
TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

T B 1 2 3 1 C N

PAL / NTSC 1CHIP (IF + VCD PROCESSOR) IC

TB1231CN is the IF & Video processing IC for PAL/NTSC color TV system. This IC demodulates PAL/NTSC PIF, SIF and composite video signal to R/G/B primary colors and Audio signals. This IC can constitute Multi-Color System by combined with TA1275AZ (SECAM Processor). TB1231CN has the analog R/G/B interface, therefore it is easy to make up PIP system by using this IC. Because of the built-in video and audio switch, TB1231CN can deal with an external channel without extra switch. TB1231CN has an I²C BUS interface. Various controls (Brightness, Color etc.) can be done via two bus lines.

961001FBA1

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. The products described in this document are subject to foreign exchange and foreign trade control laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice.

The information contained herein is subject to change without notice.

1998-05-12 1/77

FEATURES

IF stage

- Intercarrier Input
- Double Time Constant IF AGC
- Bus Controlled RF AGC
- Bus Controlled PIF VCO
- L-SECAM Demodulation
- PLL SIF Demodulation (For 4.5~6.5MHz multi-SIF, Thank coil-less)

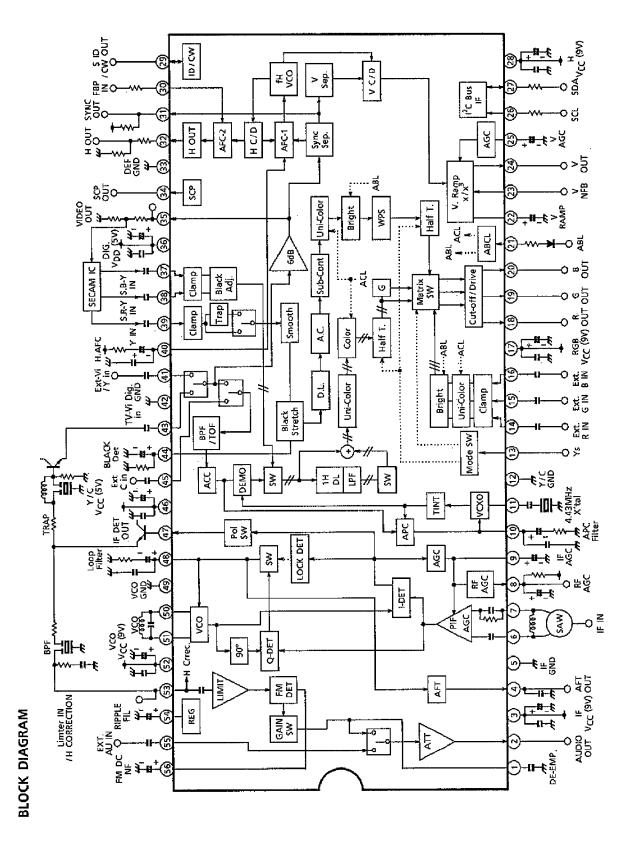
Video stage

- Built-in Video Switch (2 Inputs / 1 Output)
- Built-in Chroma Trap
- Built-in Y Delay Line
- Black Expansion
- DL Type Sharpness Control

Chroma stage

- 1 X'tal for Multi-System (3.58MHz/4.43MHz/M-PAL/N-PAL)
- Built-in 1H DL
- Built-in BPF/TOF
- SECAM R-Y, B-Y Input
- Automatic Color System Detection
- Fsc Continuous Wave Output

Text stage

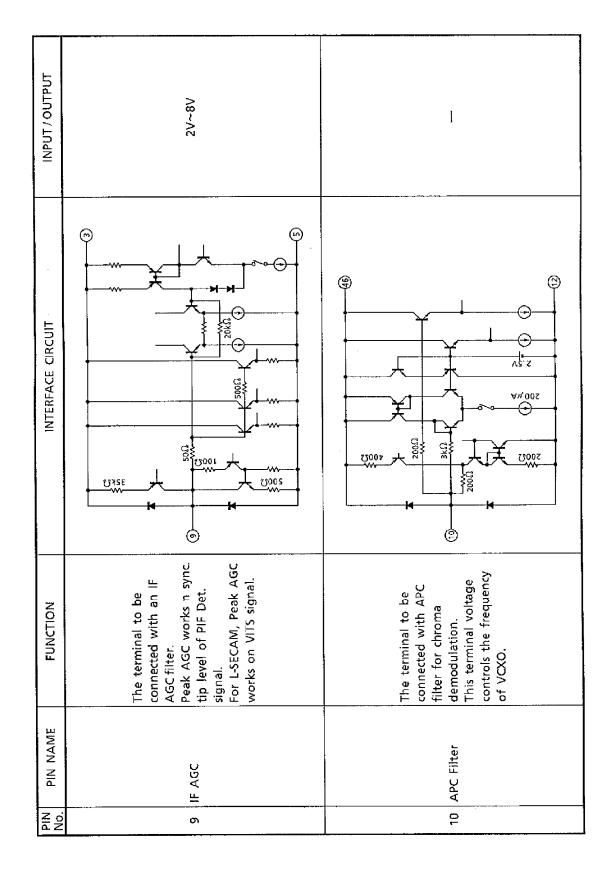

- Fast Blanking
- Analog R/G/B Interface
- Cut-Off / Drive Adjustment
- ABCL

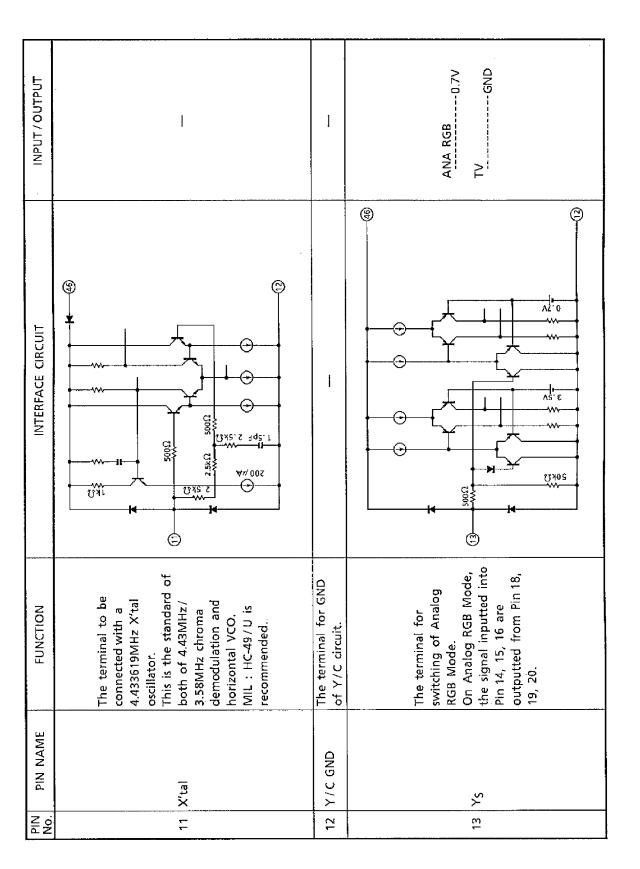
Deflection stage

- Resonator less H-VCO
- Dual Horizontal AFC
- Horizontal Phase Control
- Vertical Phase & Amplitude Control
- H/V Lock Detection
- Sand Castle Pulse Output (HD + VD + Gate Pulse)
- No Vertical Output Mode

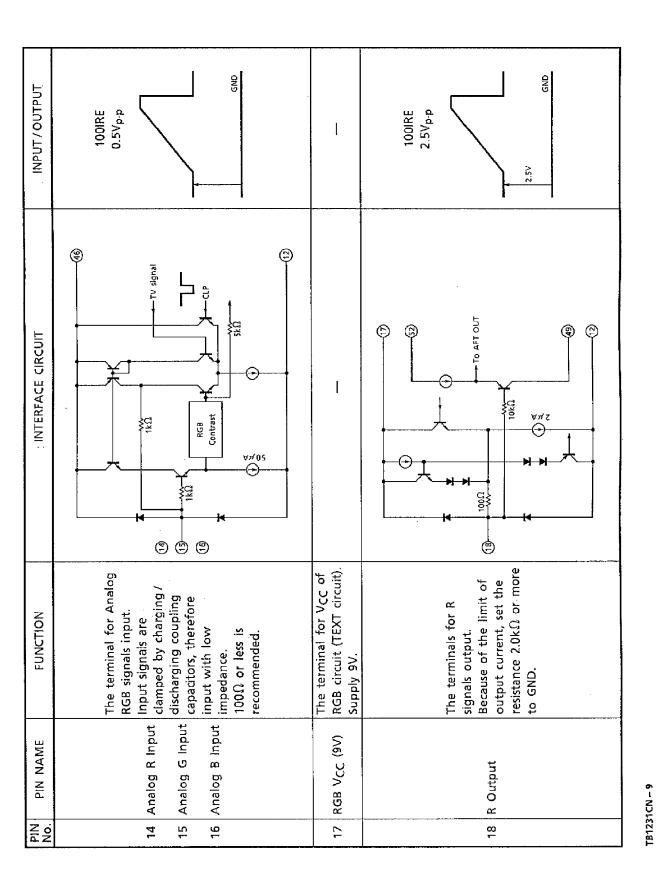
Audio Stage

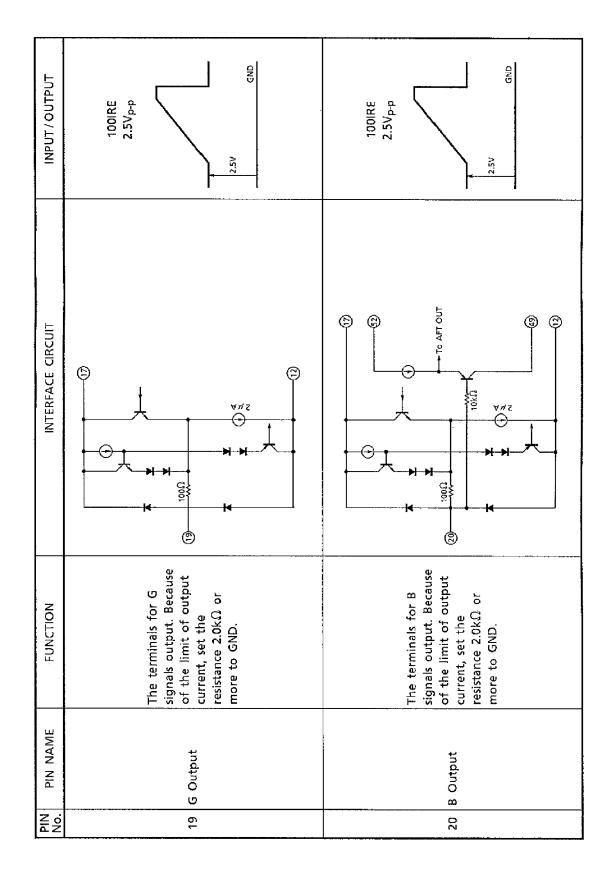
- Built-in Audio Switch (2 Inputs / 1 Output)
- Built-in Audio Attenuator



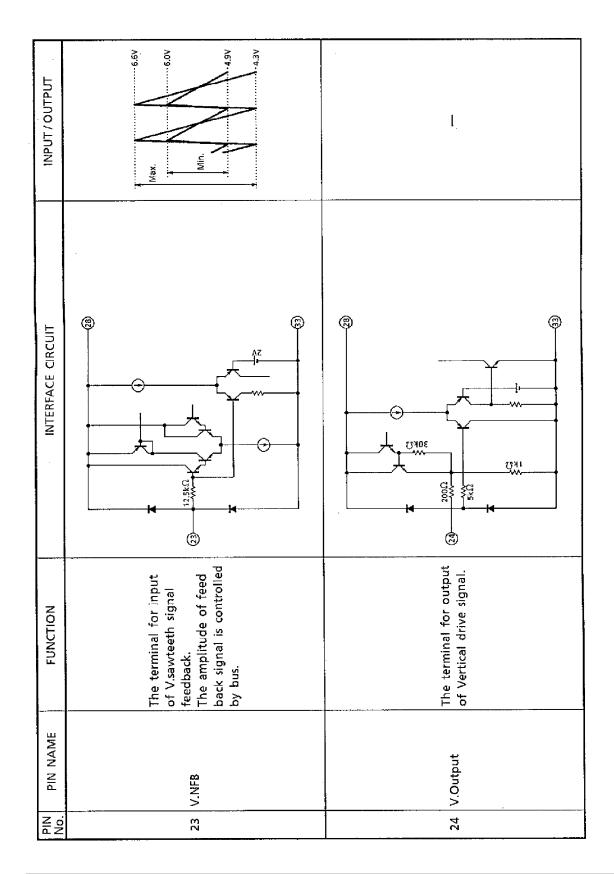

RN N	TERMINAL INTERFACE			
PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT
.	De-Emphasis	The terminal to be connected with capacitor for de- emphasis. 1500pF capacitance realizes 75 μs / 50 μs de- emphasis (Switched by bus). The output impedance is as follows; PAL : 33kΩ NTSC : 50kΩ		At PAL 927mVrms
2	Audio Output	The terminal for audio output. FM Det. signal or the signal inputted from Pin 55 is outputted (Switched by bus). And its amplitude is controlled by bus.		At ATT Max. 927mVrms

INPUT / OUTPUT	I	0.3V~4.7V	I
INTERFACE CIRCUIT		С	
FUNCTION	The terminal for VCC of PIF circuit. Supply 9V. In order to prevent leakage through VCC, inserting traps for IF carrier and f _H is recommended.	The terminal for AFT output and Self-adj. output. AFT voltage, half of RF AGC Voltage, Red signal or Blue signal is outputted (Switched by bus). And AFT polarity is turned over by bus. AFT output impedance is 50.0.	The terminal for GND of PIF circuit. In order to realize good PIF Det. performance for low IF input, separate IF GND wiring from VCO GND (Pin 49) as far as possible.
PIN PIN NAME	IF V _C C (9V)	AFT Output / Self-Adj. Output	5 IF GND

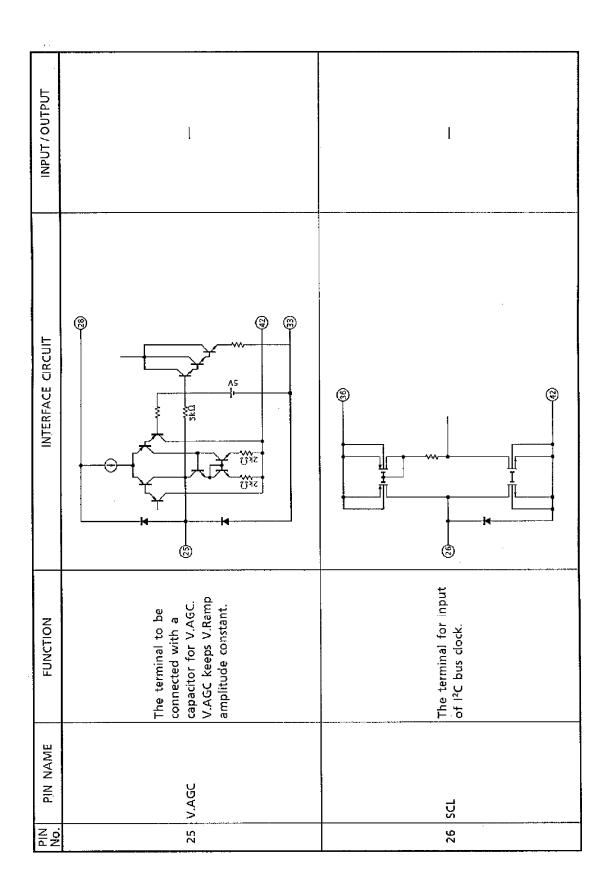

1998-05-12 5/77

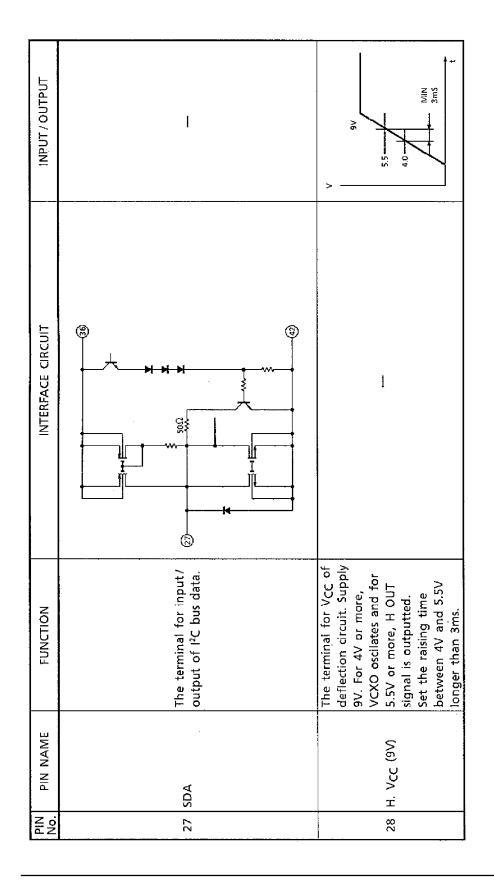

INPUT / OUTPUT	Typical Input 90d8µV	Λ6~Λ0
FUNCTION	The terminal for IF signal input. Pin 6 & Pin 7 are the both input poles of a differential amplifier.	The terminal for RF AGC output (Open corrector Output). To get rid of noises, connect a capacitor to this terminal.
PIN PIN NAME	6 IF Input F Input	8 RF AGC

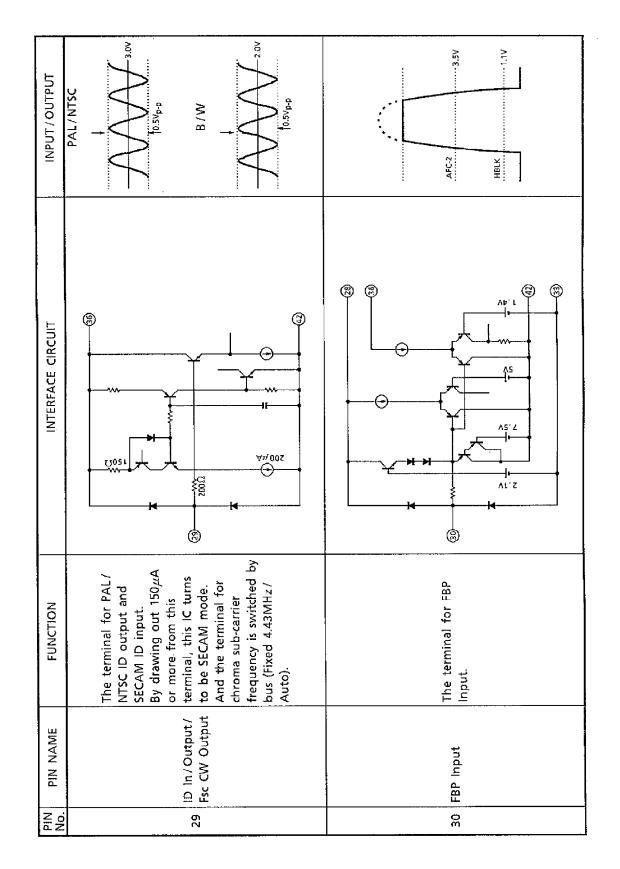
TB1231CN-8

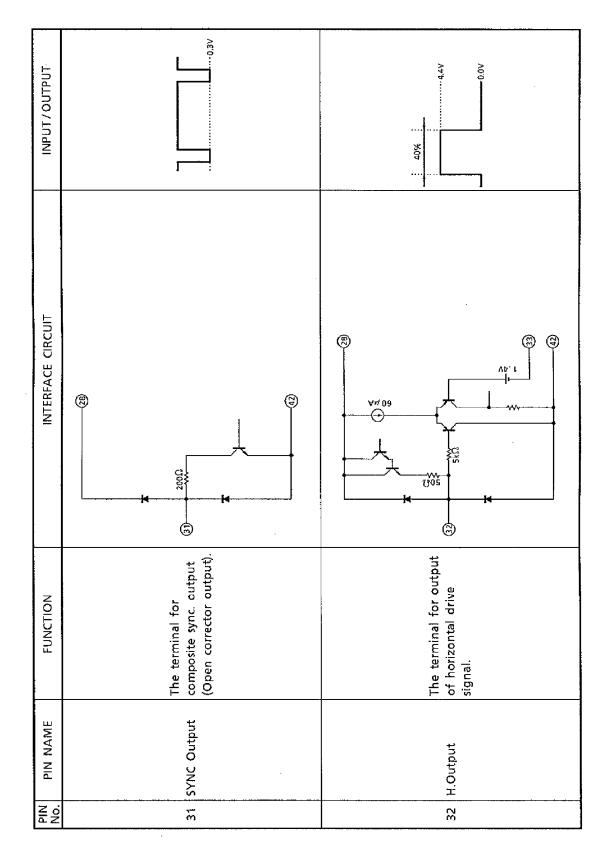

TB1231CN - 10

1998-05-12 10/77

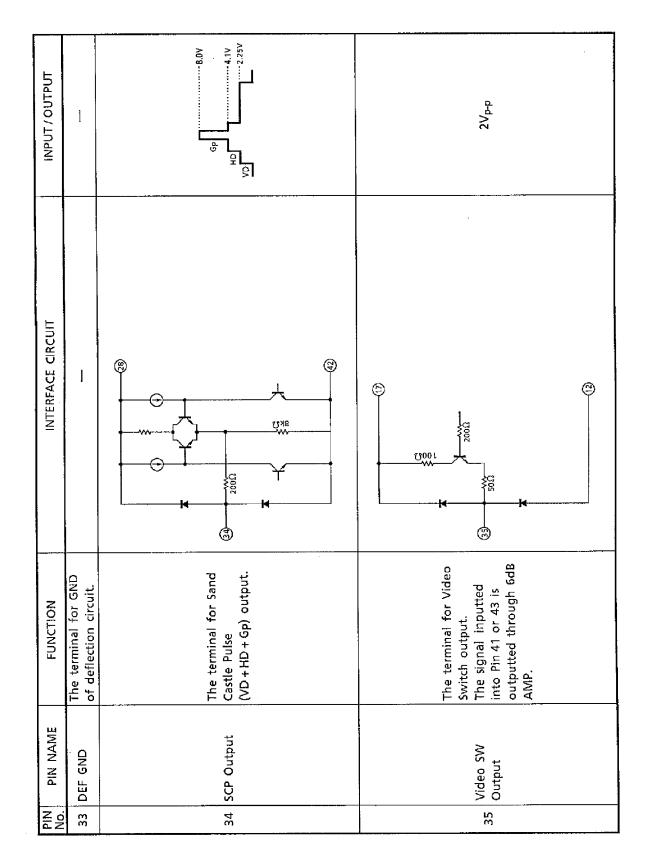

INPUT / OUTPUT	At Open 6V	3.7
INTERFACE CIRCUIT		
FUNCTION	The terminal for ABL/ ACL control. Control voltage range is 4.5V~6.0V. ABL Gain & ABL start point are selectable by bus.	The terminal to be connected with a capacitor to make V.Ramp signal. V.Ramp amplitude is kept constant by V.AGC function.
PIN PIN NAME No.	21 ABCL	22 V.Ramp

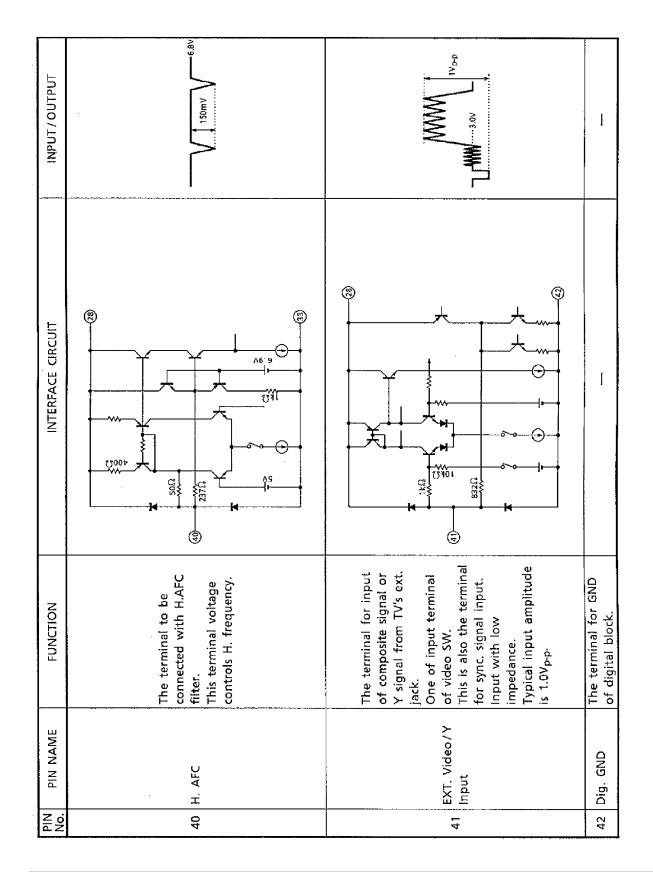


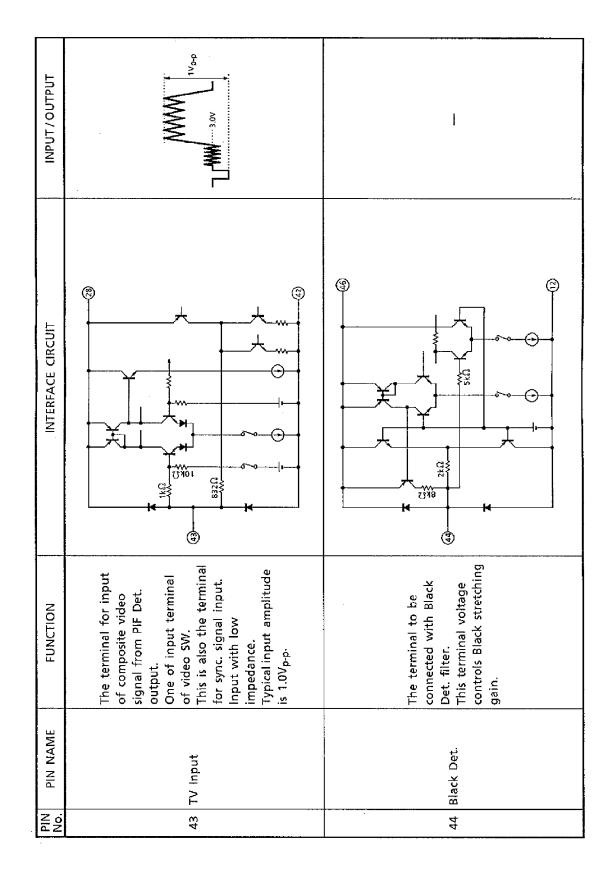

1998-05-12 11/77



TB1231CN-12






TB1231CN - 16

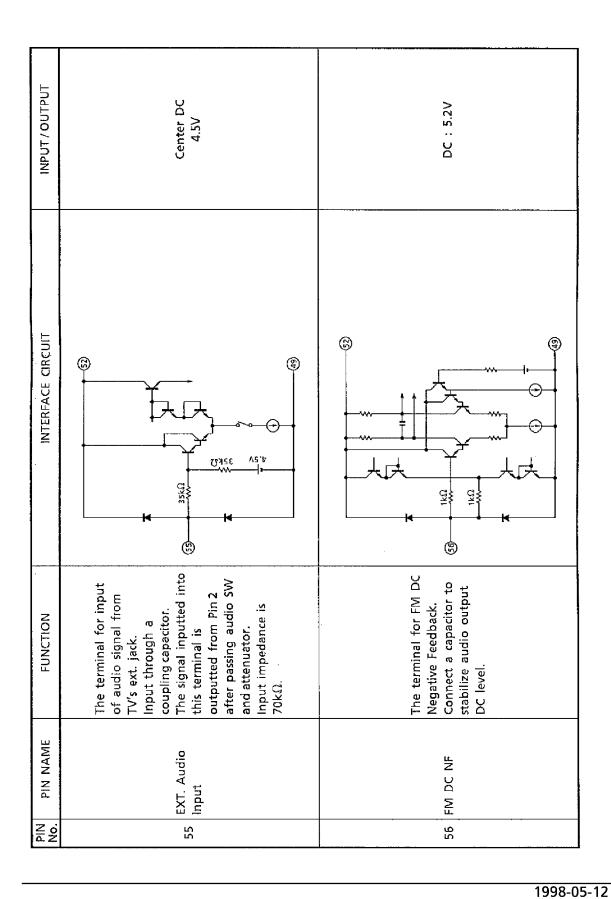
1998-05-12 16/77

	-		1 ^{VC-P} (100 IRE) 2.84V
INTERFACE CIRCUIT			
FUNCTION	The Terminal for V _{DD} of digital block. Supply 5V.	The terminal for SECAM B-Y/R-Y input. Input signals are clamped by charging / discharging coupling capacitors, therefore input with low impedance. 100f) or less is recommended.	The terminal for Y input. Input signal is clamped by charging/discharging coupling capacitor, therefore input with low impedance. 100 or less is recommended. Typical input amplitude is 1.0Vp-p.
PIN PIN NAME No.	36 Dig. VDD (5V)	37 SECAM B-Y Input 38 SECAM R-Y Input	39 Y Input

