

Sample &

Buy

SLUS599B-JUNE 2004-REVISED OCTOBER 2015

TPS2400 Overvoltage Protection Controller

Technical

Documents

1 Features

- Up to 100-V Overvoltage Protection
- 6.9-V Overvoltage Shutdown Threshold
- 3-V Undervoltage Shutdown Threshold
- Overvoltage Turnoff Time Less than 1 μs
- External N-Channel MOSFET Driven by Internal Charge Pump
- 1-mA Maximum Static Supply Current
- 5-Pin SOT-23 Package
- -40°C to 85°C Ambient Temperature Range
- 2.5-kV Human-Body-Model, 500-V CDM Electrostatic Discharge Protection

2 Applications

- Cellular Phones
- PDAs
- Portable PCs
- Media Players
- Digital Cameras
- GPS

3 Description

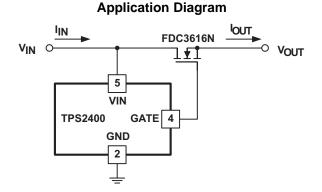
Tools &

Software

The TPS2400 overvoltage protection controller is used with an external N-channel MOSFET to isolate sensitive electronics from destructive voltage spikes and surges. It is specifically designed to prevent large voltage transients associated with automotive environments (load dump) from damaging sensitive circuitry. When potentially damaging voltage levels are detected by the TPS2400 the supply is disconnected from the load before any damage can occur.

Support &

Community


20

Internal circuitry includes a trimmed band-gap reference, oscillator, Zener diode, charge pump, comparator, and control logic. The TPS2400 device is designed for use with an external N-channel MOSFET, which are readily available in a wide variety of voltages.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS2400	SOT-23 (5)	2.90 mm × 1.60 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

1

2

3

4

5

6

7

8

2

Table of Contents

Features 1	8	.3 Feature Description	10
Applications 1	8	.4 Device Functional Modes	11
Description 1	9 A	pplication and Implementation	12
Revision History 2	g	.1 Application Information	12
Pin Configuration and Functions	g	.2 Typical Applications	12
Specifications	10 F	ower Supply Recommendations	15
6.1 Absolute Maximum Ratings	11 L	ayout	16
6.2 ESD Ratings	1	1.1 Layout Guidelines	16
6.3 Recommended Operating Conditions	1	1.2 Layout Example	16
6.4 Thermal Information	12 E	evice and Documentation Support	17
6.5 Electrical Characteristics	1	2.1 Documentation Support	17
6.6 Typical Characteristics 6	1	2.2 Community Resources	17
Parameter Measurement Information	1	2.3 Trademarks	17
Detailed Description 10	1	2.4 Electrostatic Discharge Caution	17
8.1 Overview	1	2.5 Glossary	17
8.2 Functional Block Diagram		lechanical, Packaging, and Orderable	17

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (August 2008) to Revision B

Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation	
section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and	
Mechanical, Packaging, and Orderable Information section	1

Copyright © 2004–2015, Texas Instruments Incorporated

ISTRUMENTS


EXAS

www.ti.com

Page

5 Pin Configuration and Functions

Pin Functions

P	PIN I/O		DESCRIPTION					
NAME	NO.	10	DESCRIPTION					
GATE	4	0	Output gate drive for an external N-channel MOSFET					
GND	2		ound					
NC	1, 3		No internal connection					
VIN	5	Ι	Input voltage					

TEXAS INSTRUMENTS

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

			MIN	MAX	UNIT
V_{VIN}	Input voltage	VIN	-0.3	110	V
v		GATE (continuous)	-0.3	22	V
V _{OUT}	Output voltage	GATE (transient, < 10 μs, Duty Cycle < 0.1%)	-0.3	25	v
	Continuous total power	dissipation	See Thermal	Information	
TJ	Operating junction temp	-40	125	°C	
T _A	Operating free-air temp	-40	85	°C	
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2500	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

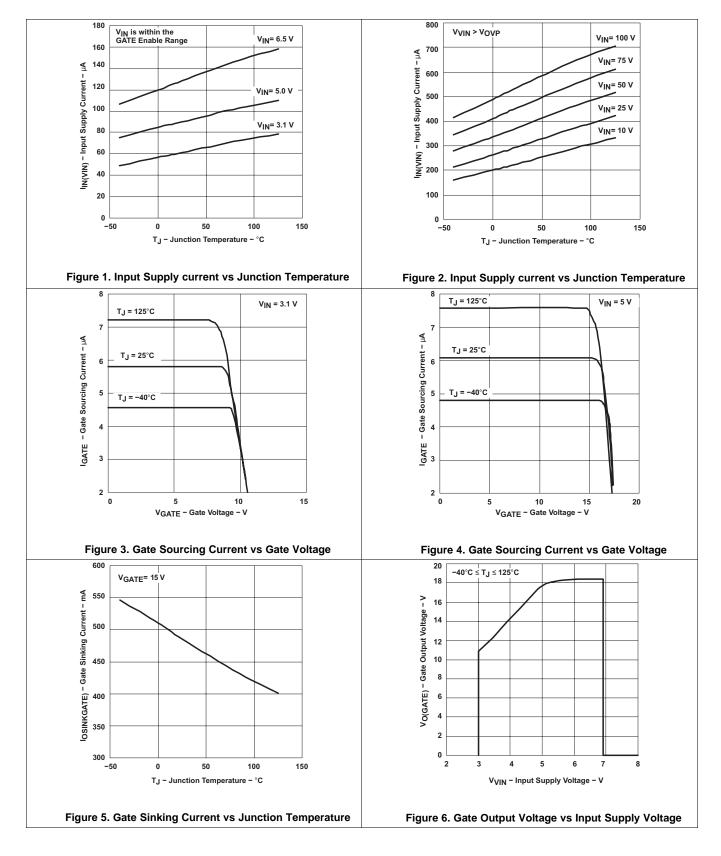
	MIN	NOM	MAX	UNIT
Supply voltage at V _{IN}	3.1		6.8	V
Operating junction temperature	-40		125	°C

6.4 Thermal Information

		TPS2400	
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	UNIT
		5 PINS	
$R_{ extsf{ heta}JA}$	Junction-to-ambient thermal resistance	219.6	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	126.2	°C/W
$R_{ extsf{ heta}JB}$	Junction-to-board thermal resistance	51.2	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	15.9	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	50.1	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

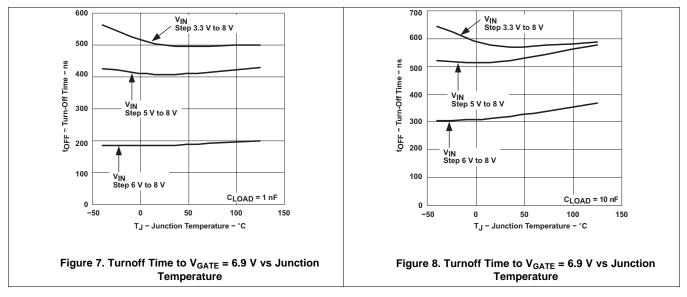
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics


over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT						
		V _{I(VIN)} = 3.1 V		65	110	
I(VIN)		V _{I(VIN)} = 5 V		95	180	
I _{I(VIN)}	Input supply current, V _{IN}	V _{I(VIN)} = 6.5 V		135	220	μA
		V _{I(VIN)} = 100 V		550	1000	
UVLO _(upper)	Undervoltage lockout upper threshold	V _{I(VIN)} rising	2.9	3	3.1	V
UVLO _(hyst)	Undervoltage lockout hysteresis		85	100	115	mV
OVP _(upper)	Overvoltage protection upper threshold	V _{I(VIN}) rising	6.7	6.9	7.1	V
OVP _(hyst)	Overvoltage protection hysteresis		135	150	165	mV
GATE DRIVE			·			
IOSOURCE(gate)		e sourcing current $\frac{V_{I(VIN)} = 3.1 \text{ V}, V_{O(gate)} = 7 \text{ V}}{V_{I(VIN)} = 5 \text{ V}, V_{O(gate)} = 10 \text{ V}} \qquad \qquad$			10 10 μΑ	
	Gate sourcing current					μΑ
I _{OSINK(gate)}	Gate sinking current ⁽¹⁾	$V_{I(VIN)}$ = 7.2 V, $V_{O(gate)}$ = 15 V	350	485	600	mA
		$V_{I(VIN)} = 3.1 \text{ V}, I_{OSOURCE(gate)} = 1 \ \mu\text{A}$	10		12	
V _{OH(gate)}	Gate output high voltage	$V_{I(VIN)} = 5 \text{ V}, I_{OSOURCE(gate)} = 1.5 \mu\text{A}$	16		19	V
		$V_{I(VIN)}$ = 6.5 V, $I_{OSOURCE(gate)}$ = 1.5 µA	16		20	
V _{OHMAX(gate)}	Gate output high maximum voltage	$I_{OSOURCE(gate)} = 0 \ \mu A$			20	V
V _{OL(gate)}	Gate output low voltage	$V_{I(VIN)} = 7.2 \text{ V}, I_{OSINK(gate)} = 50 \text{ mA}$			1	V
	Gate turnon propogation delay,	$V_{I(VIN)}$ stepped from 0 V to 5 V, C_{LOAD} = 1 nF	0.1		0.6	
T _{ON(prop)}	(50% V _{I(vin)} to V _{O(gate)} = 1 V, R _{LOAD} = 10 MΩ	C _{LOAD} = 10 nF	0.9		3	ms
	Gate turnon rise time,	$V_{I(VIN)}$ stepped from 0 V to 5 V, C_{LOAD} = 1 nF	1.5		6	
T _{ON(rise)}	$ (V_{O(gate)} = 1 \ V \ to \ 90\% V_{O(gate)}, \\ R_{LOAD} = 10 \ M\Omega) $	C _{LOAD} = 10 nF	15		55	ms
T _{OFF}	Turnoff time, (50% $V_{I(\text{VIN})}$ step to	$V_{I(VIN)}$ stepped from 6 V to 8 V, C_{LOAD} = 1 nF	5		0.25	μs
' OFF	$V_{O(GATE)} = 6.9 \text{ V}, \text{ R}_{LOAD} = 10 \text{ M}\Omega$	$C_{LOAD} = 10 \text{ nF}$	5		0.5	μs

(1) Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.



6.6 Typical Characteristics

Typical Characteristics (continued)

7 Parameter Measurement Information

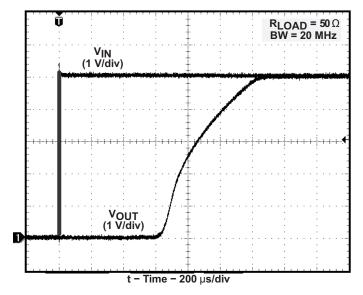


Figure 9. Output Turnon Response

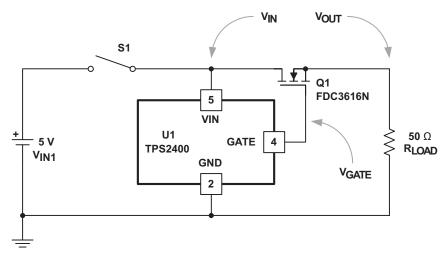


Figure 10. Output Turnon Response Test Circuit

VGATE VIN VIN VIN VGATE VIN VGATE (5 V/div) t - Time - 40 ns/div

Parameter Measurement Information (continued)

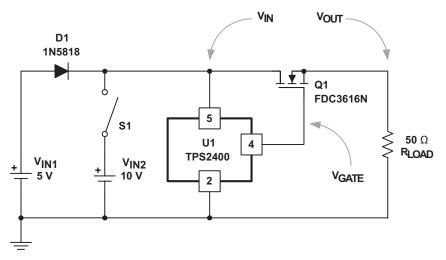
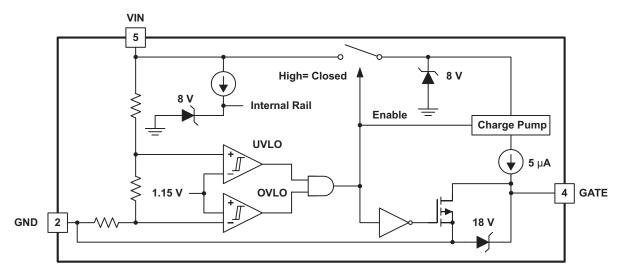


Figure 12. Output Turnoff Response Test Circuit

TPS2400 SLUS599B – JUNE 2004 – REVISED OCTOBER 2015


www.ti.com

8 Detailed Description

8.1 Overview

The TPS2400 device is used in applications that must protect the load from overvoltage event. Benefits include fast response time and survival during extended overvoltage events.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Undervoltage and Overvoltage Comparators and Logic

When the comparators detect that VCC is within the operating window, the GATE output is driven high to turn on the external N-channel MOSFET. When V_{CC} goes above the set overvoltage level, or below the set undervoltage level, the GATE output is driven low.

8.3.2 Charge Pump

An internal charge pump supplies power to the GATE drive circuit and provides the necessary voltage to pull the gate of the MOSFET above the source.

8.3.3 Zener Diodes

Limit internal power rails to 8 V and GATE output to 18 V.

8.3.4 Shut-Off MOSFET

When an undervoltage or overvoltage event occurs, this MOSFET is turned on to pulldown the gate of the external N-channel MOSFET, thus isolating the load from the incoming transient.

Feature Description (continued)

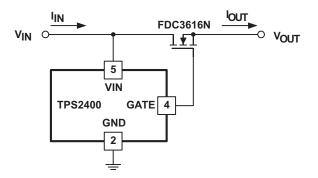


Figure 13. Application Diagram

8.4 Device Functional Modes

8.4.1 Overvoltage Protection

An overvoltage condition is commonly created in these situations:

- Unplugging a wall adapter from an AC outlet. Energy stored in the transformer magnetizing inductance is released and spikes the output voltage.
- Powering an appliance with the wrong voltage adapter (user error).
- Automotive load dump due to ignition, power windows, or starter motor (for example).
- An AC power-line transient.
- Power switch contact bounce (causes power supply/distribution inductive kick), (See Figure 14).

Many electronic appliances use a transient voltage suppressor (TVS) for overvoltage protection as shown in Figure 14. The TVS is typically a metal-oxide varister (MOV) or Transzorb. The former is a nonlinear resistor with a soft turnon characteristic whereas the latter is a large junction Zener diode with a very sharp turnon characteristic. These devices have high pulse-power capability and pico-second response time. A TVS clamps the load voltage to a safe level so the load operates uninterrupted in the presence of power supply output-voltage spikes. But in the event of a voltage surge, fuse F2 blows and must be replaced to restore operation.

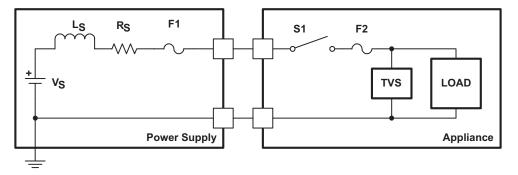


Figure 14. Load Protection Using Transient Voltage Suppressor Clamps

The TPS2400 circuit in Figure 15 protects the load from an overvoltage, not by clamping the load voltage like a TVS, but by disconnecting the load from the power supply. The circuit responds to an overvoltage in less than 1 µs and rides out a voltage surge without blowing fuse F2. The voltage surge can be of indefinite duration.

The load can see a voltage spike of up to 1 μ s, the amount of time it takes the TPS2400 to disconnect the load from the power supply. A low-power Zener diode D2 can be used to clamp the load voltage to a safe level. In most cases, diode D2 is not necessary because the load bypass capacitor (not shown) forms a low-pass filter with resistor R_S and inductor L_S to significantly attenuate the spike.

TEXAS INSTRUMENTS

www.ti.com

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TPS2400 device provides application flexibility and can be used in many types of systems for load protection.

9.2 Typical Applications

9.2.1 TPS2400 Application

When the TPS2400 disconnects the load from the power supply, the power-supply output-voltage spikes as the stored energy in inductor LS is released. A Zener diode D1 or a small ceramic capacitor can be used to keep the voltage spike at a safe level.

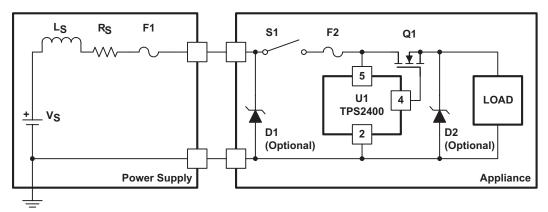


Figure 15. TPS2400 Application Block Diagram

9.2.1.1 Design Requirements

Table 1 shows the parameters for this design example.

DESIGN PARAMETERS	EXAMPLE VALUE							
MOSFET Input Capacitance, CG	2 nF							
Load Capacitance, CL	100 uF							

Table	1.	Design	Parameters
Table		Design	i arameters

9.2.1.2 Detailed Design Procedure

9.2.1.2.1 Controlling the Load Inrush-Current

Figure 16 is a simplified representation of an appliance with a plug-in power supply (for example, wall adapter). When power is first applied to the load in Figure 16, the large filter capacitor C_{LOAD} acts like a short circuit, producing an immediate inrush-current that is limited by the power-supply output resistance and inductance, R_s and L_s , respectively. This current can be several orders of magnitude greater than the steady-state load current. The large inrush current can damage power connectors P1 and J1 and power switch S1, and stress components. Increasing the power-supply output resistance and inductance lowers the inrush current. However, the former increases system power-dissipation and the latter decreases connector and switch reliability by encouraging the contacts to arc when they bounce.

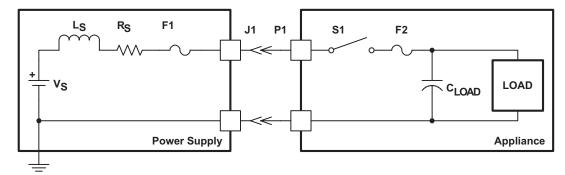


Figure 16. Power-Supply Output Resistance and Inductance Circuit Model

The TPS2400 circuit in Figure 17 limits the inrush current without these draw backs. The TPS2400 device charges the transistor Q1 gate capacitance CG with a $5-\mu A$ source when Q1 is commanded to turn on. Transistor Q1 is wired as a source follower so the gate-voltage slew rate and the load-voltage slew rate are identical and equal to

$$\frac{\partial V_{L}}{\partial t} = \frac{5 \ \mu A}{C_{G}} \tag{1}$$

The corresponding inrush current is:

$$I_{\text{INRUSH}} \approx C_{\text{L}} \times \frac{\partial V_{\text{L}}}{\partial t} = \left(\frac{C_{\text{L}}}{C_{\text{G}}}\right) \times 5 \ \mu\text{A}$$
(2)

When solving Equation 1 using CG = 2 nF, we get 2500 V/s. Then we can use Equation 2 to approximate the inrush current of 250 mA.

An external capacitor and a series $1-k\Omega$ resistor can be connected to the gate of Q1 and ground to reduce inrush current further. In this case, the parameter CG in Equation 1 and Equation 2 is the sum of the internal and external FET gate capacitance. The $1-k\Omega$ resistor decouples the external gate capacitor, so the TPS2400 device can rapidly turn off transistor Q1 in response to an overvoltage condition.

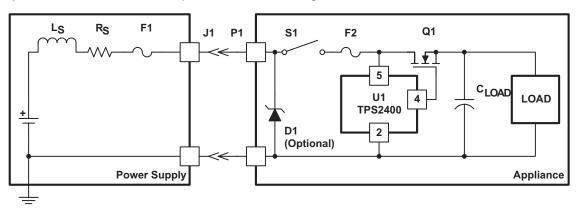


Figure 17. Turnon Voltage Slew Rate Control Using the TPS2400

9.2.1.3 Application Curve

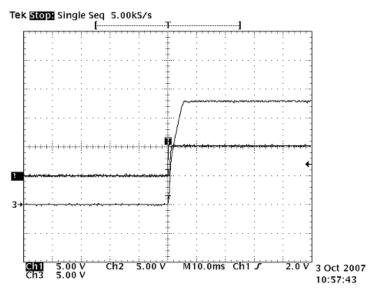


Figure 18. Circuit Start-Up With VIN = 5 V

9.2.2 High-Side Switch Overvoltage Protector That Can Drive a 12-V Load

Detailed information for the circuit shown in Figure 19 can be found in the application note, *Overvoltage Protector for High-Loads* (SLVA163).

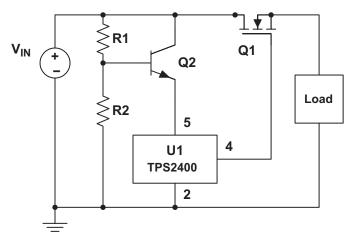


Figure 19. High-Side Switch Overvoltage Protector That Can Drive a 12-V Load

9.2.3 Low-Side Switch Overvoltage Protector That Can Drive a 12-V Load

Detailed information for the circuit shown in Figure 20 can be found in the application note, *Overvoltage Protector for High-Loads* (SLVA163).

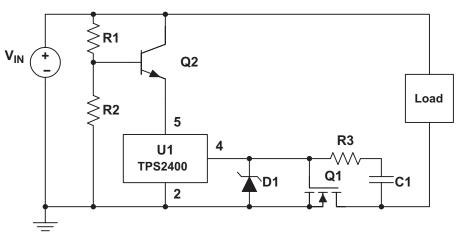


Figure 20. Low-Side Switch Overvoltage Protector That Can Drive a 12-V Load

10 Power Supply Recommendations

The TPS2400 device is designed to operate from 3.3-V to 5-V input supplies. VIN is 100-V tolerant, but keep within the recommended steady-state operating range of 3.1 V to 6.8 V.

TPS2400 SLUS599B – JUNE 2004 – REVISED OCTOBER 2015

11 Layout

11.1 Layout Guidelines

Parts placement must be driven by power flow in a point-to-point manner from input to output. Avoid leakage paths from GATE to GND, which might load down the small GATE output current.

11.2 Layout Example

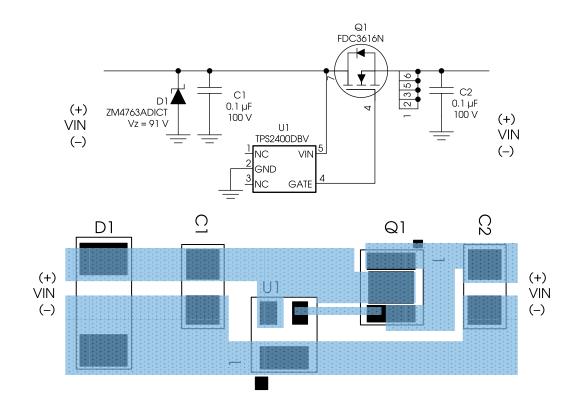


Figure 21. Suggested Layout

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

Overvoltage Protector for High-Voltage Loads, SLVA163.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS2400DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BIJ	Samples
TPS2400DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BIJ	Samples
TPS2400DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BIJ	Samples
TPS2400DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BIJ	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

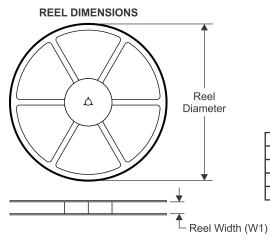
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

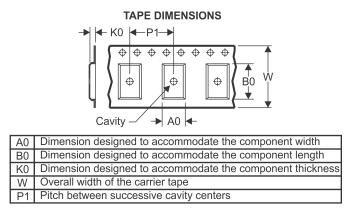
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

20-Aug-2014

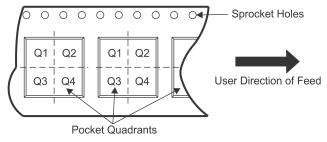
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

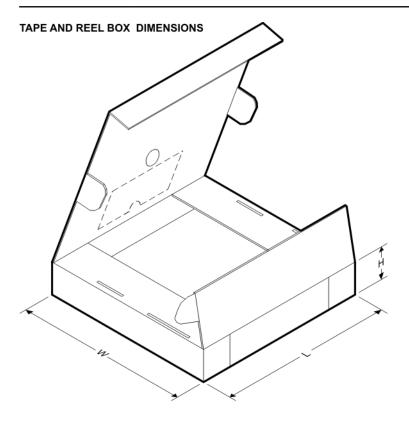

www.ti.com

Texas Instruments


TAPE AND REEL INFORMATION

*All dimensions are nominal

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

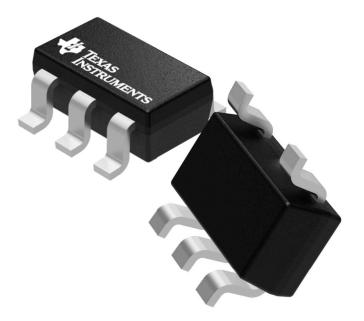

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS2400DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS2400DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

20-Aug-2014


*All dimensions are nominal

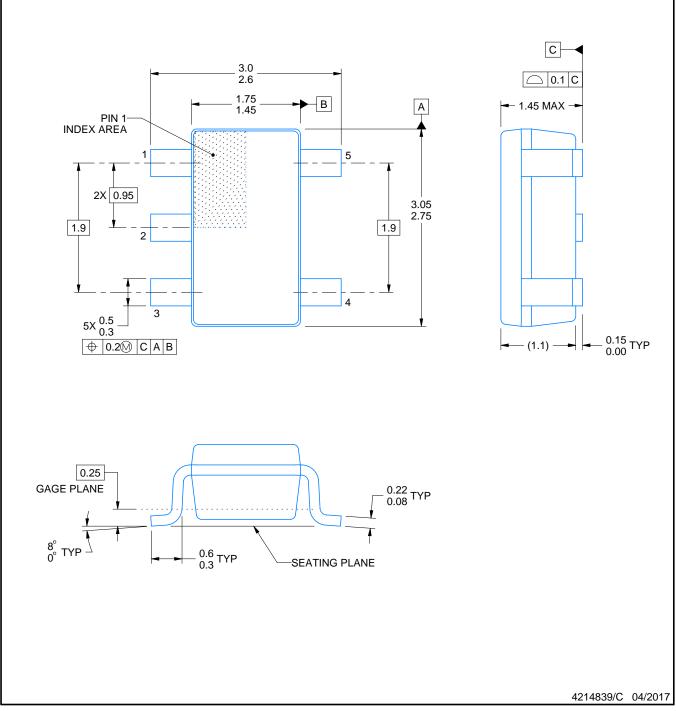
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS2400DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TPS2400DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0

DBV 5

GENERIC PACKAGE VIEW

SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

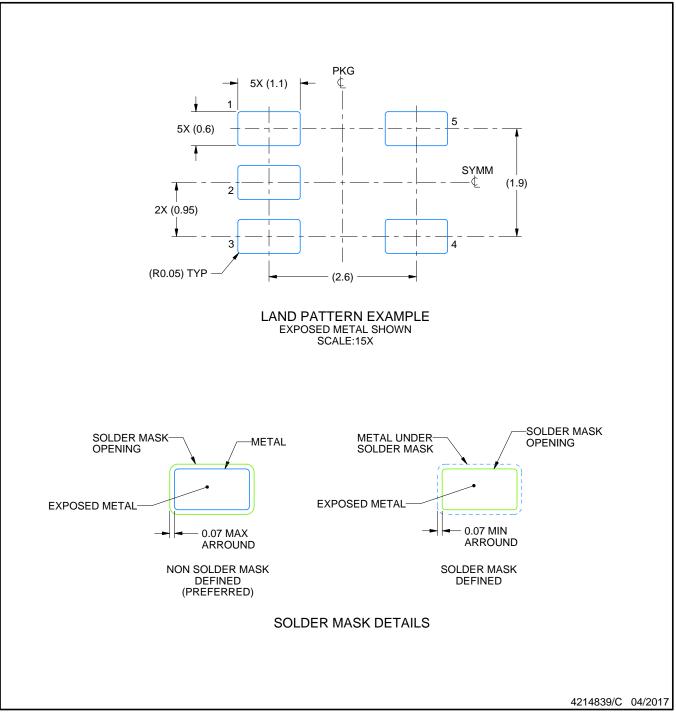


PACKAGE OUTLINE

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-178.

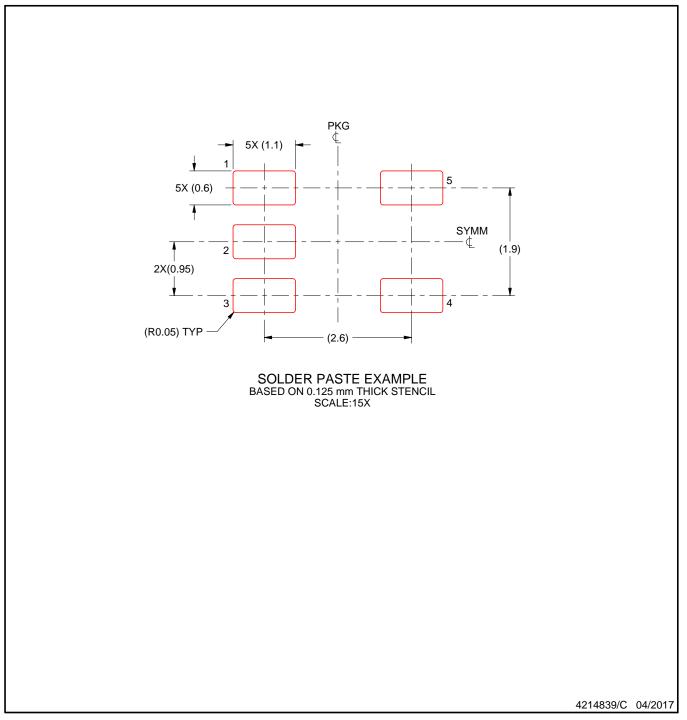
EXAMPLE BOARD LAYOUT

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.


5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

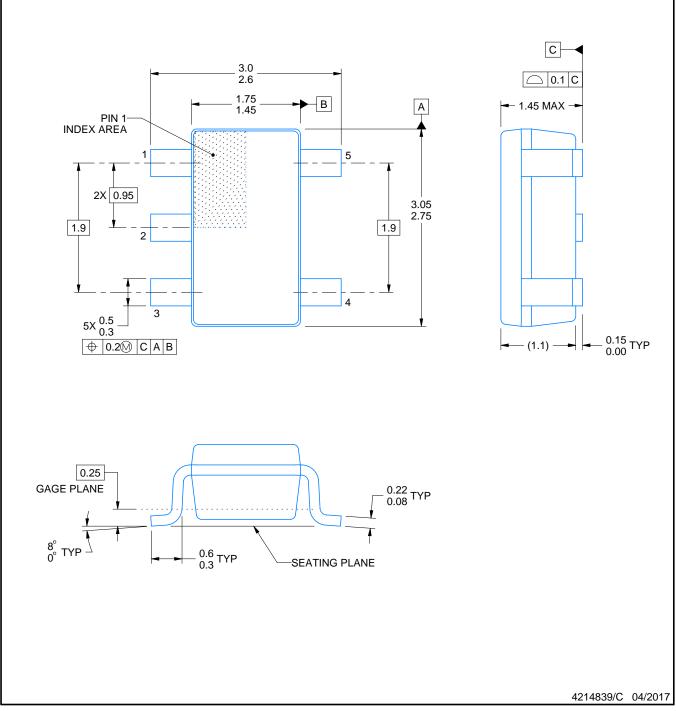
EXAMPLE STENCIL DESIGN

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

7. Board assembly site may have different recommendations for stencil design.

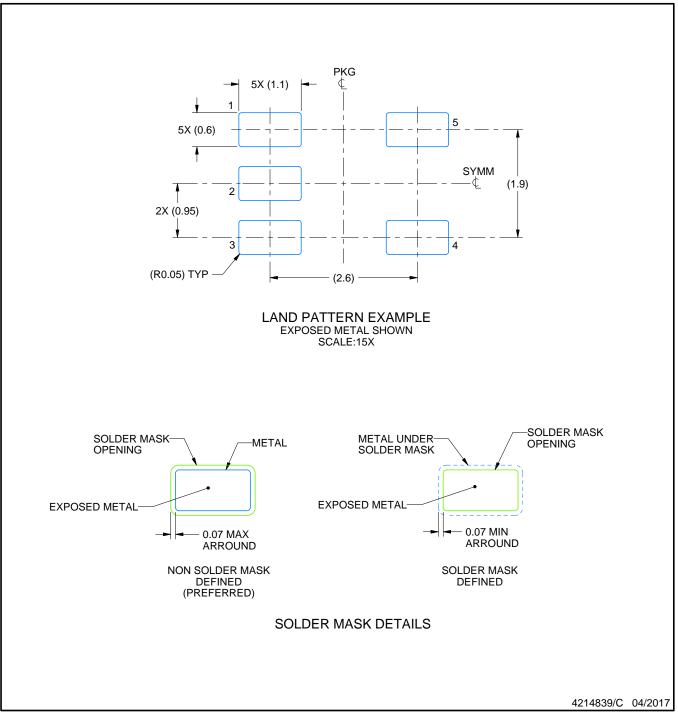

^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

PACKAGE OUTLINE

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-178.

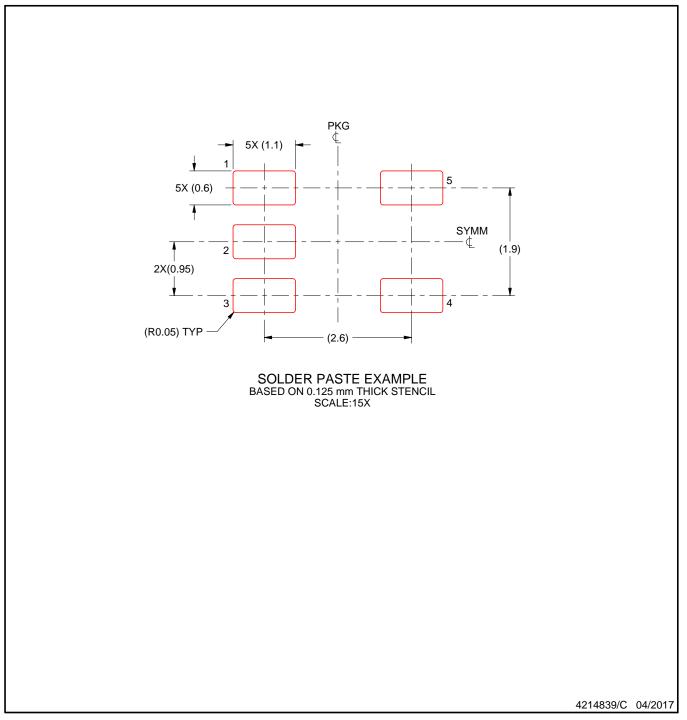
EXAMPLE BOARD LAYOUT

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.


5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

7. Board assembly site may have different recommendations for stencil design.

^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated