

www.ti.com

SCAS903A -JUNE 2010-REVISED AUGUST 2010

Dual 1:4 Low Additive Jitter LVDS Buffer

Check for Samples: CDCLVD2104

FEATURES

- Dual 1:4 Differential Buffer
- Low Additive Jitter <300 fs, RMS in 10 kHz to 20 MHz
- Low Within Bank Output Skew of 35ps (Max)
- Universal Inputs Accept LVDS, LVPECL, LVCMOS
- One Input Dedicated for Four Output Buffers
- 8 LVDS Outputs, ANSI EIA/TIA-644A Standard Compatible
- Clock Frequency up to 800 MHz
- 2.375–2.625V Device Power Supply
- LVDS Reference Voltage, V_{AC_REF}, Available for Capacitive Coupled Inputs
- Industrial Temperature Range –40°C to 85°C
- Packaged in 5mm × 5mm 28-Pin QFN (RHD)
- ESD Protection Exceeds 3 kV HBM, 1 kV CDM

APPLICATIONS

- Telecommunications/Networking
- Medical Imaging
- Test and Measurement Equipment
- Wireless Communications
- General Purpose Clocking

DESCRIPTION

The CDCLVD2104 clock buffer distributes two clock inputs (IN0, IN1) to a total of 8 pairs of differential LVDS clock outputs (OUT0, OUT7). Each buffer block consists of one input and 4 LVDS outputs. The inputs can either be LVDS, LVPECL, or LVCMOS.

The CDCLVD2104 is specifically designed for driving 50- Ω transmission lines. If the input is in single ended mode, the appropriate bias voltage (V_{AC_REF}) should be applied to the unused negative input pin.

Using the control pin (EN), outputs can be either disabled or enabled. If the EN pin is left open two buffers with all outputs are enabled, if switched to a logical "0" both buffers with all outputs are disabled (static logical "0"), if switched to a logical "1", one buffer with four outputs is disabled and another buffer with four outputs is enabled. The part supports a fail safe function. It incorporates an input hysteresis, which prevents random oscillation of the outputs in absence of an input signal.

The device operates in 2.5V supply environment and is characterized from -40° C to 85° C (ambient temperature). The CDCLVD2104 is packaged in small 28-pin, 5-mm × 5-mm QFN package.

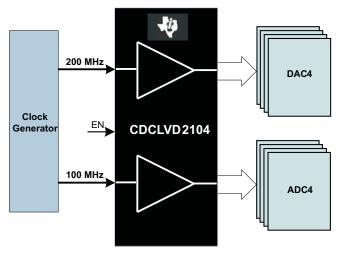
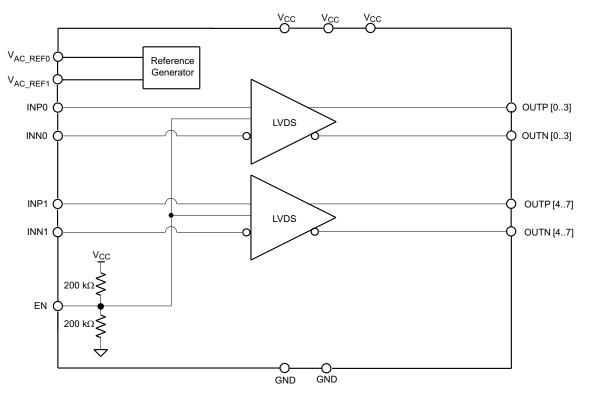


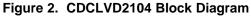
Figure 1. Application Example

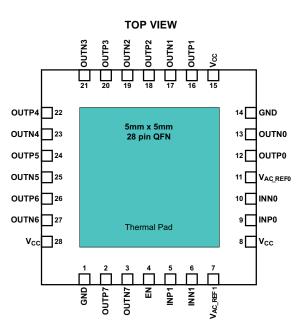
A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

CDCLVD2104




SCAS903A -JUNE 2010-REVISED AUGUST 2010


www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

TEXAS INSTRUMENTS

CDCLVD2104

www.ti.com

SCAS903A -JUNE 2010-REVISED AUGUST 2010

			PIN FUNCTIONS					
PIN		TYPE	DESCRIPTION					
NAME	NO.							
VCC	8,15,28	Power	2.5V supplies for the device					
GND	1,14	Ground	Device ground					
INP0, INN0	9,10	Input	Differential input pair or single ended in	nput				
INP1, INN1	5,6	Input	Differential redundant input pair or sing	le ended input				
OUTP0, OUTN0	12,13	Output	Differential LVDS output pair no. 0					
OUTP1, OUTN1	16,17	Output	Differential LVDS output pair no. 1					
OUTP2, OUTN2	18,19	Output	Differential LVDS output pair no. 2	INP0/INN0 is the input				
OUTP3, OUTN3	20,21	Output	Differential LVDS output pair no. 3					
OUTP4, OUTN4	22,23	Output	Differential LVDS output pair no. 4					
OUTP5, OUTN5	24,25	Output	Differential LVDS output pair no. 5					
OUTP6, OUTN6	26,27	Output	Differential LVDS output pair no. 6	INP1/INN1 is the input				
OUTP7, OUTN7	2,3	Output	Differential LVDS output pair no. 7					
V _{AC_REF0}	11	Output	Bias voltage output for capacitive coup use a $0.1\mu F$ to GND on this pin.	led inputs. If used, it is recommended to				
V _{AC_REF1}	7	Output	Bias voltage output for capacitive coup use a $0.1\mu F$ to GND on this pin.	led inputs. If used, it is recommended to				
EN	4	Input with an internal 200kΩ pull-up and pull-down	Control pin – enables or disables the o	utputs, (See Table 1)				
Thermal Pad			See thermal management recommendations					

Table 1. Output Control Table

EN	CLOCK OUTPUTS
0	All outputs disabled (static "0")
OPEN	All outputs enabled
1	OUT0, OUT3 enabled and OUT4, OUT7 disabled (static "0")

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		VALUE / UNIT
V _{CC}	Supply voltage range	–0.3 to 2.8 V
VI	Input voltage range	–0.2 to (V _{CC} + 0.2) V
Vo	Output voltage range	–0.2 to (V _{CC} + 0.2) V
I _{OSD}	Driver short circuit current	See Note ⁽²⁾
ESD	Electrostatic discharge (HBM, 1.5 kΩ, 100 pF)	>3000 V

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The outputs can handle permanent short.

RECOMMENDED OPERATING CONDITIONS

		MIN	TYP	MAX	UNITS
V _{CC}	Device supply voltage	2.375	2.5	2.625	V
T _A	Ambient temperature	-40		85	°C

SCAS903A -JUNE 2010-REVISED AUGUST 2010

www.ti.com

THERMAL INFORMATION

		CDCLVD2104	
	THERMAL METRIC ⁽¹⁾	QFN	UNITS
		28 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	34	
$\theta_{\text{JC(top)}}$	Junction-to-case(top) thermal resistance	27	
θ_{JB}	Junction-to-board thermal resistance	9	°C/W
ΨJT	Junction-to-top characterization parameter	0.4	C/W
Ψјв	Junction-to-board characterization parameter	8	
$\theta_{\text{JC(bottom)}}$	Junction-to-case(bottom) thermal resistance	4	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

ELECTRICAL CHARACTERISTICS

At V_{CC} = 2.375 V to 2.625 V and T_A = -40°C to 85°C (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
EN CONTR	ROL INPUT CHARACTERISTICS					
Vd _{I3}	3-State	Open		$0.5 \times V_{CC}$		V
Vd _{IH}	Input high voltage		$0.7 \times V_{CC}$			V
Vd _{IL}	Input low voltage				$0.2 \times V_{CC}$	V
Id _{IH}	Input high current	$V_{CC} = 2.625 \text{ V}, \text{ V}_{IH} = 2.625 \text{ V}$			30	μA
Id _{IL}	Input low current	$V_{CC} = 2.625 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$			-30	μA
R _{pull(EN)}	Input pull-up/ pull-down resistor			200		kΩ
	IOS (see Figure 7) INPUT CHARACTER	ISTICS			·	
f _{IN}	Input frequency				200	MHz
V _{th}	Input threshold voltage	External threshold voltage applied to complementary input	1.1		1.5	V
V _{IH}	Input high voltage		V _{th} + 0.1		V _{CC}	V
V _{IL}	Input low voltage		0		$V_{th} - 0.1$	V
I _{IH}	Input high current	$V_{CC} = 2.625 \text{ V}, V_{IH} = 2.625 \text{ V}$			10	μA
IIL	Input low current	V _{CC} = 2.625 V, V _{IL} = 0 V			-10	μA
$\Delta V / \Delta T$	Input edge rate	20% - 80%	1.5			V/ns
C _{IN}	Input capacitance			2.5		pF
DIFFEREN	TIAL INPUT CHARACTERISTICS				·	
f _{IN}	Input frequency	Clock input			800	MHz
V _{IN, DIFF}	Differential input voltage peak-to-peak	V _{ICM} = 1.25 V	0.3		1.6	V _{PP}
V _{ICM}	Input common-mode voltage range	$V_{IN, DIFF, PP} > 0.4V$	1		$V_{CC} - 0.3$	V
I _{IH}	Input high current	V_{CC} = 2.625 V, V_{IH} = 2.625 V			10	μA
IIL	Input low current	$V_{CC} = 2.625 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$			-10	μA
$\Delta V / \Delta T$	Input edge rate	20% to 80%	0.75			V/ns
C _{IN}	Input capacitance			2.5		pF

5

Submit Documentation Feedback

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

At V_{CC} = 2.375 V to 2.625 V and T_A = -40° C to 85°C (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
LVDS OUT	PUT CHARACTERISTICS	· · · ·				
V _{OD}	Differential output voltage magnitude		250		450	mV
ΔV_{OD}	Change in differential output voltage magnitude	$V_{IN, DIFF, PP} = 0.3 V, R_L = 100 \Omega$	-15		15	mV
V _{OC(SS)}	Steady-state common mode output voltage		1.1		1.375	V
$\Delta V_{OC(SS)}$	Steady-state common mode output voltage	$V_{IN, DIFF, PP} = 0.6 V, R_L = 100 \Omega$	-15		15	mV
V _{ring}	Output overshoot and undershoot	Percentage of output amplitude V_{OD}			10%	
V _{OS}	Output ac common mode	$V_{IN, DIFF, PP} = 0.6 V, R_L = 100 \Omega$		40	70	mV_{PP}
I _{OS}	Short-circuit output current	$V_{OD} = 0 V$			±24	mA
t _{PD}	Propagation delay	$V_{IN, DIFF, PP} = 0.3 V$		1.5	2.5	ns
t _{SK, PP}	Part-to-part skew				600	ps
t _{SK, O_WB}	Within bank output skew				35	ps
t _{SK,O_BB}	Bank-to-bank output skew	both inputs are phase aligned			100	ps
t _{SK,P}	Pulse skew(with 50% duty cycle input)	Crossing-point-to-crossing-point distortion	-50		50	ps
t _{RJIT}	Random additive jitter (with 50% duty cycle input)	Edge speed 0.75V/ns 10 kHz – 20 MHz			0.3	ps, RMS
t _R /t _F	Output rise/fall time	20% to 80%,100 Ω, 5 pF	50		300	ps
I _{CCSTAT}	Static supply current	Outputs unterminated, f = 0 Hz		27	45	mA
I _{CC100}	Supply current	All outputs, $R_L = 100 \Omega$, f = 100 MHz		74	108	mA
I _{CC800}	Supply current	All outputs, $R_L = 100 \Omega$, f = 800 MHz		108	144	mA
VAC_REF CH	ARACTERISTICS	· · · · · · · · · · · · · · · · · · ·				
V_{AC_REF}	Reference output voltage	V _{CC} = 2.5 V, I _{load} = 100 µA	1.1	1.25	1.35	V

SCAS903A -JUNE 2010-REVISED AUGUST 2010

SCAS903A -JUNE 2010-REVISED AUGUST 2010

Typical Additive Phase Noise Characteristics for 100 MHz Clock

	PARAMETER	MIN	TYP	MAX	UNIT
phn ₁₀₀	Phase noise at 100 Hz offset		-132.9		dBc/Hz
phn _{1k}	Phase noise at 1 kHz offset		-138.8		dBc/Hz
phn _{10k}	Phase noise at 10 kHz offset		-147.4		dBc/Hz
phn _{100k}	Phase noise at 100 kHz offset		-153.6		dBc/Hz
phn _{1M}	Phase noise at 1 MHz offset		-155.2		dBc/Hz
phn _{10M}	Phase noise at 10 MHz offset		-156.2		dBc/Hz
phn _{20M}	Phase noise at 20 MHz offset		-156.6		dBc/Hz
t _{RJIT}	Random additive jitter from 10 kHz to 20 MHz		171		fs, RMS

Typical Additive Phase Noise Characteristics for 737.27 MHz Clock

	PARAMETER	MIN	TYP	MAX	UNIT
phn ₁₀₀	Phase noise at 100 Hz offset		-80.2		dBc/Hz
phn _{1k}	Phase noise at 1 kHz offset		-114.3		dBc/Hz
phn _{10k}	Phase noise at 10 kHz offset		-138		dBc/Hz
phn _{100k}	Phase noise at 100 kHz offset		-143.9		dBc/Hz
phn _{1M}	Phase noise at 1 MHz offset		-145.2		dBc/Hz
phn _{10M}	Phase noise at 10 MHz offset		-146.5		dBc/Hz
phn _{20M}	Phase noise at 20 MHz offset		-146.6		dBc/Hz
t _{RJIT}	Random additive jitter from 10 kHz to 20 MHz		65		fs, RMS

ISTRUMENTS

www.ti.com


ÈXAS

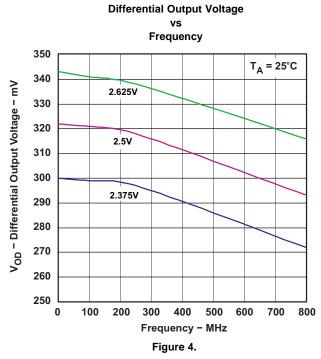
6

TEXAS INSTRUMENTS

www.ti.com

SCAS903A -JUNE 2010-REVISED AUGUST 2010

Input clock RMS jitter is 32 fs from 10 kHz to 20 MHz and additive RMS jitter is 152 fs


Figure 3. 100 MHz Input and Output Phase Noise Plot

TEXAS INSTRUMENTS

www.ti.com

SCAS903A -JUNE 2010-REVISED AUGUST 2010

8

www.ti.com

XAS

NSTRUMENTS

TEST CONFIGURATIONS

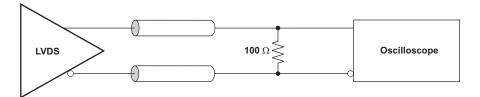


Figure 5. LVDS Output DC Configuration During Device Test

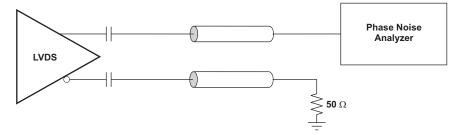


Figure 6. LVDS Output AC Configuration During Device Test

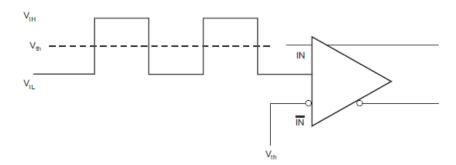
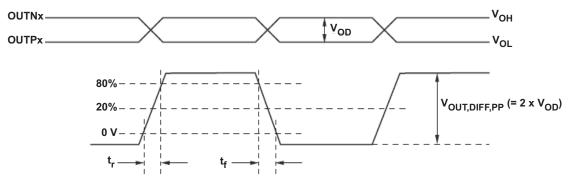
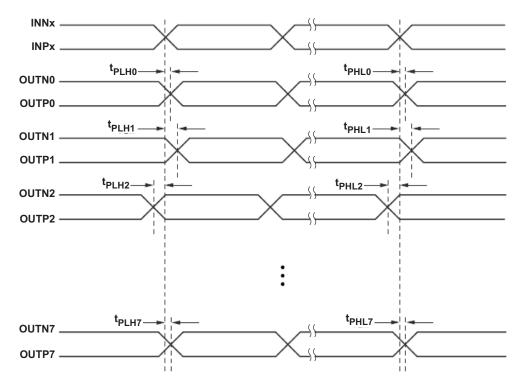
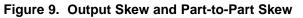


Figure 7. DC Coupled LVCMOS Input During Device Test


Figure 8. Output Voltage and Rise/Fall Time

www.ti.com

- A. Output skew is calculated as the greater of the following: As the difference between the fastest and the slowest t_{PLHn} or the difference between the fastest and the slowest t_{PHLn} (n = 0, 1, 2, ...7).
- B. Part-to-part skew is calculated as the greater of the following: As the difference between the fastest and the slowest t_{PLHn} or the difference between the fastest and the slowest t_{PHLn} across multiple devices (n = 0, 1, 2, ...7).
- C. Both inputs (IN0 and IN1) are phase aligned.

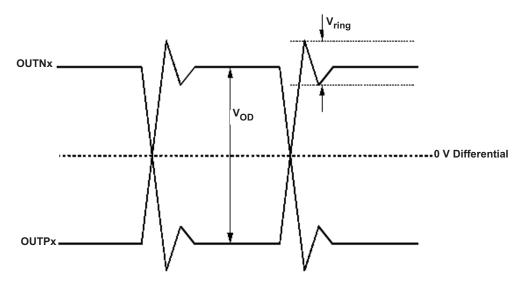
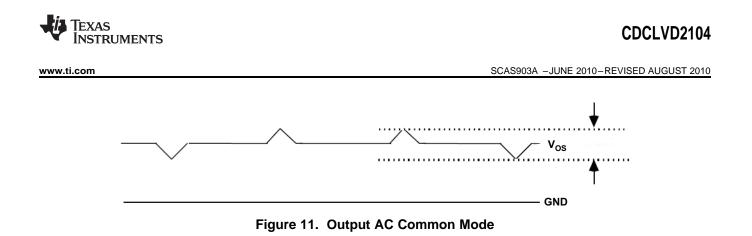



Figure 10. Output Overshoot and Undershoot

APPLICATION INFORMATION

THERMAL MANAGEMENT

For reliability and performance reasons, the die temperature should be limited to a maximum of 125°C.

The device package has an exposed pad that provides the primary heat removal path to the printed circuit board (PCB). To maximize the heat dissipation from the package, a thermal landing pattern including multiple vias to a ground plane must be incorporated into the PCB within the footprint of the package. The Thermal Pad must be soldered down to ensure adequate heat conduction to of the package. Figure 12 shows a recommended land and via pattern.

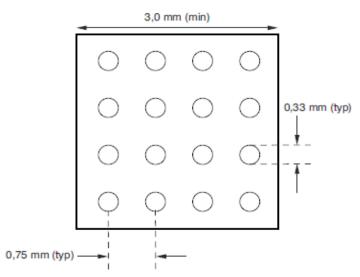


Figure 12. Recommended PCB Layout

POWER-SUPPLY FILTERING

High-performance clock buffers are sensitive to noise on the power supply, which can dramatically increase the additive jitter of the buffer. Thus, it is essential to reduce noise from the system power supply, especially when jitter/phase noise is critical to applications.

Filter capacitors are used to eliminate the low-frequency noise from the power supply, where the bypass capacitors provide the very low impedance path for high-frequency noise and guard the power-supply system against the induced fluctuations. These bypass capacitors also provide instantaneous current surges as required by the device and should have low equivalent series resistance (ESR). To properly use the bypass capacitors, they must be placed very close to the power-supply pins and laid out with short loops to minimize inductance. It is recommended to add as many high-frequency (for example, $0.1 \ \mu$ F) bypass capacitors as there are supply pins in the package. It is recommended, but not required, to insert a ferrite bead between the board power supply

Copyright © 2010, Texas Instruments Incorporated

SCAS903A -JUNE 2010-REVISED AUGUST 2010

www.ti.com

and the chip power supply that isolates the high-frequency switching noises generated by the clock driver; these beads prevent the switching noise from leaking into the board supply. Choose an appropriate ferrite bead with very low dc resistance because it is imperative to provide adequate isolation between the board supply and the chip supply, as well as to maintain a voltage at the supply pins that is greater than the minimum voltage required for proper operation.

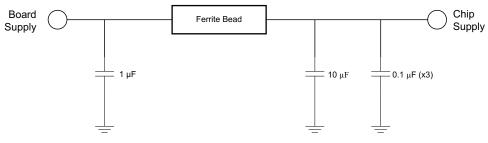


Figure 13. Power-Supply Decoupling

LVDS OUTPUT TERMINATION

The proper LVDS termination for signal integrity over two 50 Ω lines is 100 Ω between the outputs on the receiver end. Either dc-coupled termination or ac-coupled termination can be used for LVDS outputs. It is recommended to place termination resister close to the receiver. If the receiver is internally biased to a voltage different than the output common mode voltage of the CDCLVD2104, ac-coupling should be used. If the LVDS receiver has internal 100 ohm termination, external termination must be omitted.

Unused outputs can be left open without connecting any trace to the output pins.

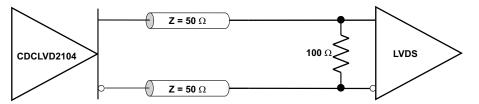


Figure 14. LVDS Output DC Termination

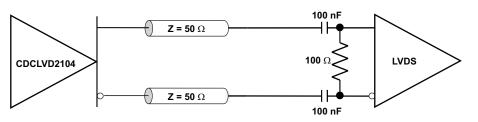


Figure 15. LVDS Output AC Termination With Receiver Internally Biased

SCAS903A -JUNE 2010-REVISED AUGUST 2010

www.ti.com

INPUT TERMINATION

The CDCLVD2104 inputs can be interfaced with LVDS, LVPECL, or LVCMOS drivers.

LVDS Driver can be connected to CDCLVD2104 inputs with dc or ac coupling as shown Figure 16 and Figure 17, respectively.

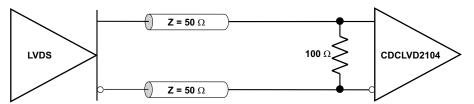


Figure 16. LVDS Clock Driver Connected to CDCLVD2104 Input (AC Coupled)

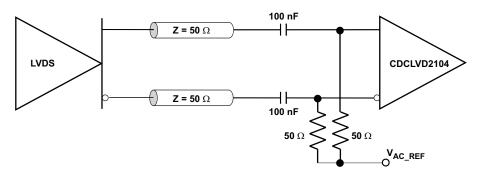


Figure 17. LVDS Clock Driver Connected to CDCLVD2104 Input (DC Coupled)

Figure 18 shows how to connect LVPECL inputs to the CDCLVD2104. The series resistors are required to reduce the LVPECL signal swing if the signal swing is >1.6 V_{PP} .

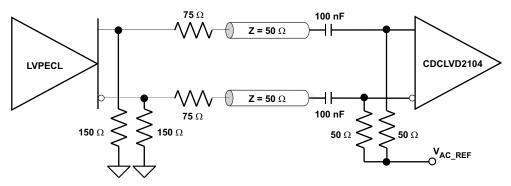
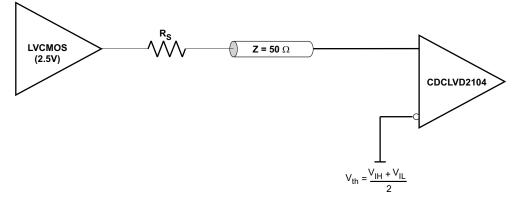


Figure 18. LVPECL Clock Driver Connected to CDCLVD2104 Input


CDCLVD2104

TEXAS INSTRUMENTS

SCAS903A -JUNE 2010-REVISED AUGUST 2010

www.ti.com

Figure 19 illustrates how to couple a 2.5 V LVCMOS clock input to the CDCLVD2104 directly. The series resistance (R_S) should be placed close to the LVCMOS driver if needed. 3.3 V LVCMOS clock input swing needs to be limited to $V_{IH} \leq V_{CC}$.

Figure 19. 2.5V LVCMOS Clock Driver Connected to CDCLVD2104 Input

If one of the input buffers is used, the other buffer should be disabled through the EN pin, and unused input pins should be grounded by 1 k Ω resistors.

REVISION HISTORY

Cł	hanges from Original (June 2010) to Revision A	Page
•	Changed the data sheet from Product Preview to Production	1

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
CDCLVD2104RHDR	ACTIVE	VQFN	RHD	28	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CDCLVD 2104	Samples
CDCLVD2104RHDT	ACTIVE	VQFN	RHD	28	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CDCLVD 2104	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

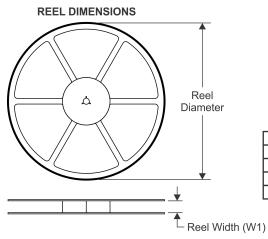
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

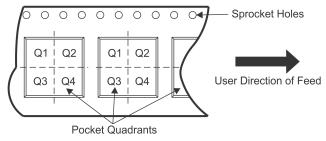
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

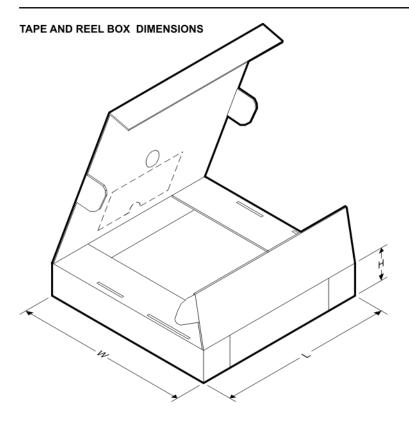
PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*	All dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	CDCLVD2104RHDR	VQFN	RHD	28	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
	CDCLVD2104RHDT	VQFN	RHD	28	250	180.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2

TEXAS INSTRUMENTS

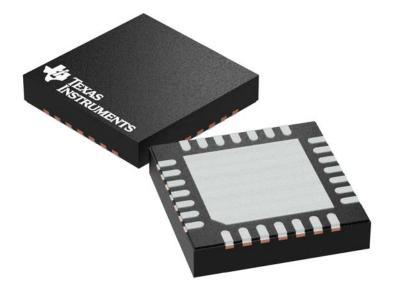
www.ti.com

PACKAGE MATERIALS INFORMATION

2-Nov-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CDCLVD2104RHDR	VQFN	RHD	28	3000	336.6	336.6	28.6
CDCLVD2104RHDT	VQFN	RHD	28	250	210.0	185.0	35.0

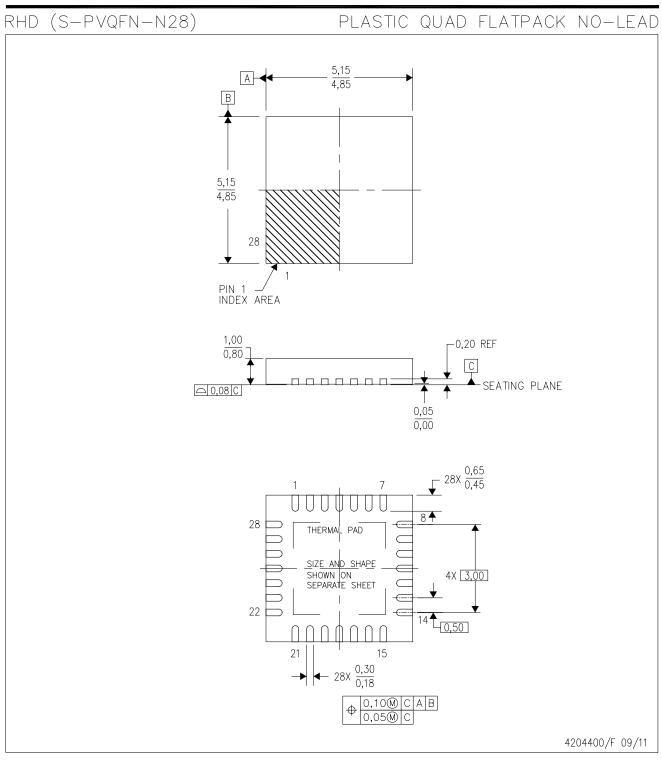

RHD 28

5 x 5 mm, 0.5 mm pitch

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

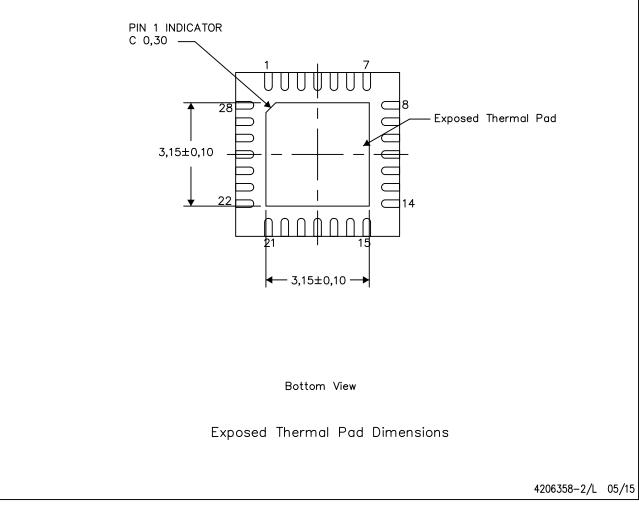


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4204400/G

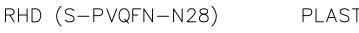
MECHANICAL DATA

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - B. This drawing is subject to change without notice.
 - C. QFN (Quad Flatpack No-Lead) Package configuration.
 - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
 - F. Falls within JEDEC MO-220.

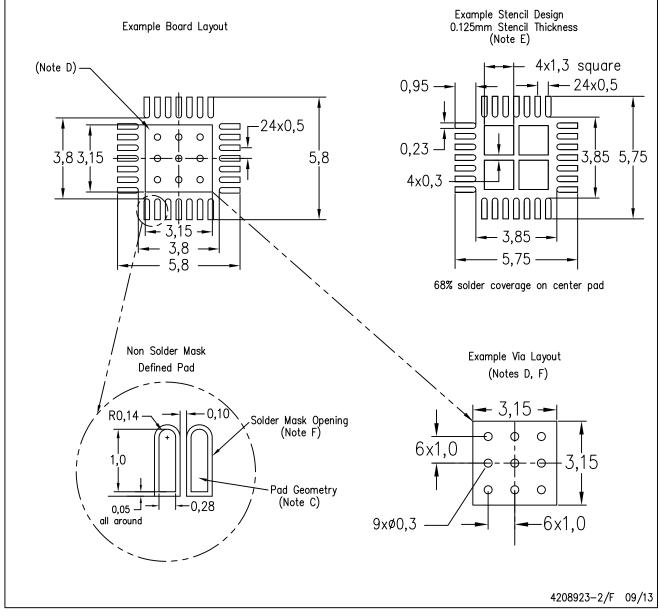


THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: All linear dimensions are in millimeters

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated