

DATA IMAGE CORPORATION

TFT Module Specification

ITEM NO.: SCF0700M48GGU09

Table of Contents

1.	COVER & CONTENTS ······	1
2.	RECORD OF REVISION ·····	2
3.	APPLICATION	3
4.	GENERAL SPECIFICATIONS ······	3
5.	ABSOLUTE MAXIMUM RATINGS ······	3
6.	ELECTRICAL CHARACTERISTICS ······	3
7.	INTERFACE SPECIFICATIONS ······	5
8.	OPTICAL CHARACTERISTIC ······	9
9.	PIN CONNECTIONS ······	11
10.	BLOCK DIAGRAM ·····	14
11.	CTP GENERAL SPECIFICATIONS	15
12.	APPLICATION CIRCUIT	24
13	APPEARANCE SPECIFICATION	26
14.	QUALITY ASSURANCE ·····	29
15.	LCM PRODUCT LABEL DEFINE ······	30
16.	PRECAUTIONS IN USE LCM ······	32
17.	OUTLINE DRAWING ·····	33
18.	PACKAGE INFORMATION	34

Customer Companies	R&D Dept.	Q.C. Dept.	Eng. Dept.	Prod. Dept.
	Jook	Ą	· · ·	Sem
	\bigcirc	160	Ord.	
Approved by	Version:	Issued Date:	Sheet Code:	Total Pages:
	А	02/SEP/11'		34

2. RECORD OF REVISION

Rev	Date	Item	Page	Comment
1	10/MAR/11'			Initial preliminary
А	02/SEP/11'	4 17 18	3 33 34	1.Add weight 2.Modify OUTLINE DRAWING From Rev:1 to A 3.Add PACKAGE INFORMATION Release Rev.A for production

DVD player, Car TV, UMPC, POS

4. GENERAL SPECIFICATIONS

Composition: 7inch WVGA resolution display with a projected Capacitive Touch Panel (CTP).

Interface : parallel RGB Interface for panel and I²C for the CTP

Parameter	Specifications	Unit
Screen Size	7 (diagonal)	inch
Display Format	800(H) x (R,G,B) x 480(V)	dot
LCD Active Area	154.08(W) × 85.92 (L)	mm
Dot Pitch	0.0642 (H) x 0.1790 (V)	mm
Pixel Configuration	Stripe	
Outline Dimension	179.7(W) x 107.6(H) x 5.5 (D)	mm
Back-light	LED	
Display mode	Normally white	
Weight	200	g
View Angle direction	6 o'clock	

5. ABSOLUTE MAXIMUM RATINGS

					(GND=0V
Pa	rameter	Symbol	MIN.	MAX.	Unit	Remark
		DVCC	-0.3	5	V	
Power e	upply voltage	AVCC	-0.5	13.5	V	
Power s	upply voltage	VCCG/VGH	-0.3	42	V	
		VEEG/VGL	-20	0.3	V	
		VI	-0.3	DVCC+0.3	V	
Logic i	nput voltage	VCCG/VGH- VEEG/VGL	12	40	V	
Operatin	g temperature	Тор	-10	60	°C	Module surface*
Storage	temperature	Tst	-20	70	°C	-
Humidity	Operation		Ta<=38°C			
Turnuty	Non Operation		5%~90% rela	ative humidity		Ta<=38°C

6. ELECTRICAL CHARACTERISTICS 6.1 Operating Conditions

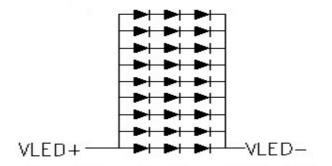
GND=0V, fH=31.25KHz, fV=60Hz, fCLK=33MHz,Ta=25°C

	-			_,		_,
Parameter	Symbol	MIN.	Тур.	MAX.	Unit	Remark
	DVCC	3.0	3.3	3.6	V	
Dower Supply voltage	AVCC	9.4	9.6	9.8	V	
Power Supply voltage	VCCG/VGH	17	18	19	V	
	VEEG/VGL	-6.6	-6	-5.4	V	
Common Power Voltage	VCOM	3.8	4.0	4.2	V	Note6-1
"H" level logical input voltage	V _{IH}	0.7DVCC		DVCC	V	
"L" level logical input voltage	V _{IL}	0		0.3DVCC	V	

Note6-1 : Please use Adjustable resistance to adjust VCOM to make the flicker level be minimum.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX	Unit	Remark
Digital current	I _{DVCC}	DVCC = 3.3V		8	15	mA	Note 6-2
Analog current	I _{AVCC}	AVCC = 9.6V		30	40	mA	NOLE 0-2
Gate On Voltage	I _{VGH/VCCG}	VGH/VCCG=18V		0.5	1	mA	
Gate On Current	I _{VGL/VEEG}	VGL/VEEG=-6V		0.5	1	mA	
LCD Panel Power onsumption				327	458	mW	

Note6-2: Typ. specification : Gray-level test Pattern


Max. specification : Black test Pattern

6.3 Backlight Driving Consumption

						Ta= 25 °C
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
VLED voltage	V_L	8.7	10.5	11	V	Note1
LED current (1+2++9)	۱ _L		180	-	mA	
LED dice life time		30000			hr	Note2

Note1: There are 9 Groups (1 Group of 3 LEDs).

Note2: The "LED dice life time" is defined as the brightness decrease to 50% original brightness that the ambient temperature is $18 \sim 28$ and LED dice current=20mA.

7. INPUT SIGNAL CHARACTERISTICS 7.1 AC Characteristics

SYMBOL ITEM MIN. TYP. MAX. UNIT Note Dot Clock 29 38 1/Tcph 33 MHz DCLK DCLK pulse duty Tcwh 40 50 60 % 8 Setup Time Tesu -_ ns Hold time Tehd 8 _ ns _ Horizontal Period TDEL +TDEH 1026 1056 1086 **t**clk Horizontal Valid TDEH 800 **t**CLK DE Horizontal Blank TDEL 256 tclk --Vertical Period TDE + TDEB 515 525 535 tн Vertical Valid 480 TDE tн Vertical Blank TDEB 45 tн _ _ **HSYNC Setup Time** Thst 8 _ ns **HSYNC Hold Time** Thhd 8 ns -**VSYNC Setup Time** Tvst 8 -ns **VSYNC Hold Time** Tvhd 8 ns Horizontal Period th 1026 1056 1086 **t**clk Horizontal Pulse Width thpw 30 -**t**clk thb + thpw=46DCLK is fixed Horizontal Back Porch thb 16 tclk SYNC Horizontal Front Porch 210 thfp 180 240 **t**clk Horizontal Valid thd 800 **t**clk Vertical Period tv 515 525 535 th Vertical Pulse Width tvpw 13 th tvpw + tvb = 23th is -fixed Vertical Back Porch tvb _ 10 _ th Vertical Front Porch tvfp 12 22 32 th Vertical Valid tvd 480 th Setup Time Tdsu 8 -ns DATA Hold Time Tdhd 8 -_ ns

Confidential Document

7.2 Timing Controller Timing Chart 7.2.1 Clock and Data input waveforms

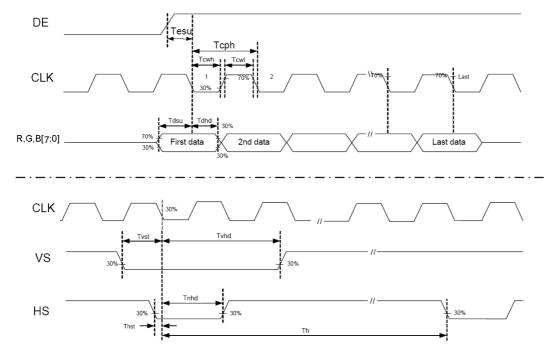


Figure 1 Clock and Data input waveforms.

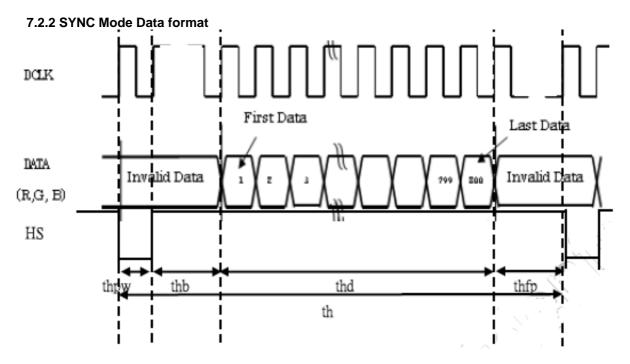
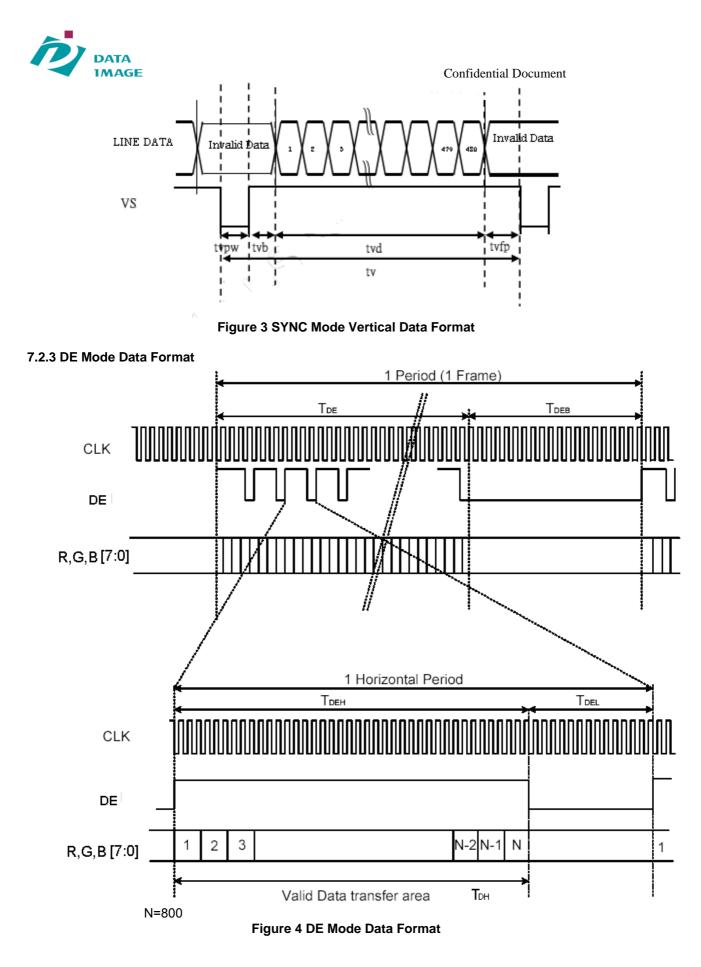



Figure 2 SYNC Mode Horizontal Data Format

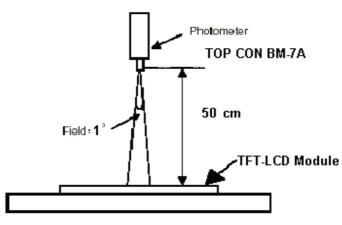
SCF0700M48GGU09 REV:A

												DA	TA S	SIGN	JAL											GRAY
COLOR	DISPLAY				RE	ED							GRI	EEN							BL	UE				SCALE
		R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	В0	B1	B2	B3	В4	B5	B6	B7	LEVEL
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	BLUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	-
	GREEN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	-
BASIC	CYAN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
COLOR	RED	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	MAGENTA	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	-
	YELLOW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	-
	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R0
	DADK	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R1
GRAY	Y DARK	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R2
SCALE		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	R3~R252
OF	Ļ	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	100 1020
RED	LIGHT	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R253
		0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R254
	RED	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R255
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G0
	DADK	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G1
GRAY	DARK	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G2
SCALE		:			:	:	:	:	:	:			:	:	:	:	:	:			:	:	:	:	:	G3~G25
OF	Ļ.	:			:	:	:	:	:	:			:	:	:	:	:	:			:	:	:	:	:	
GREEN	LIGHT	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G253
		0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G254
	GREEN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G255
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	B0
	DADK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	B1
GRAY	DARK ↑	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	B2
SCALE	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	B3~B252
OF	Ļ	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
BLUE	LIGHT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	B253
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	B254
	BLUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	B255

Note) Definition of Gray :

 $\label{eq:Rn:RedGray,Gn:GreenGray,Bn:BlueGray(n=Graylevel)\\ \mbox{Input Signal:} 0 = \mbox{Low level voltage,} 1 = \mbox{High level voltage} \\$

8. OPTICAL CHARACTERISTIC

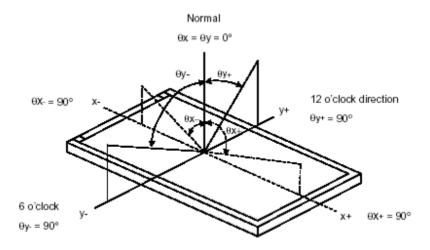

Parameter		Symbol	Condition	MIN.	TYP.	MAX.	Unit	Remarks
Viewing	Horizontal	θ_x	Center	120	140		deg	Note 1,4
Angle	Vertical	θ_{Y}	CR≥10	100	120			NOLE 1,4
Contrast Ratio	_	CR	θx=θy =0°	320	400			Note 1,3
Response time		Tr+Tf			25	35	ms	Note 1,6
Uniformity		B-uni	θ x=θy =0 °	70			%	Note1,5
Brightness		L	θx=θy =0°	175	220		cd/m²	Note 1,2
		X _W		0.263	0.313	0.363		Note 1,7
		Уw	-	0.279	0.329	0.379		
		X _R	-	0.552	0.602	0.652		
Chromaticity		УR	Center	0.287	0.337	0.387		
Chiomaticity		X _G	θx=θy =0°	0.299	0.349	0.399		
		У _G		0.537	0.587	0.637		
		X _B		0.113	0.163	0.213		
		Ув		0.064	0.114	0.164		
Image sticking		tis	2 hours			2	Sec	Note 8

The following optical specifications shall be measured in a darkroom or equivalent state (ambient luminance≤1 lux, and at room temperature).

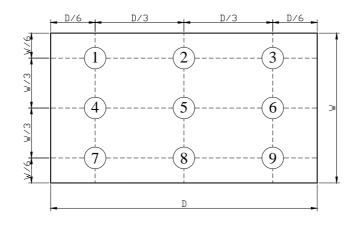
The operation temperature is 25°C \pm 2°C and LED Backlight Current IL=180mA.

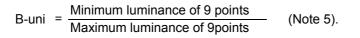
The measurement method is shown in Note1.

Note 1: The method of optical measurement:



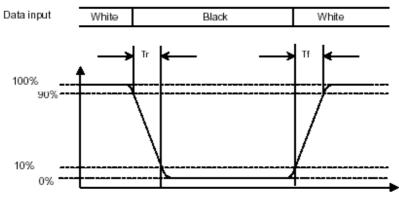
Note 2: Measured at the center area of the panel and at the viewing angle of the $\theta x = \theta y = 0^\circ$


Note 3: Definition of Contrast Ratio (CR):


CR = Luminance with all pixels in white state Luminance with all pixels in Black state

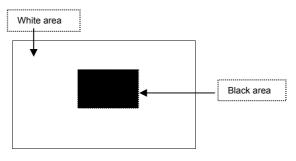
Note 4: Definition of Viewing Angle

Note 5: Definition of Brightness Uniformity (B-uni):



Note 6: Definition of Response Time:

The Response Time is set initially by defining the "Rising Time (Tr)" and the "Falling Time (Tf)" respectively. Tr and Tf are defined as following figure.


Note 7: Definition of Chromaticity:

The color coordinates $(x_W, y_W), (x_R, y_R), (x_G, y_G), and (x_B, y_B)$ are obtained with all pixels in the viewing field at white, red, green, and blue states, respectively.

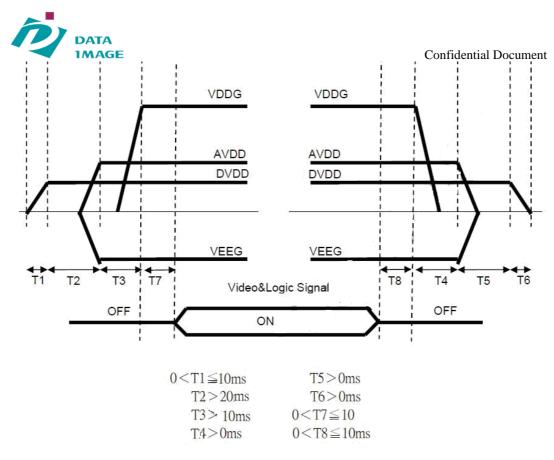
Note 8: Definition of Image sticking (tis):

Continuously display the test pattern shown in the figure below for 2 hours. Then display a completely white screen. The previous image shall not persist more than 2 sec at 25 $^{\circ}$ C

Image sticking pattern

9. PIN CONNECTIONS

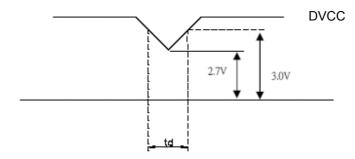
Pin NO.	SYMBOL	DESCRIPTION
1	VLED+	Power for LED backlight (Anode)
2	VLED+	Power for LED backlight (Anode)
3	VLED-	Power for LED backlight (Cathode)
4	VLED-	Power for LED backlight (Cathode)
5	GND	Power ground
6	VCOM	Common Voltage
7	DVCC	Digital Power
8	MODE	H: DE mode. L: HSD/VSD mode
9	DE	Data Enable signal
10	VSD	Vertical sync input. Negative polarity
11	HSD	Horizontal sync input. Negative polarity
12	B7	Blue Data Input(MSB)
13	B6	Blue Data Input
14	B5	Blue Data Input



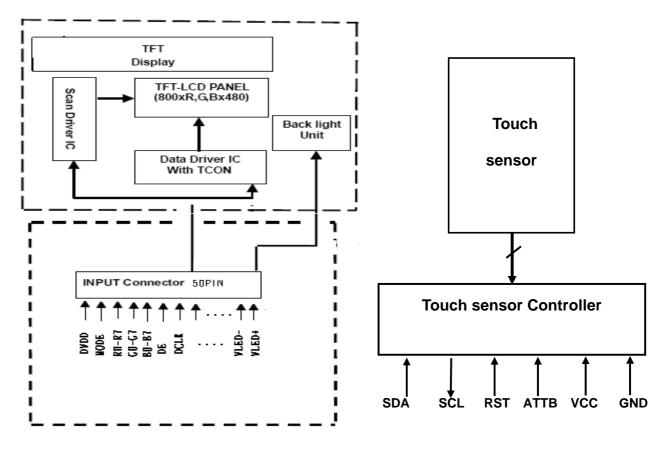
15B4Blue Data Input16B3Blue Data Input17B2Blue Data Input18B1Blue Data Input(LSB)20G7Green Data Input(MSB)21G6Green Data Input22G5Green Data Input23G4Green Data Input24G3Green Data Input25G2Green Data Input26G1Green Data Input27G0Green Data Input(LSB)28R7Red Data Input(MSB)29R6Red Data Input30R5Red Data Input31R4Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left → Right (default)40UPDNUp / Down Display Control; 0: Up → Down (default)41VCCG/VGHPositive Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH=""H" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground49NCNot connect		IMAGE	Confidential Document
17B2Blue Data Input18B1Blue Data Input19B0Blue Data Input(LSB)20G7Green Data Input(MSB)21G6Green Data Input22G5Green Data Input23G4Green Data Input24G3Green Data Input25G2Green Data Input26G1Green Data Input27G0Green Data Input(LSB)28R7Red Data Input(MSB)29R6Red Data Input30R5Red Data Input31R4Red Data Input32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left → Right (default)40UPDNUp / Down Display Control; 1: Left → Right (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="I" "6bit resolution; DITH="L" 8bit resolution49NCNot connect	15	B4	Blue Data Input
18B1Blue Data Input19B0Blue Data Input(LSB)20G7Green Data Input(MSB)21G6Green Data Input22G5Green Data Input23G4Green Data Input24G3Green Data Input25G2Green Data Input(LSB)26G1Green Data Input(LSB)27G0Green Data Input(LSB)28R7Red Data Input(MSB)29R6Red Data Input30R5Red Data Input31R4Red Data Input32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input(LSB)36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left → Right (default)40UPDNUp / Down Display Control; 0: Up → Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution49NCNot connect	16	B3	Blue Data Input
19B0Blue Data Input(LSB)20G7Green Data Input(MSB)21G6Green Data Input22G5Green Data Input23G4Green Data Input24G3Green Data Input25G2Green Data Input26G1Green Data Input(LSB)27G0Green Data Input(SB)28R7Red Data Input(MSB)29R6Red Data Input30R5Red Data Input31R4Red Data Input32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left → Right (default)40UPDNUp / Down Display Control; 0: Up → Down (default)41VCCG/VGLNegative Power for TFT42VEEG/VGLNegative Power for TFT44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="I" 8bit resolution; DITH="L" 8bit resolution49NCNot connect	17	B2	Blue Data Input
20G7Green Data Input(MSB)21G6Green Data Input22G5Green Data Input23G4Green Data Input24G3Green Data Input25G2Green Data Input26G1Green Data Input(LSB)28R7Red Data Input(MSB)29R6Red Data Input30R5Red Data Input31R4Red Data Input32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left → Right (default)40UPDNUp / Down Display Control; 0: Up → Down (default)41VCCG/VGHPositive Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH=""L" 8bit resolution49NCNot connect	18	B1	Blue Data Input
21G6Green Data Input22G5Green Data Input23G4Green Data Input24G3Green Data Input25G2Green Data Input26G1Green Data Input(LSB)28R7Red Data Input(MSB)29R6Red Data Input30R5Red Data Input31R4Red Data Input32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left → Right (default)40UPDNUp / Down Display Control; 0: Up → Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect49NCNot connect	19	B0	Blue Data Input(LSB)
22G5Green Data Input23G4Green Data Input24G3Green Data Input25G2Green Data Input26G1Green Data Input(LSB)27G0Green Data Input(LSB)28R7Red Data Input(MSB)29R6Red Data Input30R5Red Data Input31R4Red Data Input32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="I"" 6bit resolution; DITH="L" 8bit resolution49NCNot connect		G7	Green Data Input(MSB)
23G4Green Data Input24G3Green Data Input25G2Green Data Input26G1Green Data Input(LSB)28R7Red Data Input(MSB)29R6Red Data Input30R5Red Data Input31R4Red Data Input32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input(LSB)36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left → Right (default)40UPDNUp / Down Display Control; 0: Up → Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect49NCNot connect	21	G6	Green Data Input
24G3Green Data Input25G2Green Data Input26G1Green Data Input27G0Green Data Input(LSB)28R7Red Data Input(MSB)29R6Red Data Input30R5Red Data Input31R4Red Data Input32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground	22	G5	Green Data Input
25G2Green Data Input26G1Green Data Input27G0Green Data Input(LSB)28R7Red Data Input(MSB)29R6Red Data Input30R5Red Data Input31R4Red Data Input32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="I" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground49NCNot connect	23	G4	Green Data Input
26G1Green Data Input27G0Green Data Input(LSB)28R7Red Data Input(MSB)29R6Red Data Input30R5Red Data Input31R4Red Data Input32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution49NCNot connect	24	G3	Green Data Input
27G0Green Data Input(LSB)28R7Red Data Input(MSB)29R6Red Data Input30R5Red Data Input31R4Red Data Input32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input(LSB)36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution49NCNot connect	25	G2	Green Data Input
28R7Red Data Input(MSB)29R6Red Data Input30R5Red Data Input31R4Red Data Input32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input(LSB)36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution49NCNot connect	26	G1	Green Data Input
29R6Red Data Input30R5Red Data Input31R4Red Data Input32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input(LSB)36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution49NCNot connect	27	G0	Green Data Input(LSB)
30R5Red Data Input31R4Red Data Input32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input(LSB)36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground49NCNot connect	28	R7	Red Data Input(MSB)
31R4Red Data Input32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input(LSB)36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground49NCNot connect	29	R6	Red Data Input
32R3Red Data Input33R2Red Data Input34R1Red Data Input35R0Red Data Input(LSB)36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground49NCNot connect	30	R5	Red Data Input
33R2Red Data Input34R1Red Data Input35R0Red Data Input(LSB)36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground49NCNot connect	31	R4	Red Data Input
34R1Red Data Input35R0Red Data Input(LSB)36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground49NCNot connect	32	R3	Red Data Input
35R0Red Data Input(LSB)36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground49NCNot connect	33	R2	Red Data Input
36GNDPower ground37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution49NCNot connect	34	R1	Red Data Input
37DCLKClock input38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground49NCNot connect	35	R0	Red Data Input(LSB)
38GNDPower ground39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground49NCNot connect	36	GND	Power ground
39SHLRLeft or Right Display Control; 1: Left \rightarrow Right (default)40UPDNUp / Down Display Control; 0: Up \rightarrow Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground49NCNot connect	37	DCLK	Clock input
40UPDNUp / Down Display Control ; 0: Up → Down (default)41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground49NCNot connect	38	GND	Power ground
41VCCG/VGHPositive Power for TFT42VEEG/VGLNegative Power for TFT43AVCCAnalog Power44RSTBGlobal reset pin.45NCNot connect46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground49NCNot connect	39	SHLR	Left or Right Display Control; 1: Left \rightarrow Right (default)
42 VEEG/VGL Negative Power for TFT 43 AVCC Analog Power 44 RSTB Global reset pin. 45 NC Not connect 46 VCOM Common Voltage 47 DITH DITH="H" 6bit resolution; DITH="L" 8bit resolution 48 GND Power ground 49 NC Not connect	40	UPDN	Up / Down Display Control ; 0: Up \rightarrow Down (default)
43 AVCC Analog Power 44 RSTB Global reset pin. 45 NC Not connect 46 VCOM Common Voltage 47 DITH DITH="H" 6bit resolution; DITH="L" 8bit resolution 48 GND Power ground 49 NC Not connect	41	VCCG/VGH	Positive Power for TFT
44 RSTB Global reset pin. 45 NC Not connect 46 VCOM Common Voltage 47 DITH DITH="H" 6bit resolution; DITH="L" 8bit resolution 48 GND Power ground 49 NC Not connect	42	VEEG/VGL	Negative Power for TFT
45 NC Not connect 46 VCOM Common Voltage 47 DITH DITH="H" 6bit resolution; DITH="L" 8bit resolution 48 GND Power ground 49 NC Not connect	43	AVCC	Analog Power
46VCOMCommon Voltage47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground49NCNot connect	44	RSTB	Global reset pin.
47DITHDITH="H" 6bit resolution; DITH="L" 8bit resolution48GNDPower ground49NCNot connect	45	NC	Not connect
48 GND Power ground 49 NC Not connect	46	VCOM	Common Voltage
49 NC Not connect	47	DITH	DITH="H" 6bit resolution; DITH="L" 8bit resolution
		GND	Power ground
50 NC Not connect	49	NC	Not connect
	50	NC	Not connect

Note: The LCM support both DE mode and Sync mode timing. When MODE is pulled low, which is Sync mode. When MODE is pulled high , which is DE mode.

Remarks:

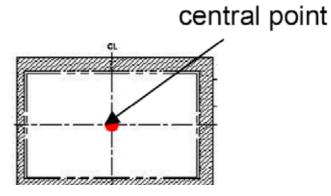

Power On : DVCC→AVCC/VEEG	→VCCG	G→Video &Logio	: Signal
Power Off: Video &Logic Signal	VCCG	AVCC/VEEG	DVCC

DVCC -dip condition:


(1) 2.7V ${\leq}\text{DVCC}{\leq}3.0\text{V}{:}~\text{td}{\leq}10~\text{ms}$

(2) DVCC >3.0V: DVCC -dip condition should be the same with DVCC,-turn-on condition.

10. BLOCK DIAGRAM



11. CTP General specifications

11.1 CTP main feature

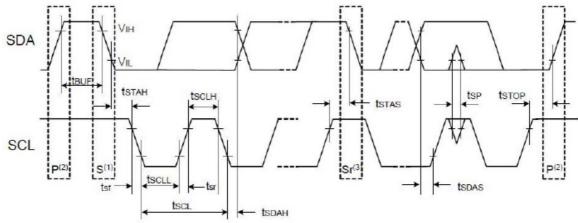
ltem	Specification	Unit
Туре	Transparent type projected capacitive touch panel	
Input mode	Human's finger	
Outline Dimension	179.7(W) x 107.6(H) x 1.85 (D)	mm
Sensor Active area	154.6(W)(typ.) x92.4(H)(typ.)	mm
Transparency	85%	%
Haze	1.0%	%
Hardness	7H (min) [by JIS K5400]	Pencil hardness
Report rate	Max : 122	Points/sec
Response time	15	ms
Point hitting life time	1,000,000 times min.	Note 1
(no contact)		

Note 1: Use 11 mm diameter/copper colum to knock on the same point twice per second under system operating.

11.2 CTP Absolute Maximum Rating

Symbol	Description	Min	Тур	Max	Unit	Notes
VCC	Supply voltage	-0.3	-	6.5	V	
Vio	DC input voltage	GND-0.3	-	VCC+0.3	V	
ESD	Electrostatic discharge voltage	-	2000		V	

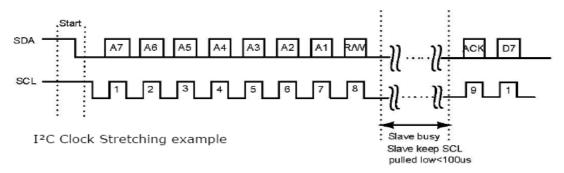
11.3 CTP Electrical Characteristic


IMAG	JE	Confidential Document				cument
Symbol	Description	Min	Тур	Max	Unit	Notes
VCC	Supply voltage	3.0	3.3	5.5	V	
GND	Supply voltage	-	0	-	V	
I	Active Mode	-	-	7.0	mA	At VCC=3.3V
Vih	Input H voltage		0.8VCC	-	VCC	
VIL	Input L voltage		0		0.2VCC	
	System clock frequency			20	MHz	
	CPU clock frequency			20	MHz	
	Sleep mode(52Hz)	-	-	2.0	mA	At VCC=3.3V
	Sleep mode(26Hz)	-	-	1.1	mA	At VCC=3.3V
ISLEEP	Sleep mode(17Hz)	-	-	0.75	mA	At VCC=3.3V
ISLEEP	Sleep mode(13Hz)	-	-	0.56	mA	At VCC=3.3V
	Sleep mode(10Hz)	-	-	0.42	mA	At VCC=3.3V
	Deep Sleep mode(1Hz)	-	-	46	uA	At VCC=3.3V
IFREEZE	Freeze Mode	-	-	1.9	uA	At VCC=3.3V

11.4 CTP Pin Connections

No.	Name	I/O	Description	
1	VCC	-	Power; VCC=3.3V(typ.)	
2	RST	-	Reset	
3	SCL	I	Clock;100KHz	
4	ATTB	0	Active low when data output from touch panel	
5	SDA	I/O	Signal	
6	GND	-	Ground	
7	NC	-	No connection	
8	NC	-	No connection	
9	NC	-	No connection	
10	NC	-	No connection	

11.5 CTP Interface and Data Format [Slave address is 0x5C (7 bit addressing)] Communication protocol: I^2C


Clock frequency : 100Khz (400Khz Fast mode)

Note : (1) Start Condition;(2)Stop Condition;(3)Retransmit start condition

1MAG	E	Confid	ential Document	
Symbol	Description	Min	Max	Unit
tscl	SCL input cycle time	12tcyc+600	-	
tsclh	SCL input H width	3tcyc+300	-	
tSCLL	SCL input L width	5tcyc+500	-	
tsF	SCL, SDA input fall time		300	
tSP	SCL, SDA input spike pulse rejection time		1 tcyc	
tsuf	SDA input bus-free time	5tcyc		ns
t STAH	Start condition input hold time	3tcyc		
t STAS	Retransmit start condition input setup time	3tcyc		
t STOP	Stop condition input setup time	3tcyc		
tSDAS	Data input setup time	1tcyc+40		
t SDAH	Data Input hold time	10		

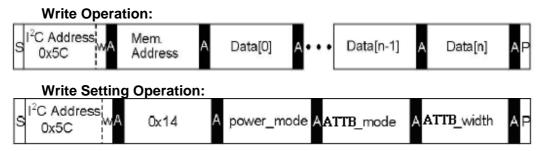
The protocol for data exchange has been designed with the following considerations 1 Most of the data traffic is read operation to get the finger or fingers position

2 Read operation do need an initial write operation.

3 Write operations are most of the time power management and interrupt setting instructions

4 Interrupt pulse width setting adjustments need a write operation.

S	START
Р	STOP
R	READ
W	WRITE
A	Acknowledge
N	No acknowledge
DATA	8-bit

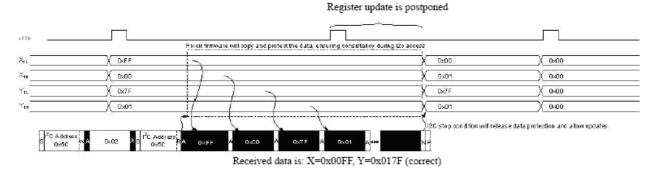

From slave to Master From Master to Slave

11.6 Timing Characteristic

Write Bytes to I2C Slave :

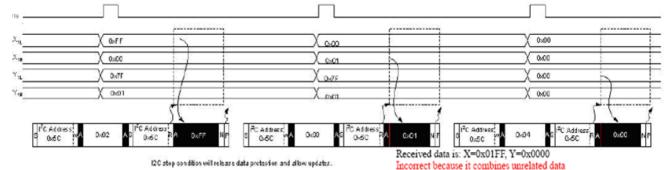
Write packets have variable content length decided by the host. Write operation stops when host issue and I²C STOP symbol. The write packet is illustrated in below Write Operation & Write Setting Operation protocol. Following the I²C device address, the first byte of the write packet is always the destination register address, referred in Note1 MSI registers table. Subsequent data value are written at the register pointed by the address, immediately upon reception of the byte. The address counter is automatically incremented. Subsequent data bytes are treated in continuations of the writing operation.

Read Bytes from Slave


Read packets have variable content length decided by the host. It's available to do a single read operation or a sequential read operation. Therefore, the beginning register address is need to set before a read operation. And the data sent exactly follow the Note1 MSI register table afterward. And the firmware in the slave will use a memory copy of the register fro I²C slave read operation, so that it can continue updates and I²C slave is still using a consistent but old coordinates for read operation as below,

s I ² C Address Ma Add 0x5C Add	n. AS I ² C Address ress 0x5C RA	Data[0] A • • •	Data[n-1] A	Data[n] NP
---	--	-----------------	-------------	------------

In a sequential read operation, the first data sent by the MSI device is therefore the touching register, and then the old touching, then X and Y coordinates of the 1st finger, then coordinates of the 2nd, and so on. Refer in below,


S ¹² C Address 0x5C WA 0x00 AS 0x5C 0x5C	Data: A Data: A old_touching A	••• Data: posy2(LSB) ^A Data: posy2(MSB) ^N	Р
--	--------------------------------	---	---

If the host does not finish the read operation when the ATTB line is set again, the slave firmware will delay to update coordinates registers for I²C read operation until the host finish the read operation referred to below

I²C stop condition will release data protection and allow the slave firmware update the coordinates registers for I²C read operation. So, the host has the change to give incorrect data when it gets the coordinates data with single read operation. Because the host sends many times for I²C stop condition in each multi-fingers coordinate's position reading, it will give the slave firmware chance to update the coordinates registers for I²C read operation, the host will give a combine unrelated data combines new and old coordinates together, referred to below

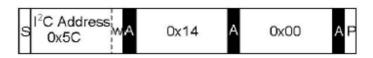
Note1 : MSI Registers

Address	Name	Description	R/W
0	touching	Number of fingers touching	R
1	old touching	Previous scan number of fingers touching	R
2 (low part)	neel	X coordinate of the first finger Only	R
3 (high part)	posX	valid if touch>0	
4 (low part)	neel	Y coordinate of the first finger Only	R
5 (high part)	posY	valid if touch>0	
6 (low part)	posX2	X coordinate of the first finger Only	R
7 (high part)	poszz	valid if touch>1	
8 (low part)	posY2	Y coordinate of the first finger Only	R
9 (high part)	p0512	valid if touch>1	
20	power_mode	power_mode switching register	R/W
53-54	CRC	Whole program memory checksum	R
55	specop	Special operation	R/W

11.7 Operating Mode Register

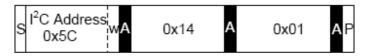
11.7.1 POWER_MODE Register

Address	Name	Description of POWER_MODE Register
7-4	IDLE_PERIOD[3-0]	Refer to ALLOW_SLEEP function description
3	-	Not used
2	ALLOW_SLEEP	Allow self demotion from active to sleep mode, provide that this flag is set. If the MSI device is in active mode and no fingers is detected for more than IDLE_PERIOD time, then it allow AUTO JUMP to sleep mode. If this flag is not set, the host must explicitly switch the device from active to sleep mode.
1-0	POWER_MODE[1-0]	Power mode setting of the MSI device: 00:Active Mode 01:Sleep Mode 10:Deep Sleep Mode 11:Freeze Mode


11.7.2 ATTB_MODE Register

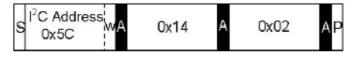
Address	Name	Description
7-4	-	Not used
3	EN_ATTB	0:disable interrupt mode 1:enable interrupt mode
2	ATTB_POL	0:the interrupt is low active(default) 1:the interrupt is high active
1-0	ATTB_MODE[1-0]	00:ATTB assert periodically 01:ATTB assert only when finger moving 10:ATTB assert only when finger touch(default)

11.7.3 Power management


Active mode

In this mode, the slave resumes with a new scan directly after each I²C transfer (after ATTb rising edge). This is used to reach the highest refresh rate, but also has the highest current consumption. Below shows how to force the slave into Active mode.

Sleep mode

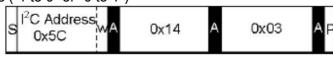

This mode is selected to decrease the current consumption during low activity phases on the sensor, which need a lower refresh rate. The MSI can automatically switch to Active mode(when finger is detected, provided that ALLOW_SLEEP bit is set in the POWER_MODE register. Also, the MSI can automatically switch from Active to Sleep mode when no finger is detected for more than IDLE_PERIOD time, provided that ALLOW_SLEEP bit is set in the POWER_MODE register. Below sequence shows how to force the slave into Sleep mode and how to force the slave into sleep mode can automatically switch, provided IDLE_PERIOD=10.

Sleep mode sequence

Deep Sleep mode

This mode is selected to achieve the minimum consumption during very low activity phases on the sensor, which need a lowest refresh rate(1Hz). The MSI only can switch to Deep Sleep mode by set POWER_MODE register. Below shows how to force the slave into Deep Sleep mode.

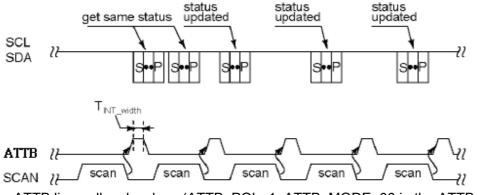
Deep Sleep Mode Sequence

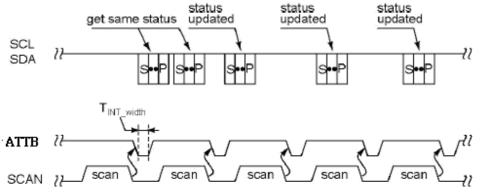


Sleep mode automatically switch sequence

Freeze mode

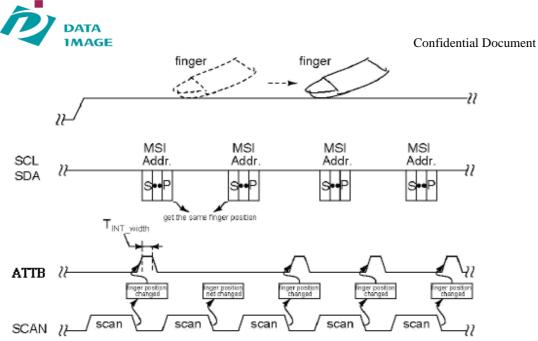
In this mode, the slave MCU internal clock source is stopped, and consumption is only MOS leakage. Below shows how to force the slave into Freeze mode. There is one way to wake up from freeze mode.


• ATTB pin change ("1 to 0" or "0 to 1")

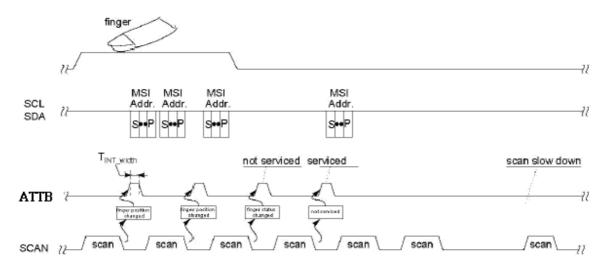

Freeze Mode sequence

11.7.4 Transition of ATTB line

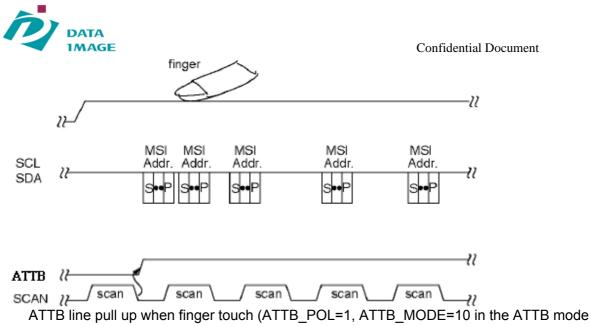
When ATTB_MODE=00 in the ATTB MODE register, the slave will set the ATTB line with ATTB_width pulse width after each scan in order to request the attention from the host, as shown in below



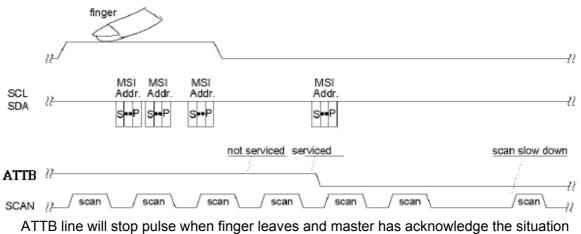
ATTB line pull up by slave (ATTB_POL=1, ATTB_MODE=00 in the ATTB mode register)


ATTB line pull down by slave (ATTB_POL=0, ATTB_MODE=00 in the ATTB mode register)

When ATTB_Mode=01 in the ATTB mode register and finger moving on the panel, the slave will set The ATTB line after each scan, as shown in below.

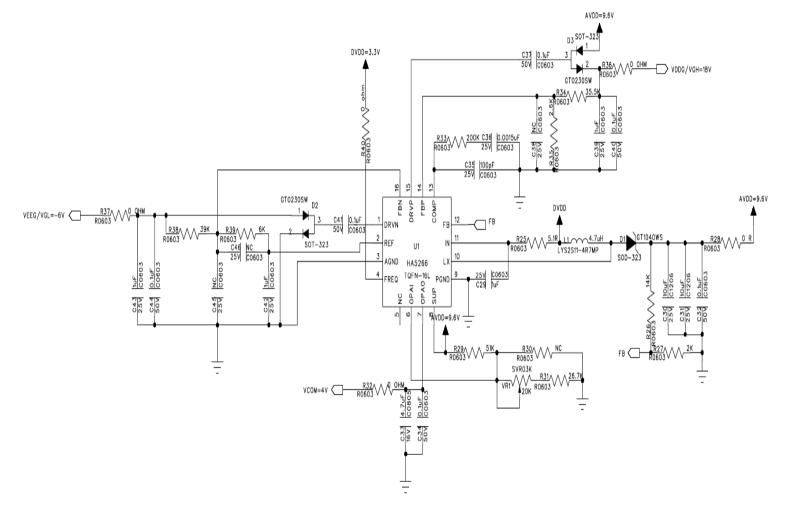

ATTB line pull up when finger moving (ATTB_POL=1, ATTB_MODE=01 in the ATTB mode register)

When fingers leaves the panel, the slave will continue to pulse ATTB line for each scan; but once the master has serviced this request and become now aware that there is no more finger touching, the slave will stop pulse the ATTB line, and will also gradually reduce the scan speed, as shown in below

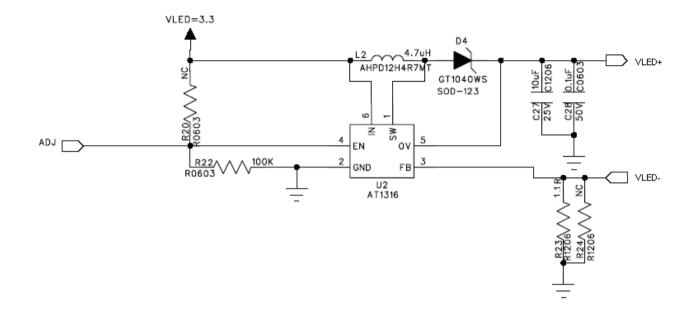

ATTB line will stop pulse when finger leaves and master has acknowledge the situation (ATTB_POL=1 in the ATTB mode register)

When ATTB_Mode=10 in the ATTB mode register and finger touch the panel, the slave will set The ATTB line after each scan as shown in below.

register)

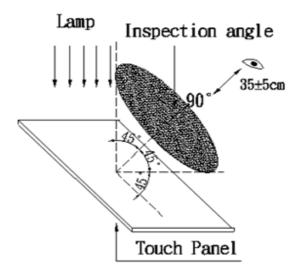

When fingers leaves the panel, the slave will continue keep ATTB line status for each scan; but once the master has serviced this request and become now aware that there is no more finger touching, the slave will release the ATTB line, and will also gradually reduce the scan speed, as shown in below

(ATTB_POL=1 in the ATTB mode register)


12. APPLICATION CIRCUIT

VI ED-3 3

B/L circuit


13. Appearance Specification 13.1Inspection and Environment conditions

- 13.1.1 Temperature: 22±2
- 13.1.2 Humidity: 55±5%RH
- 13.1.3 Light source: Fluorescent Light
- 13.1.4 Inspection: Viewing distance: 35±5cm
- 13.1.5 Ambient Illumination:
 - (1) Cosmetic Inspection: 800 ~ 1200 lux
 - (2) Functional Inspection: 100 ~ 500 lux
- 13.1.6 Inspection View angle:
 - (1) Inspection under operating condition : ±5°
 - (2) Inspection under non-operating condition : ±45°

13.2 Appearance inspection

Appearance inspection method:

Front visual distance: 35±5CM

13.3 Judgment standard

The Judgment of the above test should be made after exposure in room temperature for two hours as follow:

Pass: Normal display image with no obvious non-uniformity and no line defect. Partial Transformation of the module parts should be ignored.

Fail: No display image, obvious non-uniformity, or line defect.

13.4 Cosmetic Specification and Inspection Items

Inspection item	Inspection standard	Description
Display function	No display function	
Contrast	Out of SPEC	
Line defect	No obvious vertical or horizontal line defect (black line or white line)	
Dot defect	ItemAcceptableTotal quantityquantityquantityBright dot2Dark dot4Two adjacent dark dots22	One Dot Two adjacent dot
Dot of foreign material	SPECAcceptable quantityD>0.8mm00.3mmDD<0.8mm	D= (L + W) / 2
Line of foreign material	SPECAcceptable quantityW>0.1mmL>10mm00.05mmW00.1mmL5W<0.05mm	W L : Long W : Width
Image uniformity	Through ND5%, invisible at R G B ,grey and white	
Size	According to SPEC	
TP scratch	SPECAcceptable quantityW>0.1mmL>10mm0W0.1mmL10mm5	

Co	onfidential Document
SPECAcceptable quantityD>0.5mm00.3D0.5mm5	L D= (L + W) / 2
±0.45mm	
X<3mm Y<3mm Z <glass< td=""><td>x y +</td></glass<>	x y +
X<3mm Y<3mm Z <glass< td=""><td></td></glass<>	
prohibited	Y
SPECAcceptable quantityD>1.0mmN=00.5 <d<1.0mm< td="">N=2D<0.5</d<1.0mm<>	
According to customer drawing spec	
D0.2mmignorable0.2mm < D	
Light leak is prohibited. Printing serrated : S 0.1 ignorable S 0.15 NG Break line on LOGO NG Blur printing , inverse printing , print in	
	SPECAcceptable quantityD>0.5mm00.3 D0.5mm±0.45mmX<3mm Y<3mm Z <glass< td="">X<3mm Y<3mm Z<glass< td="">prohibitedSPECAcceptable quantityD>1.0mmN=00.5<d<1.0mm< td="">N=2D<0.5</d<1.0mm<></glass<></glass<>

13.5 Sampling plan

	Definition		
General problem	primary	AQL0.65%	Completely fail to be used due to defect.
problem	Secondary	AQL1.5%	Still can be used due to small defect.

14.1.1 Temperature and Humidity(Ambient Temperature)

Temperature	:	$25\pm5^\circ C$
Humidity	:	$65 \pm \mathbf{5\%}$

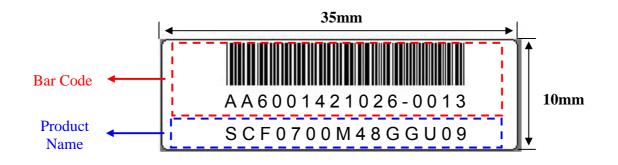
14.1.2 Operation

Unless specified otherwise, test will be conducted under function state.

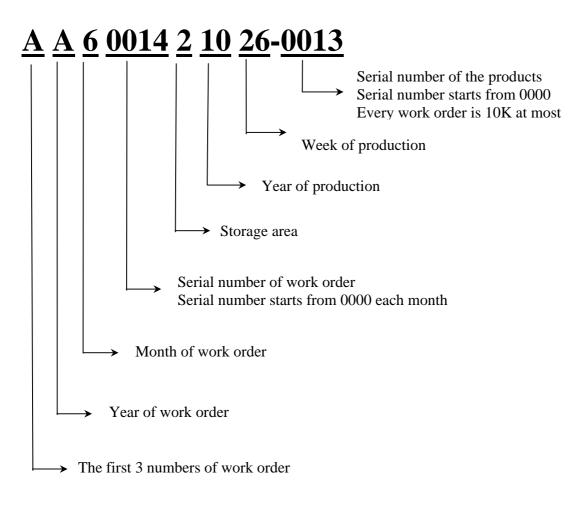
14.1.3 Container

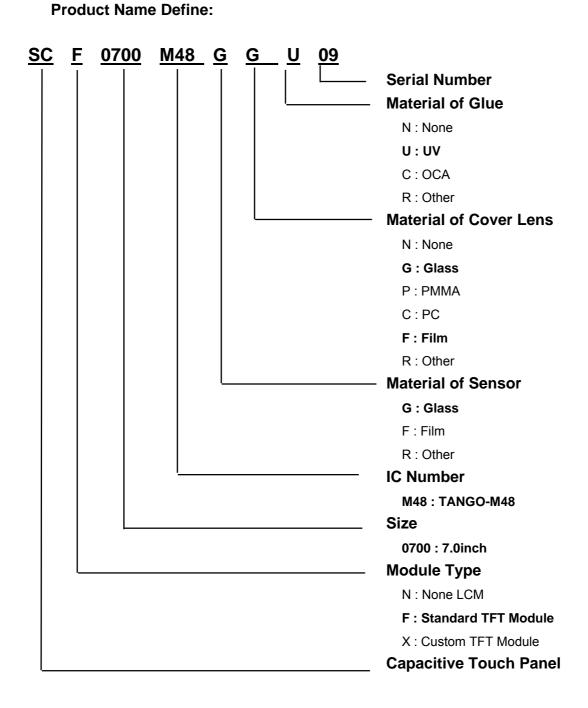
Unless specified otherwise, vibration test will be conducted to the product itself without putting it in a container.

14.1.4 Test Frequency


In case of related to deterioration such as shock test. It will be conducted only once.

Reliability Test Item & Level		Test Level	
No.	Test Item		
1.	Low Temperature Storage Test	T= -20 ,120hrs after 24 hrs at room temperature and test.	
2.	High Temperature Storage Test	T= 70 ,120hrs after 24 hrs at room temperature and test.	
3.	Low Temperature Operation Test	T= -10 ,120hrs after 24 hrs at room temperature and test.	
4.	High Temperature Operation Test	T= 60 ,120hrs after 24 hrs at room temperature and test.	
5.	High Temperature and High Humidity Operation Test	T= 40 , 90%RH,120hrs after 24 hrs at room temperature and test.	
6.	Thermal Cycling Test (No operation)	-20 30min ~ 70 30 min , 100 Cycles after 24 hrs at room temperature and test.	
7.	Vibration Test (No operation)	Frequency :10 ~ 55 HZ Amplitude :1.5 mm Sweep time : 11 mins Test Period: 6 Cycles for each direction of X, Y, Z	
8.	ESD TEST	Air Discharge :±15KV Contact Discharge : ±8KV	


14.1.5 Test Method


Product Label style:

BarCode Define:

1. LIQUID CRYSTAL DISPLAY (LCD)

LCD is made up of glass, organic sealant, organic fluid, and polymer based polarizers. The following precautions should be taken when handing,

(1). Keep the temperature within range of use and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel off or bubble.

(2). Do not contact the exposed polarizers with anything harder than an HB pencil lead. To clean dust off the display surface, wipe gently with cotton, chamois or other soft material soaked in petroleum benzin.

(3). Wipe off saliva or water drops immediately. Contact with water over a long period of time may cause polarizer deformation or color fading, while an active LCD with water condensation on its surface will cause corrosion of ITO electrodes.

(4). Glass can be easily chipped or cracked from rough handling, especially at corners and edges.

(5). Do not drive LCD with DC voltage.

2. Liquid Crystal Display Modules

2.1 Mechanical Considerations

LCM are assembled and adjusted with a high degree of precision. Avoid excessive shocks and do not make any alterations or modifications. The following should be noted. (1). Do not tamper in any way with the tabs on the metal frame.

(1) Do not tamper in any way with the tabs of the inetial frame.(2). Do not modify the PCB by drilling extra holes, changing its outline, moving its components or modifying its pattern.

(3). Do not touch the elastomer connector, especially insert an backlight panel (for example, EL).

(4). When mounting a LCM make sure that the PCB is not under any stress such as bending or twisting . Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.

(5). Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels.

2.2. Static Electricity

LCM contains CMOS LSI's and the same precaution for such devices should apply, namely

(1). The operator should be grounded whenever he/she comes into contact with the module. Never touch any of the conductive parts such as the LSI pads, the copper leads on the PCB and the interface terminals with any parts of the human body.

(2). The modules should be kept in antistatic bags or other containers resistant to static for storage.

(3). Only properly grounded soldering irons should be used.

(4). If an electric screwdriver is used, it should be well grounded and shielded from commutator sparks.

Confidential Document

(5) The normal static prevention measures should be observed for work clothes and working benches; for the latter conductive (rubber) mat is recommended.(6). Since dry air is inductive to statics, a relative humidity of 50-60% is recommended.

2.3 Soldering

(1). Solder only to the I/O terminals.

(2). Use only soldering irons with proper grounding and no leakage.

(3). Soldering temperature : $280^{\circ}C \pm 10^{\circ}C$

(4). Soldering time: 3 to 4 sec.

(5). Use eutectic solder with resin flux fill.

(6). If flux is used, the LCD surface should be covered to avoid flux spatters. Flux residue should be removed after wards.

2.4 Operation

(1). The viewing angle can be adjusted by varying the LCD driving voltage V0.

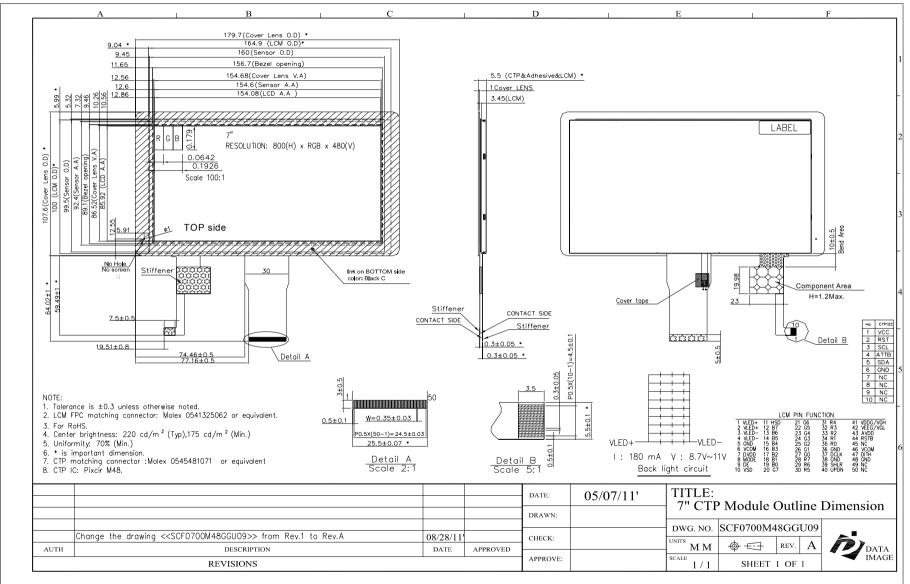
(2). Driving voltage should be kept within specified range; excess voltage shortens display life.

(3). Response time increases with decrease in temperature.

(4). Display may turn black or dark blue at temperatures above its operational range; this is (however not pressing on the viewing area) may cause the segments to appear "fractured".

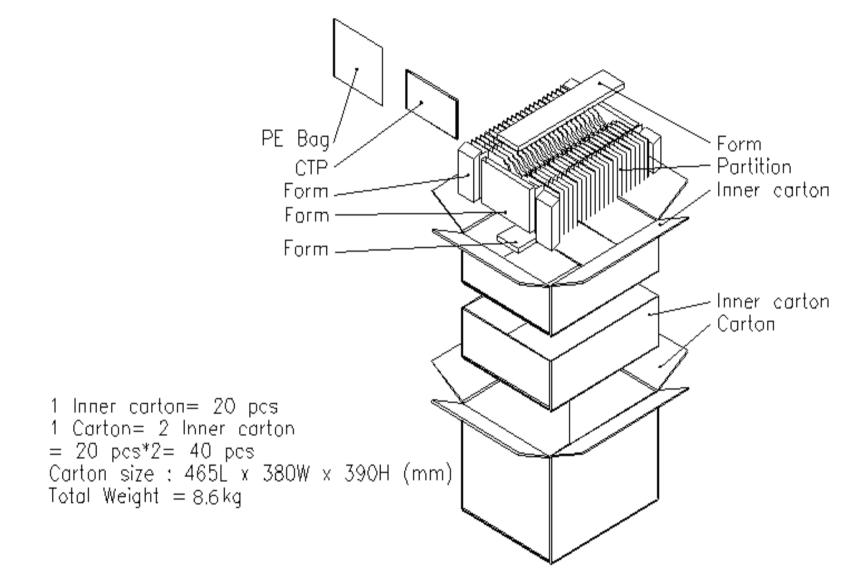
(5). Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured".

2.5 Storage


If any fluid leaks out of a damaged glass cell, wash off any human part that comes into contact with soap and water. Never swallow the fluid. The toxicity is extremely low but caution should be exercised at all the time.

2.6 Limited Warranty

Unless otherwise agreed between DATA IMAGE and customer, DATA IMAGE will replace or repair any of its LCD and LCM which is found to be defective electrically and visually when inspected in accordance with DATA IMAGE acceptance standards, for a period on one year from date of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of DATA IMAGE is limited to repair and/or replacement on the terms set forth above. DATA IMAGE will not responsible for any subsequent or consequential events.



18. PACKAGE INFORMATION

