

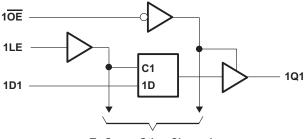
Sample &

Buy

SN54AHCT16373, SN74AHCT16373

SCLS336I – JANUARY 2000 – REVISED AUGUST 2014

SNx4AHCT16373 16-Bit Transparent D-Type Latches With 3-State Outputs


1 Features

Texas

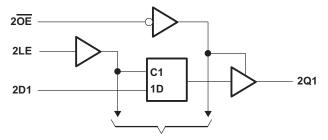
Instruments

- Members of the Texas Instruments Widebus™ Family
- *EPIC*[™] (Enhanced-Performance Implanted CMOS) Process
- Inputs are TTL-Voltage Compatible
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include:
 - Plastic Shrink Small-Outline (DL) Package
 - Thin Shrink Small-Outline (DGG) Package
 - Thin Very Small-Outline (DGV) Package
 - 80-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

4 Simplified Schematic

To Seven Other Channels

2 Applications


- Wearable Health and Fitness Devices
- Toys
- PCs and Notebooks
- Power Infrastructures
- Servers

3 Description

The SNxAHCT16373 devices are 16-bit transparent D-type latches with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
	TSSOP (48)	12.50 mm × 6.10 mm		
SNx4AHC16373	TVSOP (48)	9.70 mm × 4.40 mm		
	SSOP (48)	15.88 mm × 7.49 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

To Seven Other Channels

Table of Contents

1	Feat	tures 1						
2	Арр	lications1						
3	Des	Description 1						
4	Sim	plified Schematic 1						
5	Rev	ision History2						
6	Pin	Configuration and Functions 3						
7	Spe	cifications5						
	7.1	Absolute Maximum Ratings 5						
	7.2	Handling Ratings5						
	7.3	Recommended Operating Conditions5						
	7.4	Thermal Information 6						
	7.5	Electrical Characteristics						
	7.6	Timing Requirements 6						
	7.7	Switching Characteristics 7						
	7.8	Noise Characteristics7						
	7.9	Operating Characteristics7						
	7.10	Typical Characteristics 8						
8	Para	ameter Measurement Information						

9	Deta	iled Description	10
	9.1	Overview	10
	9.2	Functional Block Diagrams	10
	9.3	Feature Description	11
	9.4	Device Functional Modes	11
10	Арр	lication and Implementation	12
	10.1	Application Information	12
	10.2	Typical Application	
11	Pow	er Supply Recommendations	13
12	Laye	out	13
	12.1	Layout Guidelines	13
	12.2	Layout Example	13
13	Dev	ice and Documentation Support	14
	13.1	Related Links	14
	13.2	Trademarks	14
	13.3	Electrostatic Discharge Caution	14
	13.4	Glossary	14
14		hanical, Packaging, and Orderable mation	14

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision H (January 2000) to Revision I	Page
Updated document to new TI data sheet format	1
Deleted Ordering Information table.	
Added Applications.	
Added Pin Functions table	
Added Handling Ratings table	
Changed MAX operating temperature to 125°C in Recommended Operating Condition	
Added Thermal Information table.	
• Added -40°C to 125°C for SN74AHCT16373 in Electrical Characteristics table	
• Added $T_A = -40^{\circ}$ C to 125°C for SN74AHCT16373 in the Timing Requirements table	
• Added $T_A = -40^{\circ}$ C to 125°C for SN74AHCT16373 in the Switching Characteristics tab	le7
Added Typical Characteristics.	
Added Detailed Description section.	
Added Application and Implementation section	
Added Power Supply Recommendations and Layout sections	

2

www.ti.com

6 Pin Configuration and Functions

$1 \overrightarrow{OE} \begin{bmatrix} 1 & 48 \\ 1 & 48 \end{bmatrix} 1 LE \\ 1 Q1 \begin{bmatrix} 2 & 47 \\ 1 Q2 \end{bmatrix} 1 D1 \\ 1 Q2 \begin{bmatrix} 3 & 46 \\ 1 D2 \end{bmatrix} 1 D2$	SN74AHCT16373DG	WD PACKAGE G, DGV, OR DL PACKAGE VIEW)
GND 4 45 GND 1Q3 5 44 1D3 1Q4 6 43 1D4 V _{CC} 7 42 V _{CC} 1Q5 8 41 1D5 1Q6 9 40 1D6 GND 10 39 GND 1Q7 11 38 1D7 1Q8 12 37 1D8 2Q1 13 36 2D1 2Q2 14 35 2D2 GND 15 34 GND 2Q3 16 33 2D3 2Q4 17 32 2D4 V _{CC} 18 31 V _{CC} 2Q5 19 30 2D5 2Q6 20 29 2D6 GND 21 28 GND 2Q7 22 27 2D7 2Q8 23 26 2D8 2OE 24 25 2LE	1Q1 [2 1Q2 [3 GND [4 1Q3 [5 1Q4 [6 V _{CC} [7 1Q5 [8 1Q6 [9 GND [10 1Q7 [11 1Q8 [12 2Q1 [13 2Q2 [14 GND [15 2Q3 [16 2Q4 [17 V _{CC} [18 2Q5 [19 2Q6 [20 GND [21 2Q7 [22 2Q8 [23	47 1D1 46 1D2 45 GND 44 1D3 43 1D4 42 V _{CC} 41 1D5 40 1D6 39 GND 38 1D7 37 1D8 36 2D1 35 2D2 34 GND 33 2D3 32 2D4 31 V _{CC} 30 2D5 29 2D6 28 GND 27 2D7 26 2D8

Pin Functions

PIN		I/O	DESCRIPTION	
NO.	NAME		DESCRIPTION	
1	1 0E	I	Output Enable 1	
2	1Q1	0	1Q1 Output	
3	1Q2	0	1Q2 Output	
4	GND	—	Ground Pin	
5	1Q3	0	1Q3 Output	
6	1Q4	0	1Q4 Output	
7	V _{CC}	—	Power Pin	
8	1Q5	0	1Q5 Output	
9	1Q6	0	1Q6 Output	
10	GND	—	Ground Pin	
11	1Q7	0	1Q7 Output	
12	1Q8	0	1Q8 Output	
13	2Q1	0	2Q1 Output	
14	2Q2	0	2Q2 Output	
15	GND	_	Ground Pin	
16	2Q3	0	2Q3 Output	
17	2Q4	0	2Q4 Output	
18	V _{CC}	_	Power Pin	

Copyright © 2000–2014, Texas Instruments Incorporated

Submit Documentation Feedback 3

Pin Functions (continued)

I	PIN		DECODUCTION	
NO.	NAME	I/O	DESCRIPTION	
19	2Q5	0	2Q5 Output	
20	2Q6	0	2Q6 Output	
21	GND	_	Ground Pin	
22	2Q7	0	2Q7 Output	
23	2Q8	0	2Q8 Output	
24	2 0E	I	Output Enable 2	
25	2LE	I	Latch Enable 2	
26	2D8	I	2D8 Input	
27	2D7	I	2D7 Input	
28	GND	_	Ground Pin	
29	2D6	I	2D6 Input	
30	2D5	I	2D5 Input	
31	V _{CC}	_	Power Pin	
32	2D4	I	2D4 Input	
33	2D3	I	2D3 Input	
34	GND	_	Ground Pin	
35	2D2	I	2D2 Input	
36	2D1	I	2D1 Input	
37	1D8	I	1D8 Input	
38	1D7	I	1D7 Input	
39	GND	—	Ground Pin	
40	1D6	I	1D6 Input	
41	1D5	I	1D5 Input	
42	V _{CC}	_	Power Pin	
43	1D4	I	1D4 Input	
44	1D3	I	1D3 Input	
45	GND		Ground Pin	
46	1D2	I	1D2 Input	
47	1D1	I	1D1 Input	
48	1LE	I	Latch Enable 1	

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	7	V
VI	Input voltage range ⁽²⁾		-0.5	7	V
Vo	Output voltage range ⁽²⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-20	mA
I _{OK}	Output clamp current	$V_O < 0$ or $V_O > V_{CC}$		±20	mA
I _O	Continuous output current	$V_{O} = 0$ to V_{CC}		±25	mA
	Continuous current through V _{CC} or GND			±75	mA

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

7.2 Handling Ratings

			MIN	MAX	UNIT	
T _{stg}	Storage temperature rang	-65	150	°C		
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	0	2000		
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	0	1000	V	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		SN54AHCT16373 ⁽²⁾		SN74AHCT16373		UNIT
		MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2		2		V
VIL	Low-level input voltage		0.8		0.8	V
VI	Input voltage	0	5.5	0	5.5	V
Vo	Output voltage	0	V _{CC}	0	V _{CC}	V
I _{OH}	High-level output current		8		-8	mA
I _{OL}	Low-level output current		8		8	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		20		20	ns/V
T _A	Operating free-air temperature	-55	125	-40	125	°C

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs (SCBA004).

(2) Product Preview

SN54AHCT16373, SN74AHCT16373

SCLS336I - JANUARY 2000 - REVISED AUGUST 2014

www.ti.com

7.4 Thermal Information

			SN74AHCT16373			
	THERMAL METRIC ⁽¹⁾	DGG	DGV	DL	UNIT	
			48 PINS			
R_{\thetaJA}	Junction-to-ambient thermal resistance	69.9	80.9	61.4		
R _{0JC(top)}	Junction-to-case (top) thermal resistance	24.2	32.8	31.4		
$R_{ extsf{ heta}JB}$	Junction-to-board thermal resistance	26.9	44.0	33.2	00 MM	
Ψ_{JT}	Junction-to-top characterization parameter	1.9	3.3	9.0	°C/W	
Ψјв	Junction-to-board characterization parameter	36.6	43.4	32.9		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	n/a	n/a		

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	T _A = 25°C			SN54AHCT16373 ⁽¹⁾		-40°C to 85°C SN74AHCT16373		-40°C to 125°C SN74AHCT16373		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
V	I _{OH} = -50 μA	4.5 V	4.4	4.5		4.4		4.4		4.4		V
V _{он}	$I_{OH} = -8 \text{ mA}$	4.5 V	3.94			3.8		3.8		3.8		V
V	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1		0.1	V
V _{OL}	I _{OL} = 8 mA				0.36		0.44		0.44		0.44	v
l _i	$V_{I} = V_{CC}$ or GND	0 V to 5.5 V			±0.1		±1 ⁽²⁾		±1		±1	μA
I _{oz}	$V_{O} = V_{CC}$ or GND	5.5 V			±0.25		±2.5		±2.5		±2.5	μA
I _{CC}	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			4		40		40		40	μA
ΔI _{CC} ⁽³⁾	One input at 3.4 V, Other inputs at V_{CC} or GND	5.5 V			1.35		1.5		1.5		1.5	mA
C _i	$V_{I} = V_{CC}$ or GND	5 V		2.5	10				10			pF
Co	$V_{O} = V_{CC}$ or GND	5 V		4.5								pF

(1)Product Preview

(2)

On products compliant to MIL-PRF-38535, this parameter is not production tested at $V_{CC} = 0$ V. This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or V_{CC} . (3)

7.6 Timing Requirements

over recommended operating free-air temperature range, $V_{CC} = 5 V \pm 0.5 V$ (unless otherwise noted) (see Figure 2)

		T _A = 25°C		SN54AHCT16373 ⁽¹⁾		SN74AHCT16373	T _A = -40°C to 125°C SN74AHCT16373	UNIT
		MIN	MAX	MIN MA	X	MIN MAX	MIN MAX	
tw	Pulse duration, LE high	6.5		6.5		6.5	6.5	ns
t _{su}	Setup time, data before LE \downarrow	1.5		1.5		1.5	1.5	ns
t _h	Hold time, data after LE \downarrow	3.5		3.5		3.5	3.5	ns

(1) Product Preview

7.7 Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	TO	LOAD CAPACITANCE		T _A = 25°C		SN54AHCT	16373 ⁽¹⁾	SN74AHC	Г16373	SN74AHC T _A = -40°C		UNIT
	(OUTPUT)	(INPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	D	Q	0 45 - 5		5.1 ⁽²⁾	8.5 ⁽²⁾	1 ⁽²⁾	9.5 ⁽²⁾	1	9.5	1	10.5	
t _{PHL}	D	Q	C _L = 15 pF		5.1 ⁽²⁾	8.5(2)	1 ⁽²⁾	9.5 ⁽²⁾	1	9.5	1	10.5	ns
t _{PLH}			0.45.5		5(2)	8.5(2)	1 ⁽²⁾	9.5 ⁽²⁾	1	9.5	1	10.5	
t _{PHL}	LE	Q	C _L = 15 pF		5 ⁽²⁾	8.5(2)	1 ⁽²⁾	9.5 ⁽²⁾	1	9.5	1	10.5	ns
t _{PZH}	OE	-	0 15 5		5 ⁽²⁾	9.5 ⁽²⁾	1 ⁽²⁾	10.5(2)	1	10.5	1	11.1	
t _{PZL}	OE	Q	C _L = 15 pF		5 ⁽²⁾	9.5 ⁽²⁾	1 ⁽²⁾	10.5 ⁽²⁾	1	10.5	1	11.1	ns
t _{PHZ}		Q			6 ⁽²⁾	10.2 ⁽²⁾	1 ⁽²⁾	11 ⁽²⁾	1	11	1	11.6	
t _{PLZ}	OE		C _L = 15 pF		6.8 ⁽²⁾	10.2 ⁽²⁾	1 ⁽²⁾	11 ⁽²⁾	1	11	1	11.6	ns
t _{PLH}	"		0 50 5		5.9	9.5	1	10.5	1	10.5	1	11.5	
t _{PHL}	D	Q	C _L = 50 pF		5.9	9.5	1	10.5	1	10.5	1	11.5	ns
t _{PLH}			0 50 5		6.4	9.5	1	10.5	1	10.5	1	11.5	
t _{PHL}	LE	Q	C _L = 50 pF		5.9	9.5	1	10.5	1	10.5	1	11.5	ns
t _{PZH}	5	-	0 50 5		6	10.5	1	11.5	1	11.5	1	12.1	
t _{PZL}	UE	<u>OE</u> Q	C _L = 50 pF		6	10.5	1	11.5	1	11.5	1	12.1	ns
t _{PHZ}		_	0 50 5		6.8	11.2	1	12	1	12	1	12.6	ns
t _{PLZ}	OE	OE Q	C _L = 50 pF		7.8	11.2	1	12	1	12	1	12.6	
t _{sk(o)}			C _L = 50 pF			1 ⁽³⁾				1		1	ns

(1) Product Preview

(2) On products compliant to MIL-PRF-38535, this parameter is not production tested.

(3) On products compliant to MIL-PRF-38535, this parameter does not apply.

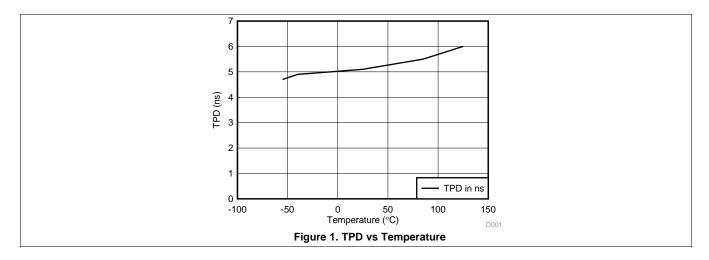
7.8 Noise Characteristics

 $V_{CC} = 5 \text{ V}, \text{ } \text{C}_{L} = 50 \text{ pF}, \text{ } \text{T}_{A} = 25^{\circ}\text{C}^{(1)}$

	PARAMETER	SN74	4AHCT163	UNIT	
	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.32	0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.1	-0.8	V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		4.7		V
V _{IH(D)}	High-level dynamic input voltage	2			V
V _{IL(D)}	Low-level dynamic input voltage			0.8	V

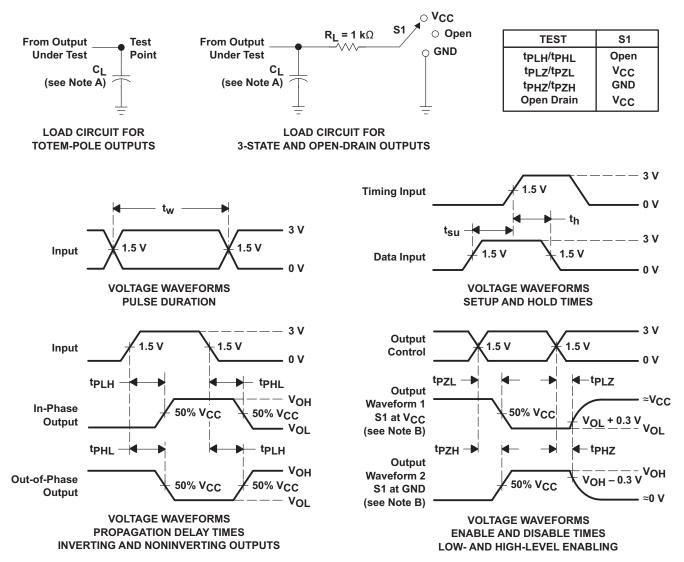
(1) Characteristics are for surface-mount packages only.

7.9 Operating Characteristics


 $V_{CC} = 5 V, T_A = 25^{\circ}C$

	PARAMETER	TEST C	ONDITIONS	ТҮР	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	22	pF

NSTRUMENTS www.ti.com


EXAS

7.10 Typical Characteristics

8 Parameter Measurement Information

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, Z_Q = 50 Ω , t_r ≤ 3 ns, t_f ≤ 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

TEXAS INSTRUMENTS

www.ti.com

9 Detailed Description

9.1 Overview

The SNxAHCT16373 devices are 16-bit transparent D-type latches with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, IO ports, bidirectional bus drivers, and working registers.

These devices can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

9.2 Functional Block Diagrams

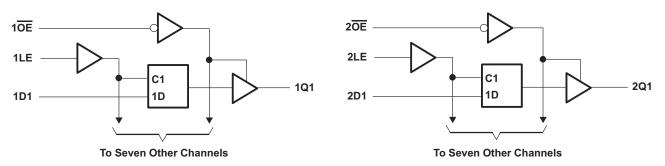
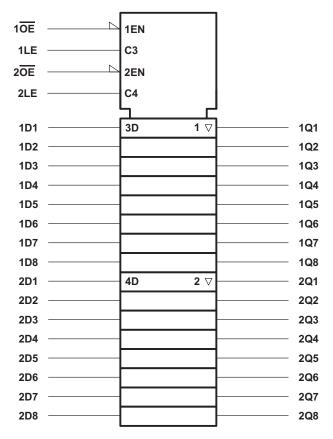



Figure 3. Logic Diagram (Positive Logic)

Functional Block Diagrams (continued)

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Figure 4. Logic Symbol

9.3 Feature Description

- TTL inputs
 - Lowered switching threshold allows up translation from 3.3 V to 5 V
- Slow edges reduce output ringing

9.4 Device Functional Modes

Table 1. Function Table (Each 8-bit Latch)

	•		·
	INPUTS	OUTPUT	
OE	LE	D	Q
L	Н	Н	Н
L	н	L	L
L	L	х	Q ₀
Н	х	х	Z

10 Application and Implementation

10.1 Application Information

The SN74AHCT16373 is a low-drive CMOS device that can be used for a multitude of bus interface type applications where output ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs. The input switching levels have been lowered to accommodate TTL inputs of 0.8-V V_{IL} and 2-V V_{IH} . This feature makes it ideal for translating up from 3.3 V to 5 V. Figure 6 shows this type of translation.

10.2 Typical Application

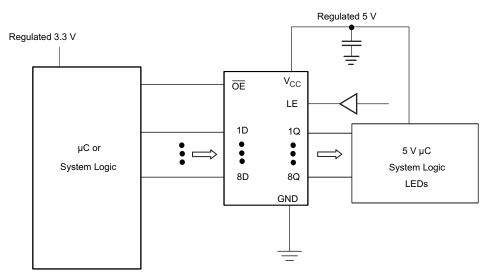
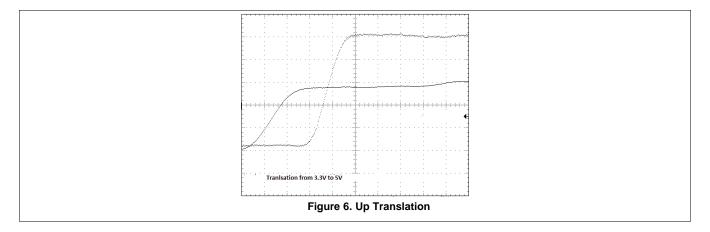


Figure 5. Typical Application Schematic

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.

10.2.2 Detailed Design Procedure


1. Recommended input conditions

- Rise time and fall time specs: See ($\Delta t/\Delta V$) in the *Recommended Operating Conditions* table.
- Specified High and low levels: See (V_{IH} and V_{IL}) in the *Recommended Operating Conditions* table.
- Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}
- 2. Recommend output conditions
 - Load currents should not exceed 25 mA per output and 75 mA total for the part
 - Outputs should not be pulled above V_{CC}

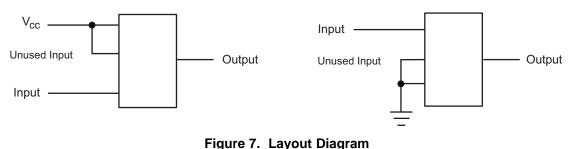
Typical Application (continued)

10.2.3 Application Curves

11 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended. If there are multiple V_{CC} pins, 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.


12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input-AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified in Figure 7 are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} ; whichever makes more sense or is more convenient. It is generally acceptable to float outputs unless the part is a transceiver.

12.2 Layout Example

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN54AHCT16373	Click here	Click here	Click here	Click here	Click here
SN74AHCT16373	Click here	Click here	Click here	Click here	Click here

Table 2. Related Links

13.2 Trademarks

Widebus is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

2-Oct-2014

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
74AHCT16373DGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHCT16373	Samples
SN74AHCT16373DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHCT16373	Samples
SN74AHCT16373DGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	HF373	Samples
SN74AHCT16373DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHCT16373	Samples
SN74AHCT16373DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHCT16373	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

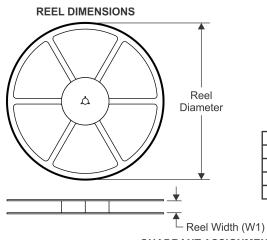
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

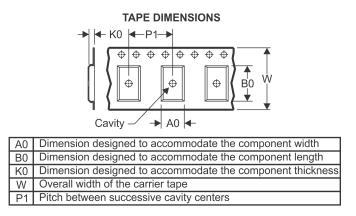
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

2-Oct-2014

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

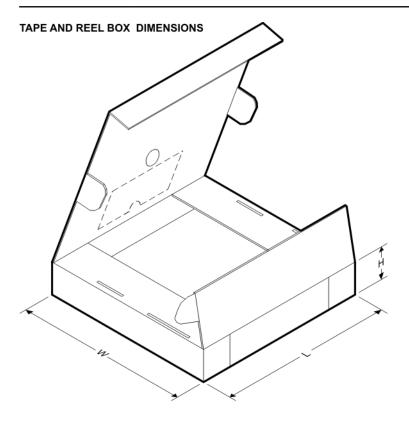

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

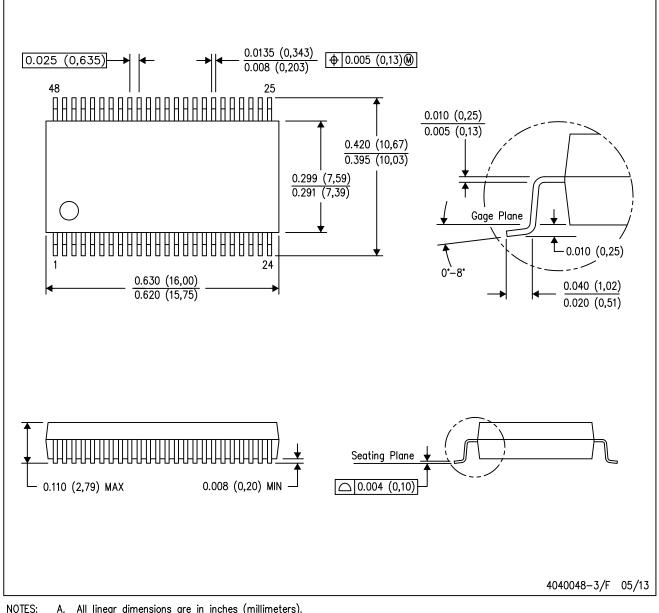

*All dimensions are nominal													
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant	
SN74AHCT16373DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1	
SN74AHCT16373DGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1	
SN74AHCT16373DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1	

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

11-Mar-2017



*All dimensions are nominal

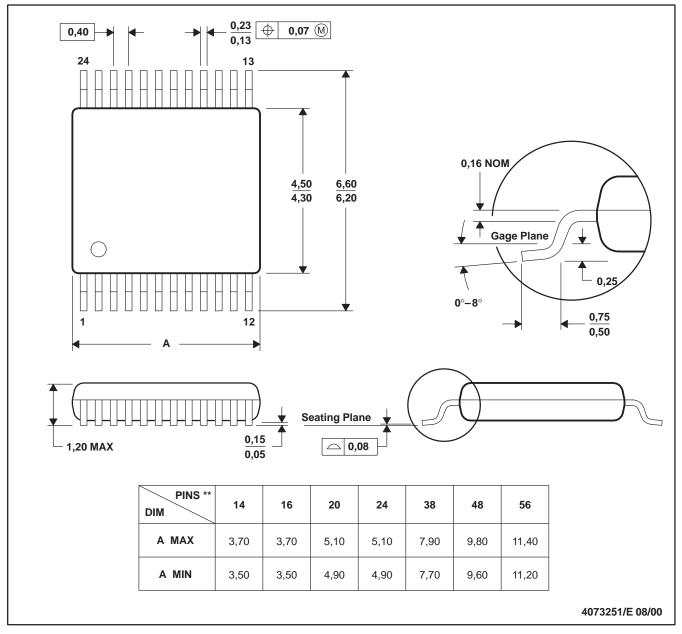
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHCT16373DGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74AHCT16373DGVR	TVSOP	DGV	48	2000	367.0	367.0	38.0
SN74AHCT16373DLR	SSOP	DL	48	1000	367.0	367.0	55.0

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

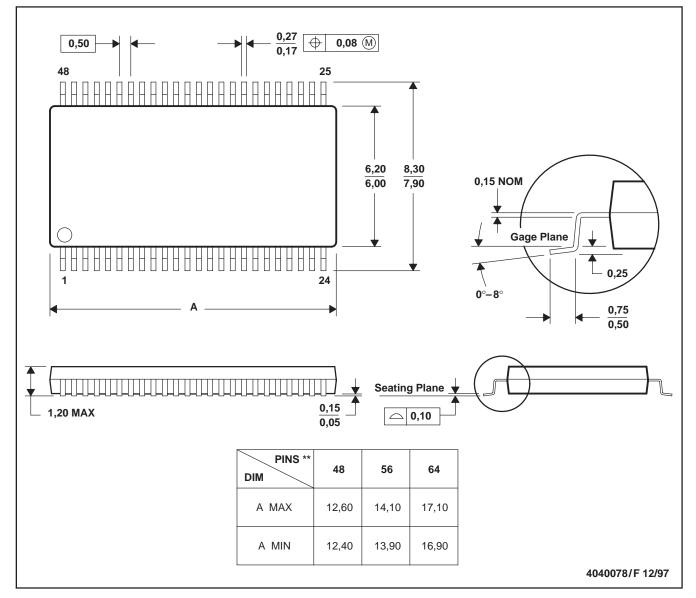
24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated