CUSTOMER : Standard
 .

 DATE
 : 2014.07.11
 .

 REV
 : 0.0
 .

SPECIFICATIONS FOR APPROVAL

Standard Downlight AC Module(850lm)_3000K

CCT(K)	Model Name	Customer P/N
3000K	LLDMLR6-00A201B	-

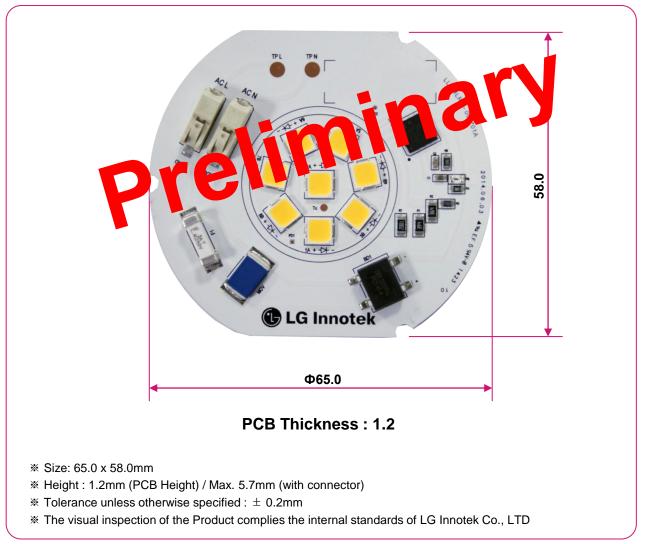
APPROVAL	REMARK	APPENDIX	DESIGNED	CHECKED	APPROVED
			2014.07.11	2014.07.11	2014.07.11
			B.K. Je	S.J. Hong	Chris Kong

TABLE OF CONTENTS

1.	Features	2
2.	Applications	2
3.	Outline Dimensions and Product Composition	2
4.	Schematic Diagram	4
5.	Product Characteristics	
6.	Standard Testing Conditions	
7.	Reliability Test Items and Condition.	8
8.	Pack ga I Libe got Locacts	
9.	Cautions on Use	14
10.	Disclaimers	15
	Appendix A. Pallet Packing	16

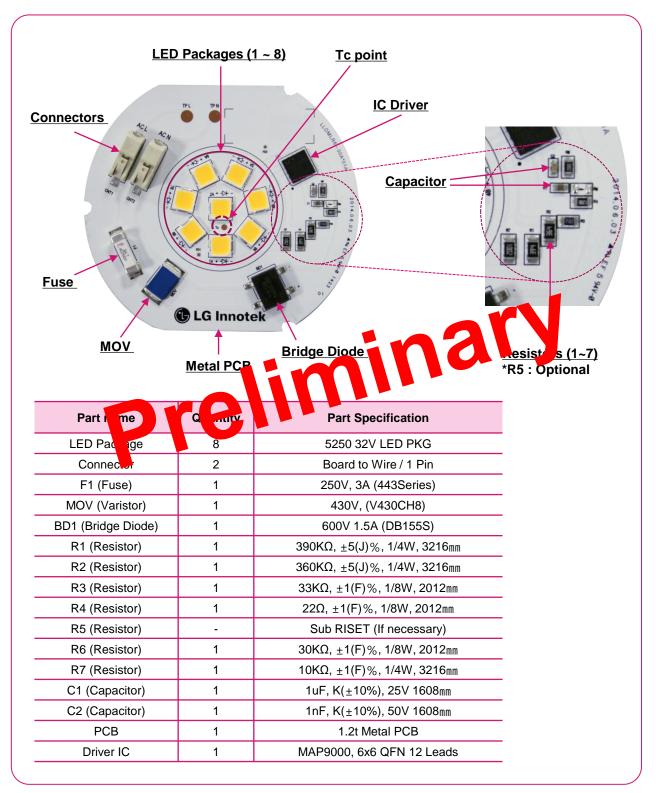
1. Features

- This document describes the 9W class AC LED module for downlight application. It covers electrical and mechanical properties as well as general performance parameters of the LED module, including reliability test results based on conditions.
- The AC driver IC which drives the LEDs is mounted on the PCB with LEDs and electrical parts.
- This module should be operated at 220V AC or 230V AC with 50Hz or 60Hz.

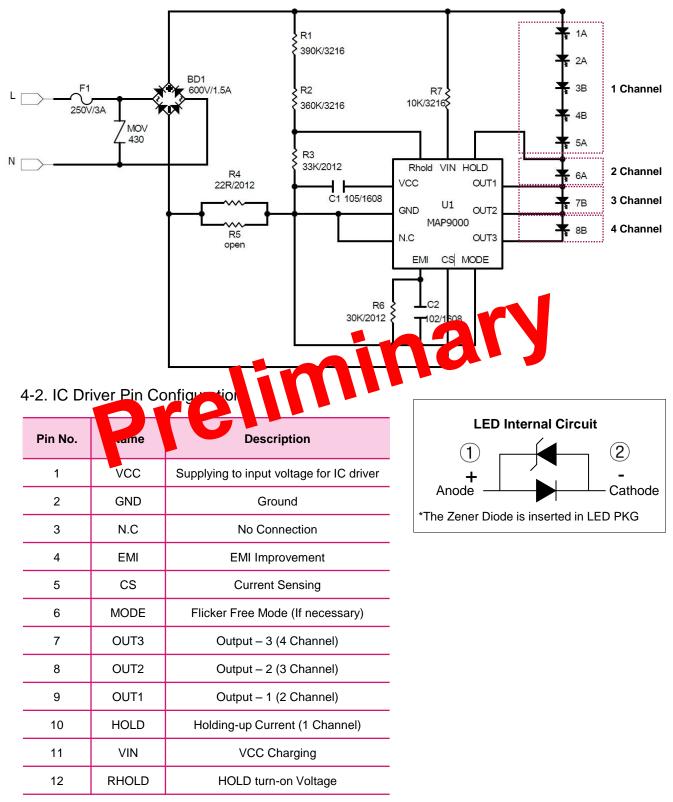

2. Applications

- Indoor Light (Downlights)

3. Outline Dimensions and Product composition


3-1. Outline Dimensions

(Unit:mm)


3-2. Product Composition

4. Schematic Diagram

4-1. Schematic Diagram

5. Product Characteristics

5-1. Electrical Characteristics

5-1. Electrical Characteristics [Ta=25°C]											
Items		Spec.		Unit	Note						
items	Min.	Тур.	Max.	Offic	NOLE						
Input Voltage		220 / 230		Vin	AC						
Frequency		50 / 60		Hz							
Power Consumption	8.0	8.9 / 9.8	10.8	W							
Power Factor	0.9	-	1	PF							

• Rated input voltage should be 220V AC or 230V AC.

• Generally available input voltage range would be \pm 10% but exceeding the 230V AC can overstress the module

5-2. Optical Characteristics

						[1a=25 0]
Items	Condition		Unit	Note		
ILCIIIS			Min. Typ. Max.			
Luminous Flux		710	850	-	lr I	
Luminous Efficiency		74.7	95.5		n /	
ССТ	Input Voltage (220V A	2870	30 5	37]		
Color Consistency	(220V AU) 60Hz)			4	SDCM	
(Center Point)		C = C	.4304 / Cy = 0	0.3965	SDCM	
CRI		80	80 - 100		Ra	
						[Ta=25°C]
Items	Condition		Spec.	Unit	Note	
nomo	Condition	Min.	Тур.	Max.	Offic	NOLE
Luminous Flux		750	890	-	lm	
Luminous Efficiency		72.1 90.8 -		-	lm/W	
	Input Voltage	0070	3045	3220	К	
CCT		2870	5045	0220	1.	
CCT Color Consistency	(230V AC / 60Hz)	2870	3043	4		
	(230V AC /		0.4302 / Cy = 0	4	SDCM	

1) Measure point : at center point (Refer to page 9)

• No aging (Right after lighting within 2sec) at Ta between 23 °C and 27 °C

- * These values measured by Optical Spectrum Analyzer of LG Innotek Co., LTD
- · Optical Spectrum Analyzer tolerances are followings as below
 - Luminance (Im) : \pm 5 %
- CIE Value : ±0.003

- CRI: ±2 Ra

- Power measurement : $\pm 3\%$
- 2) Range of Module CIE : Refer to page 7

[Ta=25°C]

5-3. General Characteristics

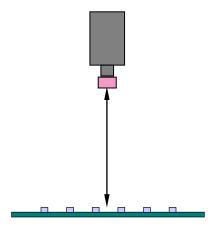
Items	Condition		Spec.	Unit	Note		
items	Condition	Min.	Тур.	Max.	Offic	note	
Maximum Tc				85	°C		
Operating temp.		-10	-	40	°C		
Storage temp.	Input Voltage	-10	-	60	°C		
Weight	(220V, 230V AC / 50, 60Hz)	9.6	11,8	14.0	g		
RoHS		Compliant					
IP			00	-			

1) Tc : Case Temperature at the designated point on the PCB, refer to page 3.

5-4. Characteristic Curve

Relative luminous flux versus input voltage increase

Relative wattage versus input voltage increase


6. Standard Testing Conditions

- 6-1. Standard Testing Environment.
 - Temperature : Room Temp. : 25 \pm 2°C,
 - Humidity : Under 60%RH
 - Darkroom Condition : Below 10lux
- 6-2. Standard Testing Method.
 - Operating condition : Typical operating Condition(230V AC, 60Hz)
 - Aging : No Aging (Right after lighting within 2 sec.)
 - Measuring Point : Center point on the PCB
- 6-3. Schematic of Measurement System

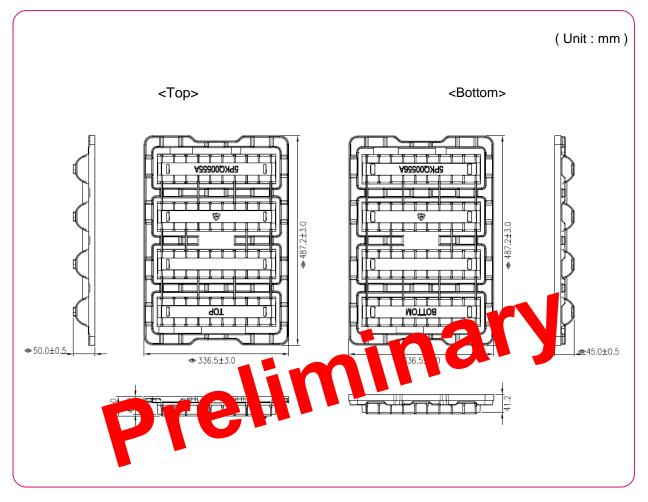
< Top View >

Optical characteristics measurement equipment

7. Reliability Test Items and Conditions

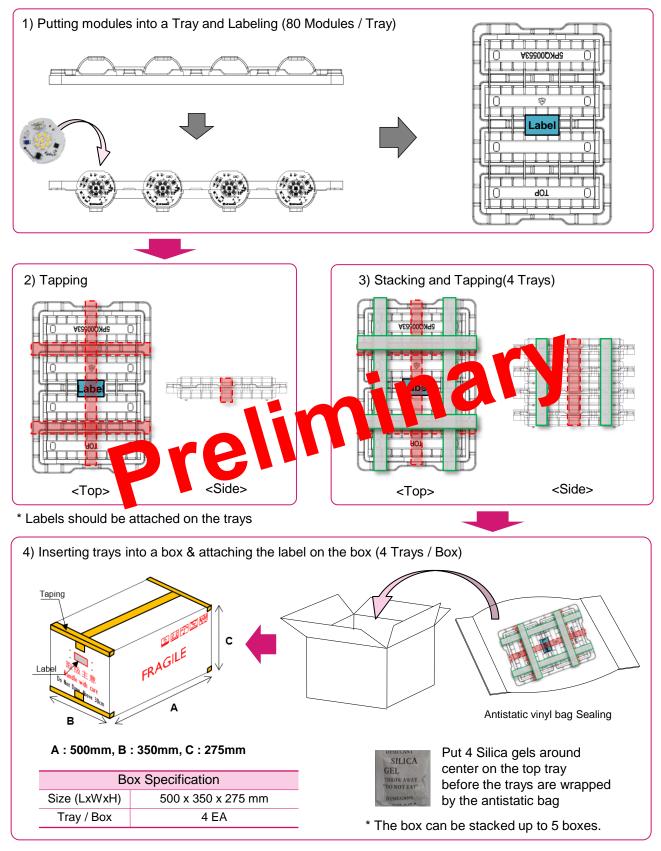
7-1. Criteria for Judging the Damage

Item	Symbol	Test Condition	Crit	eria
nem	Item Symbol T		Min.	Max.
Wattage Drop	W	230Vac	Initial Value X 0.7	Initial Value X 1.3
Luminous Flux	Φv	60Hz	Initial Value X 0.7	-
Solder Ability	-	Thermal Shock	No Sold	er Crack

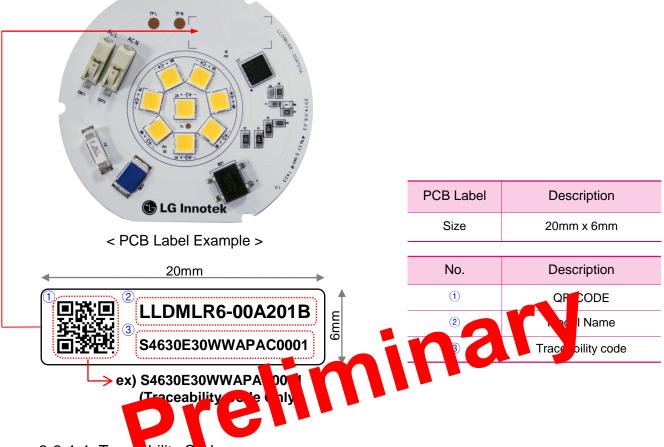

7-2. Reliability Test

No	Test Items	Test Conditions	Test Hours / Cycles	Sample Size	Ac/Re
1	High Temperature Operating Life (HTOL)	Ta = 60 °C, 230V AC, 60Hz	1000Hours	5ea	0/1
2	Low Temperature Operating Life (LTOL)	Ta =-30℃, 230V AC, 60Hz	1000Hours	5ea	0/1
3	Room Temperature Operating Life (RTOL)	Ta = 25℃, 230V AC, 60Hz	1000Hours	5ea	0/1
4	Wet High Temperature Operating Life (WHTOL)	Ta = 60 °C R14 = 9.%, 20.V / €, t Hz	000Flour	5ea	0/1
5	High Terre erature Stras L Hi L	Ta = 100 ℃	1000Hours	5ea	0/1
6	Low Temperature Storage Life (LTSL)	Ta = -30 ℃	1000Hours	5ea	0/1
7	Wet High Temperature Storage Life (WHTSL)	Ta = 85℃, RH = 85%	1000Hours	5ea	0/1
8	On / Off test	Ta=25 ℃ On (10sec) / Off (10sec)	30K Cycles	5ea	0/1
9	Temperature Cycle	-40℃ (30min) ~ 25℃ (5min) ~ 100℃ (30min)	200 Cycles	5ea	0/1
10	Thermal Shock	-45℃ (15min) ~ 25℃ (5min) ~125℃ (15min)	300 Cycles	5ea	0/1
11	ESD (HBM/Contact) Min. ±2KV	R1:10MQ, R2:1.5KQ	3 Times	3ea	0/1

8. Packing and Labeling of Products


8-1. Tray information

Items	information	Unit	Remark
Dimensions	487.2 x 336.5 x 50.0	mm	Тор
Dimensions	487.2 x 336.5 x 45.0	mm	Bottom
Module Quantity	80	EA	
Material	Antistatic PET	-	
Color	Clear	-	



8-2. Packing Specifications

- 8-3. Labeling (Module / Tray / Outer box)
- 8-3-1. Module Label

8-3-1-1.	Trace	bility	Code
		_	

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Marking	S	4	6	3	0	Е	3	0	w	w	Α	Р	Α	с	0	0	0	1
Meaning	SMT Site		Year/Month/Day	SMT		Vf MRM Code Color MRM Code Flux Code Flux Code CCT Code PCB Site				Color MRM Code Flux Code			SMT Serial No.					
Digits	1		4	4		1	2	2	1	1	1	1	1	1		4	1	
How to Use	S : Sungji	2 nd : I (1~9,	ast no. Nonth X,Y,Z nd 4 th :)	ear	E : Efidea	ССТ		PKG 1 Flux	PKG ∾ Flux	PKG 1 Color	PKG ∾ Color	PKG1 Vf	PKG N Vf		Seria	al No.	

8-3-1-2. Table for Traceability code

<SMT Site>

Code	S
SMT Site	Sungji

<SMT Year/Month>

Code	Year	Code	1	2	3	4	5	6	7	8	9	Х
4	2014	Month	1	2	3	4	5	6	7	8	9	10
5	2015	Code	Y	Z								·
6	2016	Month	11	12								

<SMT Day>

Co	de	1	2	3	4	5	6	7	8	9	10	11	12
Da	iy	1	2	3	4	5	6	7	8	9	10	11	12
Cod	de	13	14	15	16	17	18	19	20	21	22	23	24
Da	ıy	13	14	15	16	17	18	19	20	21	22	23	24
Cod	de	25	26	27	28	29	30	31			0		
Da	ıy	25	26	27	28	29	30	21			O		

<PCB Site> Code Dre

E

<CCT Code>

Site

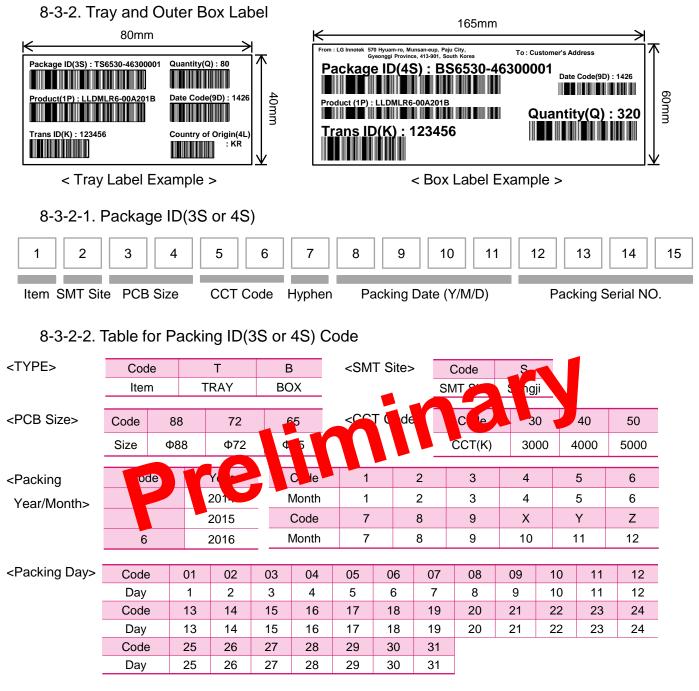
Code	30	40	50
CCT(K)	3000	4000	5000

<Color Bin Code>

LG Inno	otek PKG	(l	(L Rank)		
Code	А	В	С	D	
Bin	11	12	13	14	
Code	E	F	G	н	
Bin	21	22	23	24	
Code	I	J	K	L	
Bin	31	32	33	34	
Code	М	N	0	Р	
Bin	41	42	43	44	

Flux Bin Code>

Code	Flux Bin	Min.	Max.	Remark
W	W	150	183	3000K


* Flux sorting current : 42mA

<Vf Bin Code>

Code	Vf Bin	Min.	Max.
А	ЗA	29.5	31.5
В	3B	31.5	33.5
С	3C	33.5	35.5

※ Vf sorting current : 42mA

8-3-2-3. Code

- -. Product (1P) : Model Name (LLDMLR6-00A201B)
- -. Trans ID(K) : P.O Number (Refer to Customer's Purchase Order)
- -. Date Code(9D) : First two digits \rightarrow last two digits of year / Last two digits \rightarrow week number of year *1426 : 14 \rightarrow 2014 / 26 \rightarrow 26th Week of the year (Based on the packing date)
- -. Quantity(Q) : Number of products in a tray or box
- -. Country of Origin (4L) : KR(Korea)
- -. From / To : Address of Shipping Site / Address of Arrival Site

* Identification Marks(3S, 4S, 1P, K, Q, 9D, 4L) should be positioned at the first place in the bar code. (Code 128)

9. Cautions on Use

9-1. During Usage

- -. LED should avoid the direct contact with exposure to hazardous materials such as sulfur, chlorine, phthalate, etc..
- -. The silver-plated metal parts on LEDs can be rusted when exposed to corrosive gases.
- -. The silver-plated metal parts also can be affected not only by the corrosive gases emitted inside of the end-products but by the gases penetrated from outside environment.
- -. The corrosive atmosphere must be avoided during the use and storage.
- -. Extreme environments such as sudden ambient temperature changes or high humidity that can cause condensation must be avoided.

9-2. Storage

- -. Store them in a dark place. Do not expose these product to sunlight
- -. Keep the temperature 5 $^\circ\!\!C$ ~ 35 $^\circ\!\!C$ at RH 60%.
- -. Do not open ESD Trays before this products are ready to assemble into Light
- -. During transportation and storage for a short time
- -. Keep the temperature under 80 °C at normal humidity
- -. Do not exposed to sulfur gas or sulfur-containing materials.

9-2. Cleaning

- -. Do not use brushes for cleaning or organic solvents (i.e. Acetone, TCE, etc.) for vasing as they may damage the resin of the LEDs.
- -. IPA is the recommendable solvent for cleaning the LL-Ds up the roll in Clearing Condition : IPA, 25 °C max × 60sec max
- -. Ultrasonic cleaning is not recommended
- -. Pretests must be followed by the cturl coanily processes to avoid any possible damages to the LED

9-3. Therma Jesigr

- -. The therma design of the end product must be seriously considered even from the beginning stage.
- -. The co-efficiency between the heat generation and the Thermal dissipation is affected by the thermal resistance of the circuit boards and the density of the LED placements together with other components.

9-4. Static Electricity

- -. Wristbands and anti-electrostatic gloves are strongly recommended and all devices, equipment and machineries must be properly grounded when handling the LEDs which are sensitive against static electricity and surge.
- -. Precautions are to be taken against surge voltage to the equipment that mounts the LEDs.
- -. Some unusual characteristics such as significant increase of current leakage, decrease of turn-on voltage, or no operation at a low current can be occurred by damaged LEDs.

9-5. Eye Safety Guidelines

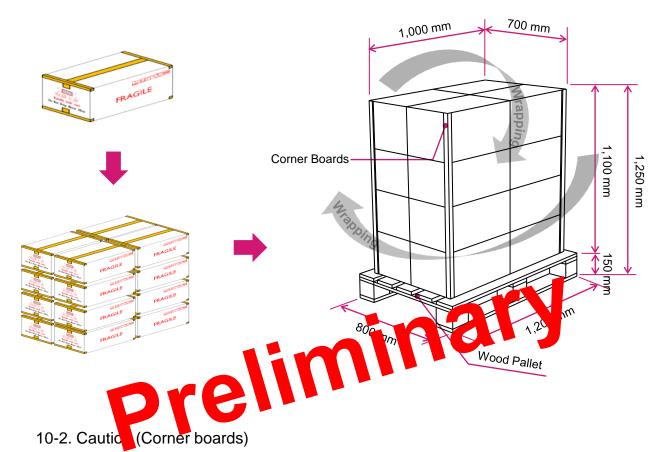
- -. Do not directly look at the light when the LEDs are on.
- -. Proceed with caution to avoid the risk of damage to the eyes when examining the LEDs with optical instruments.

ondit

LGIT Confidential and Proprietary

9-6. Cautions

- -. Do not touch any electrical traces or connection points with bare hands during operation.
- -. Exceeding the maximum operating conditions can overstress the module. This may result in significant acceleration of lumen depreciation or even permanent damage of the module.
- -. A thermal management solution such as a heat sink, which will dissipate the heat generated by the LED module, should be tightly attached to the module to maintain the case temperature (Tc) below 85°C.
- -. Do not use near fire or inflammables.
- -. Use only as a Indoor Lighting.
- -. If the module is operated with a dimmer system or sensor, the product could be not working properly.
- -. Do not disassemble or renovate at one's option.
- -. The product should not experience any physical impacts such as being dropped onto the ground.
- -. Output light fluctuation could occur under particular conditions such as powerply uctuation.
- -. LG Innotek is not responsible for any damages caused if the operating litions exceed S age the maximum ratings recommended in this document. elim


10. Disclai

- -. LG Innotek is not responsible for any damages caused by any accidents or operational environments exceeding the absolute maximum ratings.
- -. Generally accepted electronic equipment must be used to operate the LEDs in this document.
- -. Consultation with LG Innotek is recommended for unassured environments or operations to avoid any possible malfunctions or damages of the products or risk of life or health.
- -. Any unauthorized, without prior written consents from LG Innotek, disassembly is prohibited if purposed for reverse-engineering. All defected LEDs must be reported to LG Innotek and not to be disassembled or analyzed.
- -. The product information can be modified and upgraded without prior notice.

Appendix A. Pallet Packing

10-1. Pallet Packing

GOOD or BAD	Pictures	Description
GOOD		 Corner Boards Height /Length Requirements Corner boards Length - need to extend from top surface of deck board to top surface of highest level carton (flush) or maximum ¹/₂" below the top of the carton surface
BAD		Minimum Height for Corner Boards Not to be below of top of load by more that ½ "
DAU		Maximum Height for Corner Boards Not to exceed top of load.

	SPECIFICATION						
MODEL	LLDMLR6-00A201B	DOCUMENT No.					
REG. DATE	2014.07.11	REV. No.	0.0				
REV. DATE	-	PAGE	18				

11. Change History of Revision

Revision	Date	Contents of Revision Change	Remark
0.0	2014.07.11	- Establishment	
		eliminat	
		C	

