitive Peak Forward Surge Current	I _{FRM}	T_c =25°C, tp=10ms, Half Sine Wave, D=0.3	50	А
Non-repetitive Peak Forward Surge Current	I _{FSM}	T_{c} =25°C, tp=10ms, Half Sine Wave	110	А
Power Dissipation	P _{TOT}	T _C =25°C	136	W
		T _C =110°C	59	W
Operating Junction	Tj		-55°C to 175°C	°C
Storage Temperature	T_{stg}		-55℃ to 175℃	°C

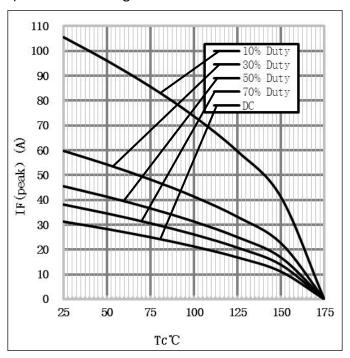
Thermal Characteristics

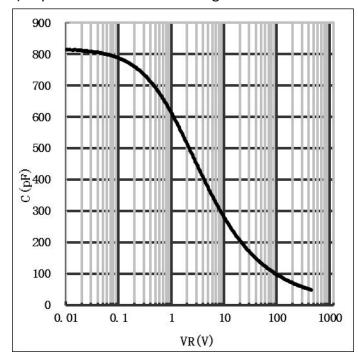

Parameter	Symbol	Test Condition	Value Typ.	Unit
Thermal resistance from junction to case	R _{th JC}		1.1	°C/W

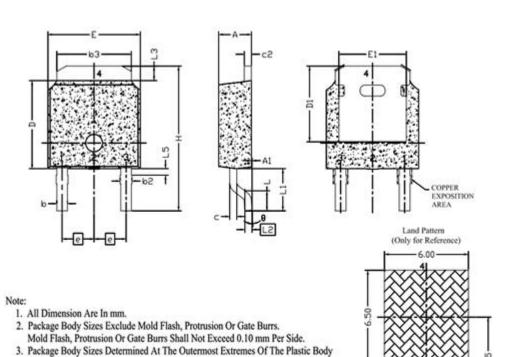
Electrical Characteristics


Пономофон	Symbol Test Conditions		Numerical		11	
Parameter	Symbol	rest conditions	Тур.	Max.	Unit	
Forward Voltage	\ \/	$I_F=10A, T_j=25$ °C	1.39	1.7	.,	
	V _F	I _F =10A, T _j =175°C	1.89	2.5	V	
Reverse Current		$V_R = 1200V, T_j = 25^{\circ}C$	4.32	50	•	
	l _R	V _R =1200V, T _j =175 °C	22.97	100	μΑ	
		$V_R=800V, T_j=150^{\circ}C$				
Total Capacitive Charge Q _C	Q_C	$Qc = \int_0^{VR} C(V)dV$	55	-	nC	
Total Capacitance	_	$V_R=0V$, $T_j=25$ °C, $f=1MHZ$	822	-		
	C	V_R =400V, T_j =25°C, f =1MHZ	51	-	pF	
		V_R =800V, T_j =25°C, f =1MHZ	43	-		

Performance Graphs


1) Forward IV characteristics as a function of T_j:


2) Reverse IV characteristics as a function of T_j:


3) Current Derating:

4) Capacitance vs. reverse voltage:

Package TO-252

can mpr	DIMENS	IONAL F	REQMIS
SYMBDL	MIN	NOM	MAX
E	6.40	6.60	6.731
L	1.40	1.52	1.77
L1	2.743 REF		
L2	(0.508 BSC	
L3	0.89		1.27
L5			
D	6.00	6.10	6.22
Н	9.40	10.00	10.40
b	0.64	0.76	0.88
b2	0.77	0.84	1.14
b3	5.21	5.34	5.46
e	2	2.286 BSC	
A	2.20	2.30	2.38
A1	0		0.127
С	0.46	0.50	0.60
C2	0.46	0.50	0.58
D1	5.21	-	-
E1	4.40	-	-
θ	0°		10°

Exclusive Of Mold Flash, Gate Burrs And Interlead Flash, But Including Any

Mismatch Between The Top And Bottom Of The Plastic Body.

WAFER DIAMETER	WAFER LOT
150 mm	(Up to 13 bit): LT***** \ LE*****

Note: The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC(RoHS2). RoHS Certification and other certifications can be obtained from GPT sales representatives or GPT website (then click "English" on the right top): http://globalpowertech.cn/

GPT online store is now open! you can place an order directly online, buy it easily, and send it directly from the factory! For more detailed product, price information and coupon activities, please log in to GPT online store: http://sc.globalpowertech.cn/

More product datasheets and company information can be found in: https://www.globalpowertech.cn/