TB1231CN - 20

INPUT / OUTPUT	Burst Amplitude 286mV _{p-p}	I	2V _{P-p}
INTERFACE CIRCUIT			
FUNCTION	The terminal for input of chroma signal from TV's ext. jack. Input through a coupling capacitor,	The terminal for V _{CC} of Y / C circuit. Supply 5V.	The terminal for output of composite video signal and SIF signal detected in IF circuit. Typical video output amplitude is 2.2V _p -p. In order to reduce 920kHz beat, connect a emitter follower to drive audio trap and band-pass-filter.
PIN NAME	EXT. C Input	Y/C VCC (5V)	IF Det. Output
PIN No.	45	46	47

1998-05-12 21/77


INPUT / OUTPUT	I	l
INTERFACE CIRCUIT		E
FUNCTION	The terminal to be connected with loop filter for IF PLL. This terminal voltage controls the frequency of IF VCO.	The terminal for GND of VCO and SIF circuit. In order to realize good PIF Det. performance for low IF input, please separate VCO GND wiring from IF GND (Pin 5) as far as possible.
PIN NAME	Loop Filter	CO GND
NIG	48	6 4

	INPUT/OUTPUT	Ĩ	I
	INTERFACE CIRCUIT		1
-	FUNCTION		The terminal for V _{CC} of IF VCO and SIF. Supply 9V. In order to prevent leakage through V _{CC} , inserting traps for IF carrier and f _H is
	PIN NAME	VCO	52 VCO VCC (9V)
	NIA No No	51	52

1998-05-12 23/77

	Typical 90dB µV	
INTERFACE CIRCUIT		
FUNCTION	The terminal for SIF signal input and H.curve correction. By this terminal DC (3.5V~5.5V), it is possible to adjust H.phase $(-1\mu s^{-} + 1\mu s)$. This can be used to correct horizontal curve caused by change of High-Voltage.	The terminal to be connected with a capacitor to stabilize the performance of SIF injection-lock circuit.
N PIN NAME	Limiter Input/ H.Correction	4 Ripple Filter
PIN. No.	23 23	5

1998-05-12 24/77

25/77

BUS CONTROL MAP

Write mode Slave address : 88HEX

SUB	D7 MSB	D ₆	D5	D ₄	D ₃	D ₂	D ₁	D ₀ LSB	PRESET	DATA
ADDRESS	MŚB	06	D2	⁰ 4	03	⁰ 2		LSĎ	MSB	LSB
00	Au Gain	WPS								0000
01	Mute			Bright	ness (TV/	TEXT)			0100	0000
02	Mute		Color						1100	0000
03	V AGC		TINT						0100	0000
04	AF-G	Vi Pol			Sharp	oness			0010	0000
05	BPF/ TOF SW	C-Trap	Au SW	Half					0000	0000
06	C	olor Syste	m	CW SW		Sub-Co	ontrast		0000	1000
07			R Cut Off						1000	0000
08		G Cut Off						1000	0000	
09		B Cut Off							1000	0000
0A	AFT Pol	G Drive Gain						0100	0000	
OB	AFT M		B Drive Gain						0100	0000
0C	Ver	tical Posit	ion		Horiz	ontal Pos	ition		0001	0000
0D	B.B.				Audio A∏				0000	0000
0E	V-F	req			RF A	AGC			0000	0000
0F	AFC	Gain			Vertica	al Size			0010	0000
10		V Lin	Linearity VS Correction					1000	1000	
11		PIF VCO (Fix 0)						1000	0000	
12	S	ECAM R-Y Black Adj SECAM B-Y Black Adj						1000	1000	
13	N-Com	BLK	RGB Contrast					0000	0000	
14	*	H-STP	FID					0000	0000	
15				TEST N	NODE				0000	0000

Read mode Slave address : 89HEX

7 MSB	6	5	4	3	2	1	0 LSB
POR	IF Lock	H Lock	IF Level	V Frq.	Color System		
Y-IN	RGB OUT	H-OUT	V-OUT	*	V Lock AFT		FT

BUS CONTROL CONTENTS

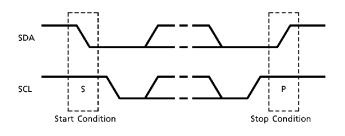
Write mode

CHARACTERISTIC	DESCRIPTION	PRESET
Au Gain (Audio Gain SW)	0 : 50kHz 1 : 25kHz (X2 on 4.5MHz mode)	50kHz
WPS (White Peak Suppressor)	0 : ON 1 : OFF	ON
Uni-Color	Min : – 11.6dB~Cen : 6.6dB~Max : 11.6dB	– 11.6dB
Mute (Mute Mode)	00 : Normal 01 : Y-Mute 10 : RGB Out-Cut Off DC 11 : RGB Out-Cut Off DC + VP Out Hi (Service mode)	Y-Mute
Brightness	Min : 1.9V~Cen : 2.6V~Max : 3.4V (Pedestal Level)	2.6V
Color	Min : - 20dB or less~Cen : 0dB~Max : 8.15dB	0dB
V-AGC (Vertical AGC Speed)	0 : Normal 1 : × 3	Normal
TINT	Min : - 38°~Cen : 0°~Max : 38°	0 °
AF-G (AF Gain SW)	0 : 50µs (5.5/6.0/6.5MHz) 1 : 75µs (4.5MHz)	50 μs
Vi POL (Video Polarity)	0 : Normal 1 : Reverse (For L-SECAM)	Normal
Sharpness	Min : – 11dB~Cen : 5dB~Max : 12dB	0dB
BPF/TOF SW	0 : BPF 1 : TOF	BPF
C-Trap (Chroma Trap)	0 : OFF 1 : ON	OFF
AU SW (Audio SW)	0 : TV 1 : EXT.	TV
Video SW	00 : TV 01 : EXT. 10 : TV Y/C 11 : EXT Y/C	ΤV
Half Tone	0 : OFF 1 : ON	OFF
ABL Gain	00 : -0.74V 01 : -0.64V 10 : -0.37V 11 : -0.12	√ – 0.74V
Color System	000 : Auto1…443PAL/358NTSC (/SECAM)/443NTSC 001 : Auto2…358NTSC/M-PAL/N-PAL 010 : Fixed 443PAL 011 : Fixed M-PAL 100 : Fixed N-PAL 101 : Fixed 358NTSC 110 : Fixed 443NTSC 111 : SECAM	Auto1
CW SW	0 : Auto 1 : 4.43MHz	Auto
Sub-Contrast	Min : - 3.5dB~Cen : 0dB~Max : 2.3dB	OdB
RGB Cut Off	Min : -0.5V~Cen : 0V~Max : 0.5V	±0dB
G/B Drive	Min : - 5.5dB~Cen : 0dB~Max : 3.5dB	– 5dB
AFT Polarity	0 : Normal 1 : Reverse (For L-SECAM)	Normal
AFT M (AFT Mute)	0 : Normal 1 : Mute	Normal
Vertical Position	000 : 0H 111 : 7H Delay / Pulse Width : 8H	OH
Horizontal Position	Min : -3μ s~Cen : 0μ s~Max : 3μ s	Ομς
B.B. (Blue Back)	0 : OFF 1 : 50IRE	OFF
Audio ATT	Min : - 85dB~Cen : - 15dB~Max : 0dB	Min
V-Freq (Vertical Frequency)	00 : Auto 01 : 60Hz 10 : 263H Fixed 11 : 313H Fixed	Auto
RF AGC	000000 : IF Mute Min : 65dB μ V \sim Max 100dB μ V	IF Mute
AFC Gain	00 : Normal 01 : 1/3 10 : ×3 at VBLK 11 : AFC Off	Normal
Vertical Size	Min : -40%~Cen : 0%~Max : 40%	0%

CHARACTERISTIC	DESCRIPTION	PRESET
V Linearity	Upper Side ; Min : 16%~Cen : 0%~Max : - 14% Lower Side ; Min : - 20%~Cen : 0%~Max : 17.5%	0%
V-S Correction	Upper Side ; Min : 12%~Cen : 0%~Max : - 12% Lower Side ; Min : 15%~Cen : 0%~Max : - 15%	0%
PIF VCO (PIF VCO f ₀ Adj.)	Min : – 2MHz~Cen : 0MHz~Max : 2MHz	0MHz
SECAM R-Y Black Adj	Min : – 176mV~Cen : 0mV ~Max : 154mV (At R Output)	0mV
SECAM B-Y Black Adj	Min : - 280mV~Cen : 0mV~ Max : 245mV (At B Output)	0mV
N-Com (NTSC Comb SW)	0 : ON 1 : OFF	ON
BLK (Blanking SW)	0 : BLK ON 1 : BLK OFF	ON
RGB Contrast	Min : -6.0dB~Cen : 9.4dB~Max : 14.0dB	– 6.0dB
H-STP (H-Out Stop)	0 : Normal 1 (& Mute data ; 11) : H-Out Stop & Low RGB Output	Normal
FID (Forced ID ON)	0 : Normal 1 : Killer OFF on Fixed System (This function doesn't work on Auto1 & Auto2 Mode.)	Normal
Self Adj. (AFT Output SW for Self Adj.)	00: AFT 01 : Blue 10 : Red 11 : RF AGC × 1/2	AFT
ID SW (ID Sensitivity Switching)	0 : Normal Mode 1 : Low Mode	Normal
ABL Start Point	00 : -0.01V 01 : -0.11V 10 : -0.3V 11 : -0.45V	-0.01V
TEST (TEST MODE)	For factory-TEST. Leave these bits preset data.	00HEX

Read mode

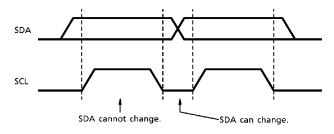
CHARACTERISTIC	DESCRIPTION
POR (Power On Resection)	0 : Normal 1 : Resister Preset
IF Lock (IF Lock Detection)	0 : Lock Out 1 : Lock In
H-Lock (Horizontal Lock Detection)	0 : Lock Out 1 : Lock In
IF Level (IF AGC Gain Detection)	0 : High IF AGC Gain 1 : Low IF AGC Gain
V Frq (Vertical Frequency)	0 : 50Hz 1 : 60Hz
Color System	000 : B/W 001 : 4.43PAL 010 : M-PAL 011 : N-PAL 100 : 3.58NTSC 101 : 4.43NTSC 110 : SECAM 111 : N/A
Y-IN (For Self-Diagnostic)	0 : No Signal 1 : OK
RGB Output (For Self-Diagnostic)	0 : No Signal 1 : OK
H-OUT (For Self-Diagnostic)	0 : No Signal 1 : OK
V-OUT (For Self-Diagnostic)	0 : No Signal 1 : OK
V-Lock (Vertical Lock Detection)	0 : Lock Out 1 : Lock In
AFT (AFT Lock Detection)	00 : Lock Out 01 : High Freq. 10 : Low Freq. 11 : Lock In


I²C BUS CONTROLLED FORMAT SUMMARY

Bus controlled format of TB1231N is based on I²C Bus Control format of Philips.

Data transfer format

S Slave address	0	A	Sub address	A	Data	Α	Р		
† 7bit MSB	f 8bit f 8bit MSB MSB								
	S : Start Condition P : Stop Condition A : Acknowledge								


(1) Start and stop condition

High Impedance

S

(2) Bit transfer

(3) Acknowledge

From master

From Slave

From master

SDA

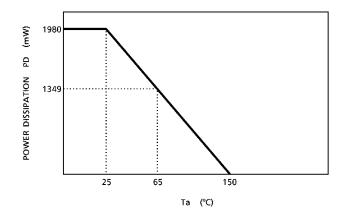
SDA

SCL

(4) Slave address

A6	Α5	A4	A3	A2	A1	A ₀	R∕₩
1	0	0	0	1	0	0	0

Purchase of TOSHIBA I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.


High Impedance

MAXIMUM RATINGS (Ta = 25° C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage(9V V _{CC})	V _{CC} max9	12	V
Supply Voltage(5V V _{CC})	V _{CC} max ₅	8	V
Power Dissipation	PD _{max}	1980 (*)	mW
Input Terminal Voltage	V _{in}	GND – 0.3~V _{CC} + 0.3	V
Operating Temperature	T _{opr}	- 20~65	°C
Storage Temperature	T _{stg}	- 55~150	°C

- (*) When using this device at above $Ta = 25^{\circ}C$, the power dissipation decreases by 15.9mV per 1°C rise.
- (*) Pin 9 and pin 36 are weak against static electricity and surge impulse. Please take counter measure to meet, if necessary.

Ta-PD CURVE

ELECTRICAL CHARACTERISTICS

DC CHAF Pin volta	RACTERISTICS ge	-						
PIN No.	PIN NAME	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
1	De-Emphasis	V ₁	—	—	4.5	5.0	5.5	V
2	Audio Output	V ₂	—	—	3.0	3.6	4.2	V
3	IF V _{CC}	V ₃	—	Supply 9V	_	9.0	—	V
4	AFT Output	V4	—	_	2.0	2.5	3.0	V
7	IF Input	V7	—	—	2.1	2.7	3.3	V
10	APC Filter	V ₁₀	—	—	1.8	2.5	3.2	V
11	X'tal	V ₁₁	—	_	37	4.0	4.3	V
13	Ys	V ₁₃	—		_	0.17	0.4	V
14	Analog R Input	V ₁₄	—	—	1.8	2.5	3.2	V
15	Analog G Input	V ₁₅	—	—	1.8	2.5	3.2	V
16	Analog B Input	V16	—	—	1.8	2.5	3.2	V
17	RGB V _{CC}	V ₁₇	—	Supply 9V	_	9.0	—	V
18	R Output	V ₁₈	—	_	2.30	2.65	3.00	V
19	G Output	V ₁ 9	—	_	2.30	2.65	3.00	V
20	B Output	V ₂₀	—	_	2.30	2.65	3.00	V
21	ABCL	V ₂₁	—	—	5.70	6.05	6.30	V
26	SCL	V ₂₆	—	_	4.5	5.0	5.5	V
27	SDA	V ₂₇	—	_	4.5	5.0	5.5	V
28	H.V _{CC}	V ₂₆	—	Supply 9V	_	9.0	—	V
29	ID In/Output/Fsc CW Output	V ₂₉	-	—	1.40	1.75	2.00	V
35	Video SW Output	V35	—	—	1.90	2.15	2.50	V
36	Digital V _{DD}	V36	—	Supply 5V	_	5.0	_	V
37	SECAM B-Y Input	V37	—	—	2.3	2.5	2.7	V
38	SECAM R-Y Input	V38	—	—	2.3	2.5	2.7	V
39	Y Input	V39	—	—	2.5	2.8	3.2	V
40	H.AFC	V ₄₀	—	—	6.0	6.8	7.5	V
41	Ext. Video/Y Input	V ₄₁	-	Video SW : 01	2.7	3.0	3.4	v
43	TV Video Input	V ₄₃	—	Video SW : 00	2.7	3.0	3.4	V
44	Black Detection	V44	—	_	2.00	2.25	2.60	V
45	Ext. C Input	V45	—	—	2.7	3.0	3.4	V
46	Y/C V _{CC}	V46	—	Supply 5V	_	5.0		V
47	PIF Det. Output	V47	—	_	4.8	5.3	5.8	V
48	Loop Filter	V48	—	—	4.1	4.6	5.1	V

PIN No.	PIN NAME	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
50	PIF VCO	V ₅₀		—	7.4	8.0	8.6	V
51	PIF VCO	V ₅₁	-	—	7.4	8.0	8.6	V
52	vco v _{cc}	V ₅₂	—	Supply 9V	_	9.0	—	V
53	Limiter Input / Curre Correction	V ₅₃	—	_	3.9	4.5	5.1	V
54	Ripple Filter	V54	_	—	5.2	5.9	6.6	V
55	Ext. Audio Input	V55	_	_	3.8	4.4	5.0	V

Current dissipation

PIN No.	PIN NAME	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
3	IF V _{CC}	ICC3	-	Supply 9V	8.5	15	19	mA
17	RGB V _{CC}	lCC17	-	Supply 9V	8.5	12	14	mA
28	H.V _{CC}	lCC26	—	Supply 9V	12	16	22	mA
36	Digital V _{CC}	ICC36	_	Supply 5V	7	12	15	mA
46	Y/C V _{CC}	lCC46	—	Supply 5V	45	65	76	mA
52	νςο ν _{ςς}	ICC52	—	Supply 9V	15.5	23	29	mA

RECOMMENDED OPERATING POWER SUPPLY VOLTAGE

PIN No.	PIN NAME	MIN.	TYP.	MAX.	UNIT	NOTE
3	IF V _{CC}	8.5	9	9.5	V	—
17	RGB V _{CC}	8.5	9	9.5	V	—
28	H.V _{CC}	8.5	9	9.5	V	—
36	Digital V _{CC}	4.5	5	5.5	V	—
46	Y/C V _{CC}	4.5	5	5.5	v	The thermal drift of the Y /C V _{CC} should be less than 50mV
52	VCO V _{CC}	8.5	9	9.5	V	—

AC CHARACTERISTIC

PIF stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), Ta = 25°C)

CHARACTI	ERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	87.5%	VDET875			2.0	2.2	2.4	
PIF Det. Output	L-SECAM	VDETLS		P ₁	2.0	2.2	2.4	V _{p-p}
Level	110%	VDET110			2.0	2.5	3.0	
PIF Input	MIN.	EPIFINMIN				37		
Sensitivity	MAX.	EPIFINMAX		P ₂	100	107	_	dBμV
IF AGC Range	•	^{⊿E} IFAGC			65	70	_	dB
PIF Det. Sync. Ti	p Level	VSYNC		D	2.6	2.9	3.2	V
L-SECAM White	Peak Level	VLSW	-	P3	4.6	4.9	5.2	V
Output Level	_	VNOIF		P	4.8	5.2	5.6	v
for No Input	L-SECAM	VNOIFLS	-	P4	2.2	2.6	3	
Differential Gain	Differential Gain			D-	_	2	5	%
Differential Phase		DP	-	P5	_	2	5	0
PIF Output Freq.	PIF Output Freq. Response		—	P6	5	7	_	MHz
\$ / N		S / NPIF	_	P7	52	55	_	dB
Intermodulation		107	_	P8	42	45	_	dB
I _F AGC Voltage	MAX.	VIFAGCMAX		D.	7.3	7.5	_	v
IF AGE VOILage	MIN.	VFAGCMIN		Pg		3.8	_	l v
R _F AGC	MAX.	VRFAGCMAX		Pro		9	—	v
Voltage	MIN.	VRFAGCMIN		P10	—	0.2	0.5	v
R _F AGC Control	Range	^{⊿E} RFAGC	—	P11	35	—	—	dB
AFT Center Volta	age	VAFTCEN	—	P12	—	2.5	—	V
AFT Voltage	MAX.	VAFTMAX		P ₁₃	4.4	4.8	5.2	v
	MIN.	VAFTMIN			—	0.2	0.5	
AFT Sensitivity		<i>µ</i> AFT	—	P14	—	40	—	kHz / V
PIF VCO Control	Sensitivity	βιένςο	—	P15		2.5	—	MHz / V
PIF VCO Pull-In	High	FPIFINH			1	1.5	—	MHz
Range	Low	FPIFINL		P16	1	1.5	_	

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
ENA Dat Output	5.5MHz / P	VAUAC5P			695	927	1236	
FM Det. Output Level	4.5MHz/P	VAUAC4P	_	s ₁	649	927	1324	mV _{rms}
Level	4.5MHz / N	VAUAC4N			350	500	700	
Audio	5.5MHz / P	DAUDIOP		6.	—	0.3	1	%
Distortion	4.5MHz/P	DAUDION		s ₂	_	0.3	1	- %
Audio S/N	5.5MHz / P	S / N _{SIF} P		C-	55	60	—	dB
Audio 3/1	4.5MHz / P	S / N _{SIF} N		\$ ₃	52	58	—	
AMR		AMR	—	\$ <u>4</u>	50	60	_	dB
Limiting Sensitivi	ty	ELIM	—	\$ ₅	_	35	—	dBμV
Band Width	High	FAUH5P		Ç.	6.7	8.7	—	
(5.5MHz / PAL)	Low	FAUL5P		s ₆	_	3.8	5.4	N411-7
Band Width	High	FAUH4N		C -	4.9	6.4	—	MHz
(4.5MHz / NTSC)	Low	FAUL4N		\$ ₇		2.8	4	1
Attenueter	MAX.	GATTMAX			_	0	—	
Attenuator	CEN.	GATTCEN	_	Sg	_	- 15	—	dB
Gain	MIN.	GATTMIN			_	- 85	- 75	
Offset between TV / Ext		VAUOFFSET	—	Sg	- 30	0	30	mV
DC Change by V	olume	⊿Vvoldc	—	s ₁₀			100	mV

SIF & audio stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
TV Input Dynamic Range	DR _{TV}			1.2	1.4	—	V _{p-p}
External Input Dynamic Range	DR _{EXT}	-	V ₁	1.2	1.4	_	V _{p-p}
TV Mode Gain	GTV		Ma	4.8	5.6	6.0	dB
External Mode Gain	G _{EXT}		V ₂	4.8	5.6	6.0	dB
AV SW Cross-Talk	CT _{SWTE} CT _{SWET}		V ₃		- 55 - 55	- 50 - 50	dB dB
Y Input Dynamic Range	DRY		V4	1.1	1.3		V _{p-p}
Y Input Pedestal Clamp Voltage	VYCLP	_	V ₅	2.5	2.7	2.9	v
Y Delay Time	^t YDEL	—	V ₆	500	550	600	ns
	VBRTMAX			3.0	3.4	3.7	
Brightness Chara.	VBRTCEN		V ₇	2.3	2.6	2.8] v
	VBRTMIN			1.6	1.9	2.1	
Brightness Data Sensitivity	⊿VBRT			9.4	13.6	16.3	mV / bit
	GUCYMAX			10.2	11.6	13.2	
Uni-Color Chara. for Y	GUCYCEN] —	V ₈	5.1	6.6	8.3	dB
	GUCYMIN			- 9.1	- 6.9	- 5.2	
Sub-Contrast Chara.	GSCONMAX		Vg	1.8	2.3	2.8	dB
	GSCONMIN		vg	- 3.0	- 3.5	- 4.0	1 ав
Sharpness Peaking Frequency	FSHP	—	V ₁₀	3.0	3.3	3.6	MHz
Sharpness Control	G _{SHMAX}			7.0	12.0	15.0	
Characteristics	GSHCEN	-	V ₁₁	2.0	5.0	7.0	dB
	GSHMIN			- 14.0	- 11.0	- 8.0	
Y Frequency Response	FRY	—	V ₁₂	5.5	_	—	MHz
Black Expansion AMP Gain	G _{BLEX}			1.2	1.4	1.6	_
Black Expansion Start Point	VBLEX	-	V ₁₃	0.9	1.1	1.3	v
Black Peak Detection Level	VBLPD	—	V ₁₄	- 50	0	50	mV
WPS Level	VWPS		V ₁₅	2.5	2.8	3.2	V _{p-p}
Chrome Trap Gain	G _{TRAP} 358			_		- 20	dB
	G _{TRAP} 443	1 —	V ₁₆	—	_	- 20	dB
Half Tone Chara. for Y	G _{HTY}	_	V ₁₇	- 6.9	- 6.0	- 5.1	dB

Video stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
ACC Chara.	VACCL	-	c ₁	_	20	30	mV _{p-p}
	VACCH			600	_	_	
TOF Chara. (4.43MHz)	F0T443			_	5.13	_	MHz
	QT443			_	2.0	_	_
BPF Chara. (4.43MHz)	F0B443	1			4.43		MHz
	Q _{B443}	- - -	C2		2.0		
TOF Chara. (3.58MHz)	F0T358			_	4.28	_	MHz
	Q _{T358}			_	2.0		
BPF Chara. (3.58MHz)	F0B358			_	3.58		MHz
	Q _{B358}			_	2.0	_	_
C Delay Time	^t CDEL	-	C ₃	550	600	650	ns
Delay Time Difference between Y/C	∆tγ/c			- 60	0	60	ns
Color Chara.	GCOLMAX	-	C ₄	6.93	8.15	9.37	dB
	GCOLMIN			_	_	- 20	
Uni-Color Chara. for C	GUCCMIN	—	C5	- 21.5	- 18.8	- 16.0	dB
Tint Chara. (4.43MHz)	Δ θ443MAX		C ₆	30	38	46	deg
	$\Delta \theta_{443MIN}$			- 46	- 38	- 30	
Tint Chara. (3.58MHz)	$\Delta \theta_{358MAX}$			30	38	46	l dog l
	$\Delta \theta_{358MIN}$			- 46	- 38	- 30	
Relative Amplitude (PAL)	VPR/B		C7	0.45	0.55	0.65	
	V _{PG/B}			0.22	0.27	0.32	
Relative Amplitude (NTSC)	V _{PR/B}			0.6	0.7	0.8	
	VPG/B			0.21	0.26	0.31	
Relative Phase (PAL)	θ _{PR-B}		C ₈	85	90	95	deg
	θ PG-B			233	242	248	
Relative Phase (NTSC)	θ _{PR-B}			88	93	98	deg
	θ _{PG-B}			233	242	247	
APC Pull-In Range (4.43MHz)	F4APCP +			350	500	—	11-
	F4APCP -	1		350	500	—	Hz
APC Hold Range (4.43MHz)	F4APCH +		Cو	350	500	_	Hz
	F4APCH –			350	500	_	
APC Pull-In Range (3.58MHz)	F3APCP +			350	500	_	Hz
	F3APCP -			350	500	—	
APC Hold Range (3.58MHz)	F3APCH +			350	500		Hz
	F3APCH –			350	500	—	
APC Control Sensitivity (4.43MHz)	β443		с ₁₀	0.8	1.0	1.2	Hz/mV
APC Control Sensitivity (4.43MHz)	β358			0.7	0.9	1.1	Hz / mV

Chroma stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), Ta = 25°C)

				1			
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
PAL ID Sensitivity	VPALIDON			1.0	3.0	5.0	m\(
(Normal Mode)	VPALIDOFF			1.0	3.0	5.0	mV _{p-p}
PAL ID Sensitivity	VPALIDLON			4.0	6.0	8.0	
(Low Mode)	VPALIDLOFF		6	4.0	6.0	8.0	mV _{p-p}
NTSC ID Sensitivity	VNTIDON	-	с ₁₁	0.4	0.8	1.2	
(Normal Mode)	VNTIDOFF			0.4	0.8	1.2	mV _{p-p}
NTSC ID Sensitivity	VNTIDLON			0.6	1.2	1.8	
(Low Mode)	VNTIDLOFF	1		0.6	1.2	1.8	mV _{p-p}
ID Quitaut Loval	VIDH		(2.9	3.2	3.5	v
ID Output Level	VIDL	_	с ₁₂	1.5	1.8	2.1	
SECAM ID Det. Current	ISECAM	—	с ₁₃	80	120	160	μΑ
fsc Continuous Wave Output Level	VcW	_	C ₁₄	0.35	0.50	0.70	V _{p-p}
Sub Carrier Remain on RCR	VSCR			0	20	40	
Sub-Carrier Remain on RGB Output	V _{SCG}] —	C ₁₅	0	20	40	mV _{p-p}
Culput	V _{SCB}	1	1	0	20	40	
Half Tone Chara. for C	G _{HTC}	—	C ₁₆	- 6.9	- 6.0	- 5.1	dB

CHARACTERISTIC		SYMBOL	TEST CIR-	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
			CUIT					
V-BLK Pulse Output Lev		V _{VBLK}	_	T ₁	0.5	1.0	1.5	V
H-BLK Pulse Output Lev		V _{HBLK}			0.5	1.0	1.5	V
RGB Output Black Leve (0IRE DC)		VBLACK	-	T ₂	2.35	2.60	2.85	v
RGB Output White Leve (100IRE AC)	el	VWHITE	_	T ₃	_	2.50	_	V _{p-p}
Cut-Off Voltage Variabl	e	⊿Vcut +			0.45	0.50	0.55	v
Range		∆VCUT –	-	T ₄	- 0.55	- 0.50	- 0.45	v
		G _{DR} +		_	3.0	3.5	4.0	15
Drive Control Variable I	Range	G _{DR} –	—	т5	- 6.0	- 5.5	- 5.0	dB
		VABCLH			6.0	6.1	6.2	
ABCL Control Voltage R	lange	VABCLL	1_	т ₆	5.4	5.5	5.6	V
ACL Gain		GACL		0	- 16.5	- 15	- 13.5	dB
		VABLP1			- 0.06	- 0.01	0.04	
		VABLP1			- 0.16	- 0.11	- 0.06	
ABL Point		VABLP2		Т7	- 0.35	- 0.30	- 0.25	V
		VABLP3			- 0.47	- 0.42	- 0.37	
					- 0.17	- 0.12	- 0.07	
		VABLG1			- 0.42	- 0.37	- 0.32	v
ABL Gain		VABLG2		т8	- 0.69	- 0.64		
		VABLG3		- 0.79	- 0.74	- 0.69		
Analog PCP Dynamic P	2000	VABLG4		Те	0.5	-0.74	- 0.09	V
Analog RGB Dynamic R	_	DR _{TX}		Тө		1.00	1.20	V _{p-p}
Analog RGB Contrast	MAX.	GTXCMAX	-	т	0.85	1.00	1.20	M
Control Characteristic	CEN.	GTXCCEN		т ₁₀	0.50	0.59	0.71	V _{p-p}
	MIN.	GTXCMIN			0.08	0.10	0.12	
Analog RGB Brightness	MAX.	VTXBRMAX	-	-	3.0	3.4	3.7	.,
Control Characteristic	CEN.	VTXBRCEN	-	^T 11	2.3	2.6	2.8	V
	MIN.	VTXBRMIN			1.6	1.9	2.1	
Analog RGB Mode Swit Level	ching	V _{YS}	_	T ₁₂	0.6	0.8	1.0	V
		τRγs			_	25	100	
Analog RGB Mode Transfer Characteristic		tPRYS		Τ		30	100	ns
		τFγs	1 —	T ₁₃	—	10	100	
		tPFYS	1		—	25	100	
Cross Talk from Analog RGB to TV		CT _{TX-TV}	_	T ₁₄	_	- 55	- 50	dB
Cross Talk from TV to Analog RGB		ст _{тv-тх}	_	T ₁₅	_	- 55	- 50	dB

Text stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), Ta = 25°C)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
RGB Output	R	VROUT			1.0	1.2	1.4	
Amplitude	G	VGOUT		T ₁₉	0.45	0.60	0.75	V _{p-p}
Amplitude	В	VBOUT			2.0	2.2	2.4	
		VSECBMAX			210	245	280	
CECANA Dis de Level Adi		_			_		Ι	mV
SECAM Black Level Adj.		VSECRMAX			133	154	175	
Chara.	Chara.			T ₂₀	- 320	- 280	- 240	mV
SECAM Black Level Adj. Data		VSECRMIN			- 200	- 176	- 152	шv
		⊿VSECB			30	35	40	m)/
Sensitivity		⊿VSECR			19	22	25	mV

1H DL stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
1H DL Dynamic Range	DR _{BDR}		Pin 37~Pin 20	0.8	1.2		v
(Direct)	DR _{RDR}] —	Pin 38~Pin 18	0.8	1.2	-	v
1H DL Dynamic Range	DR _{PDL}		Pin 37~Pin 20	0.8	1.2	—	v
(Delay)	DR _{PDL}		Pin 38~Pin 18	0.8	1.2	_	v
1H DL Dynamic Range	DR _{BDRDL}		Pin 37~Pin 20	0.9	1.2	_	v
(Direct + Delay)	DR _{RDRDL}] —	Pin 38~Pin 18	0.9	1.2	—	v
Frequency Response (Direct)	FR _{BDR}		At 700kHz	- 3.0	- 2.0	0.5	dB
requercy response (Direct)	FR _{RDR}] —	At 700kHz	- 3.0	- 2.0	0.5	uв
Frequency Response (Delay)	FR _{BDL}		At 700kHz	- 8.2	- 6.5	- 4.3	dB
requercy response (Delay)	FR _{RDL}	1 —	At 700kHz	- 8.2	- 6.5	- 4.3	uв
AC Gain (Direct)	G _{BDR}		Pin 37~Pin 20	- 2.0	- 0.5	2.0	dB
	G _{RDR}		Pin 38~Pin 18	- 2.0	- 0.5	2.0	uв
AC Gain (Delay)	G _{BDL}		Pin 37~Pin 20	- 2.4	- 0.5	1.1	dB
AC Gain (Delay)	G _{RDL}] —	Pin 38~Pin 18	- 2.4	- 0.5	1.1	uв
Direct-Delay AC Gain	⊿G _{BDR / DL}		G _{BDR} -G _{BDL}	- 1.0	0.0	1.0	dB
Difference	⊿G _{RDR / DL}	1 —	G _{RDR} -G _{RDL}	- 1.0	0.0	1.0	uв
1H Delay Time	T _{BDL}		Pin 37~Pin 20	63.7	64.0	64.4	415
	TRDL		Pin 38~Pin 18	63.7	64.0	64.4	μs

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
AFC In active Desired	50Hz				_	309-8		
AFC Inactive Period	60Hz	T50AFCOFF T60AFCOFF	-	D ₁	_	262-10		Н
H-OUT Start Voltage		VHON	-	D ₂	4.7	5.0	5.3	V
H-OUT Pulse Duty		WHOUT		D3	38.5	40.5	42.5	%
H-OUT Freq. on AFC St Mode	ор	FHAFCOFF	_	D4	15.585	15.734	15.885	kHz
Horizontal Free-Run	50Hz	FH50FR			15 745	15.625	15 775	
Frequency	60Hz	FH60FR	—	D5		15.734		kHz
Horizontal Freq.	MAX.	FHMAX				16.700		
Variable Range	MIN.		—	D ₆		15.000		kHz
Horizontal Freq. Contro		FHMIN			14.700	13.000	13.300	
Sensitivity	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	βΗΑϜϹ	—	D7	2.0	2.5	3.0	Hz / mV
Horizontal Pull-In Rang	e	^F HPH		Dg	500	—		Hz
		FHPL		58	500	—	—	112
H-OUT Voltage		VHOUTH		Dg	4.0	4.4	4.8	v
n-oon vonage		VHOUTL		Dg	—	0.15	0.30	v
Horizontal Freq. Depen on V _{CC}	dence	⊿FHVCC	—	D ₁₀	- 20	0	20	Hz / V
FBP Phase		PHFBP			2.3	2.5	2.7	
H-Sync. Phase		PHHSYNC	—	D ₁₁	0.2	0.3	0.4	μs
Horizontal Position Var	iable	∆PH HPOS		D ₁₂	5.5	6.0	6.5	μs
Range				012	5.5	0.0	0.5	μ s
AFC-2 Pulse Threshold	Level	V _{AFC2}		D ₁₃	4.7	5.0	5.3	v
H-BLK Pulse Threshold	Level	VHBLK		D ₁₄	0.8	1.1	1.4	v
Black Peak Det. Stop P	eriod	PHBPDET		D -	7.5	8.0	8.5	
(H)		WBPDET	1 —	D ₁₅	13.0	13.5	14.0	μs
Clamp Pulse Start Phase	е	PH _{CP}		D	2.8	3.0	3.2	
Clamp Pulse Width		WCP	—	D16	5.6	5.8	6.0	μs
Gate Pulse Start Phase		PHGP			2.7	2.9	3.1	
Gate Pulse Width		WGP	-	D ₁₇	1.8	2.0	2.2	μ s
Sync. Output Low Leve		VSYNCL		D ₁₈	0.0	0.3	0.5	V
Vertical Oscillation Star	t	VVON		D ₁₉	4.7	5.0	5.3	
Voltage		••••		513			5.5	
Vertical Free-Run	Auto	FVAUFR		D ₂₀	40	45	50	Hz
Frequency	60Hz	FV60FR		520	48	53	58	
Gate Pulse	50Hz	T50GPM		Dec	_	308-9	_	н
V-Masking Period	60Hz	T60GPM		D ₂₁	—	261-10		
V.Ramp DC on Service	Mode	VNOVRAMP	—	D ₂₂	3.0	3.2	3.4	V
Vortical Dull In Dansa /	At)	FVPAUL			_	224.5		
Vertical Pull-In Range (AU(0)	FVPAUH]	D	_	353	_	
Manthash Dull I. D		FVP60L	1 —	D ₂₃	—	224.5	_	Н
Vertical Pull-In Range (60Hz)		FVP60H	1		_	297		

DEF stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), Ta = 25°C)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Vertical Period on Fixed	d	TV313		D ₂₄		313		Н
Mode		Tv263		524	—	263		
V-BLK Start Phase	50Hz	PH50VBLK			44	46	48	
V-DLK Start Flase	60Hz	PH60VBLK		D	44	46	48	μ s
V-BLK Width	50Hz	W _{50VBLK}] —	D ₂₅	—	23	_	Ц
	60Hz	W60VBLK			—	21	_	Н
Picture Mute Period	50Hz	W _{50PM}		Dea	—	304-29	_	Н
Ficture Mute Feriod	60Hz	W60PM		D ₂₆	_	257-28		п
		V _{SCPH}			7.70	8.00	8.30	
Sand Castle Pulse Level		VSCPM	1 —	D ₂₇	4.00	4.30	4.60	V
		V _{SCPL}			2.25	2.55	2.85	
Vertical Ramp Amplitud	de	VVRAMP	-	D ₂₈	1.50	1.67	1.83	V _{p-p}
Vertical AMP Gain		GVAMP			22	25	28	dB
Vertical AMP Max. Out	put	Manager		D ₂₉	~~~~	25	20	
Level		VVOMAX			2.5	3.0	3.5	V
Vertical AMP Min. Out	put					0.0		
Level					_	0.0	0.3	V
Vertical AMP Min. Out	put			D ₃₀	11	14	17	mA
Current				530				
Vertical NFB Amplitude		V _{NFB}			1.50	1.67	1.83	V _{p-p}
Vertical Amplitude Var	iable	∆V _{VRAMPH}		D ₃₁	36	40	44	%
Range		△VVRAMPL			- 44	- 40	- 36	70
					- 17	- 14	- 11	
Vertical Linearity Varia	ble	_⊿V _{LIN1} –		D ₃₂	13	16	19	%
Range		_⊿V _{LIN2 +}		032	14.5	17.5	20.5	- ^{%0}
		⊿V _{LIN2} –			- 23	- 20	- 17	
		⊿V _{S1+}			- 14	– 12	- 10	
Vertical S Correction Va	ariable	⊿Vs1 –		Daa	10	12	14	0/
Range		⊿V _{S2 +}		D ₃₃	– 18	– 15	- 12	%
					12	15	18	
V-AGC Current		IVAGCH		D	440	550	660	μA
		IVAGCL		D ₃₄	100	120	140	μA
Vertical Guard Voltage		V _{VG}	_	D ₃₅	1.80	2.00	2.20	V
V Integral constant		TVSY	_	D ₃₆	12.5	14	16.5	μS

TEST CONDITION

PIF stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), Ta = 25°C)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
Ρ1	PIF Det. Output Level /VDET875 /VDETLS /VDET110	RF AGC : except 0 PIF VCO : adjust V _i Pol : 0 / 1 Others : Preset	 (1) Input a 38.9MHz, 90dBμV, 87.5% modulated while signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Measure the amplitude of PIF det. output at Pin 47 (V_i Pol : 0), that is "VDET875". (4) Input a 38.9MHz, 90dBμV, 87.5% modulated L-SECAM white signal into Pin 6. (5) Measure the amplitude of PIF det. output at Pin 47 (V_i Pol : 1), that is "VDETLS". (6) Input a 38.9MHz, 90dBμV, 110% modulated white signal into Pin 6. (7) Measure the amplitude of PIF det. output at Pin 47 (V_i Pol : 0), that is "VDETL10".
P2	PIF Input Sensitivity / EPIFINMIN / EPIFINMAX	RF AGC : except 0 PIF VCO : adjust Others : Preset	 Input a 38.9MHz, 90dBµV, 87.5% modulated white signal into Pin 6. Adjust PIF VCO so that the AFT voltage is 2.5V. Decreasing the IF input level, measure the input level at which PIF det. output amplitude turns to be - 3dB against VDET875 that is "EPIFINMIN".
	IF AGC Range /⊿EIFAGC		 (4) Increasing the IF input level, measure the input level at which PIF det. output amplitude turns to be -0.5dB against VDET875 that is "EPIFINMAX". (5) Calculate ; "ΔEIFAGC" = EPIFINMAX - EPIFINMIN
P3	PIF Det. Sync. Tip Level / V _{SYNC}	RF AGC : except 0 PIF VCO : adjust	 Input a 38.9MHz, 90dBμV, non-modulation signal into Pin 6. Adjust PIF VCO so that the AFT voltage is 2.5V.
73	L-SECAM White Peak Level / V _{LSW}	V _i Pol : 0 / 1 Others : Preset	 (3) Measure the DC level at Pin 47 (V_i Pol : 0), that is "V_{SYNC}". (4) Measure the DC level at Pin 47 (V_i Pol : 1), that is "V_{LSW}".

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
P4	Output Level for No Input / VNOIF / VNOIFLS	RF AGC : except 0 V _i Pol : 0/1 Others : Preset	 (1) Connect Pin 6/7 to GND. (2) Supply 3.0V to Pin 9. (3) Measure the DC level at Pin 47 (V_i Pol : 0), that is "V_{NOIF}". (4) Measure the DC level at Pin 47 (V_i Pol : 1), that is "V_{NOIFLS}".
Р5	Differential Gain /DG Differential Phase /DP	RF AGC : except 0 PIF VCO : adjust Others : Preset	 (1) Input a 38.9MHz, 90dBµV, 87.5% modulated video signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Measure "DG" & "DP" for Pin 47 output.
P6	PIF Output Freq. Response / FRDET	RF AGC : except 0 PIF VCO : adjust Others : Preset	 (1) Input a 38.9MHz, 90dBμV, 87.5% modulated sweep video signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Measure the Pin 9 DC level and fix it on that value. (4) For PIF det. output signal, measure the frequency at which the amplitude (Without sync) turns to be -3dB against the one for 10kHz, that is "FRDET"
Ρ7	S / N / S / NPIF	RF AGC : except 0 PIF VCO : adjust Others : Preset	 (1) Input a 38.9MHz, 90dBµV, non-modulation signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Measure the amplitude of PIF det. output, that is V_N. (4) Calculate ; "S / NPIF" = 20*ℓog (V_{DET875} / V_N)
P8	Intermodulation ^{/ I} 107	RF AGC : except 0 PIF VCO : adjust Others : Preset	 (1) Input a signal composed of following 3 signals into Pin 6; 38.9MHz / 90dBμV, 34.47MHz / 84dBμV (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Adjust Pin 9 voltage so that the bottom of PIF det. output is equal to V_{SYNC}. (4) Measure the 1.07MHz level against the 4.43MHz level (=0dB), that is "I107"

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
Ρ9	IF AGC Voltage / VIFAGCMAX / VIFAGCMIN	RF AGC : except 0 PIF VCO : adjust Others : Preset	 (1) Connect Pin 6/7 to GND. (2) Measure the Pin 9 voltage, that is "VIFAGCMAX". (3) Input a 38.9MHz, 107dBμV, non-modulation signal into Pin 6. (4) Adjust PIF VCO so that the AFT voltage is 2.5V. (5) Measure the Pin 9 voltage, that is "VIFAGCMIN".
P10	RF AGC Voltage / VRFAGCMIN / VRFAGCMAX	RF AGC : adjust PIF VCO : adjust Others : Preset	 (1) Input a 38.9MHz, 90dBµV, non-modulation signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Adjust RF AGC so that the Pin 9 voltage is 4.5V. (4) Increase the IF input level to 107dBµV. (5) Measure the Pin 8 voltage, that is "VRFAGCMIN" (6) Connect Pin 6/7 to GND. (7) Measure the Pin 8 voltage, that is "VRFAGCMAX"
P11	RF AGC Control Range /⊿ERFAGC	RF AGC : 1/63 PIF VCO : adjust Others : Preset	 (1) Input a 38.9MHz, 90dBµV, non-modulation signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Set RF AGC to 1. (4) Decreasing the IF input level, measure the input level at which the Pin 8 voltage is 4.5V, that is ERFAGCMIN. (5) Set RF AGC to 63. (6) Increasing the IF input level, measure the input level at which the Pin 8 voltage is 4.5V, that is ERFAGCMIN. (7) Calculate ; "∆ERFAGC" = ERFAGCMAX - ERFAGCMIN
P12	AFT Center Voltage /VAFTCEN	RF AGC : except 0 Others : Preset	 (1) Connect Pin 6/7 to GND. (2) Supply 3V to Pin 9. (3) Measure the Pin 4 voltage, that is "VAFTCEN".

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
P13	AFT Voltage /VAFTMAX /VAFTMIN	RF AGC : except 0 PIF VCO : adjust Others : Preset	 (1) Input a 38.9MHz, 90dBμV, 87.5% modulated video signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Input a 37.9MHz, 90dBμV, 87.5% modulated video signal into Pin 6. (4) Measure the Pin 4 voltage, that is "VAFTMAX" (5) Input a 39.9MHz, 90dBμV, 87.5% modulated video signal into Pin 6. (6) Measure the Pin 4 voltage, that is "VAFTMIN"
P14	AFT Sensitivity / µAFT	RF AGC : except 0 PIF VCO : adjust Others : Preset	 (1) Input a 38.9MHz, 90dBμV, non-modulation signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) When changing the input frequency to ± 20kHz, measure the change of Pin 4 voltage, that is ΔVAFT. (4) Calculate ; "μAFT" = 40/ΔVAFT
P15	PIF VCO Control Sensitivity /βIFVCO	RF AGC : except 0 PIF VCO : adjust Others : Preset	 (1) Input a 38.9MHz, 90dBμV, non-modulation signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Measure the Pin 48 voltage, that is VLOOP389. (4) Input a 38.7MHz, 90dBμV, non-modulation signal into Pin 6. (5) Measure the Pin 48 voltage, that is VLOOP387. (6) Calculate ; "βIFVCO" = 0.2 / (VLOOP387 - VLOOP389)
P16	PIF VCO Pull-In Range / FPIFINH / FPIFINL	RF AGC : except 0 PIF VCO : adjust Others : Preset	 (1) Input a 45MHz, 90dBμV, 87.5% modulated video signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Dcreasing the input frequency, measure the frequency at which detected video signal appears on Pin 47, that is "FPIFINH" (4) Input a 30MHz, 90dBμV, 87.5% modulated video signal into Pin 6. (5) Increasing the input frequency, measure the frequency at which detected video signal appears on Pin 47, that is "FPIFINH"

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
S1	FM Det. Output Level /VAUAC5P /VAUAC4P /VAUAC4N	Audio ATT : 127 Au Gain : 0/1 AF-G : 0/1 Others : Preset	 (1) Input a 5.5MHz, 90dBµV FM signal (Modulate 400Hz with 50kHz deviation) into Pin 53. (2) Measure the output amplitude at Pin 2, that is "VAUAC5P". (Au Gain : 0, AF-G : 0) (3) Input a 4.5MHz, 90dBµV FM signal (Modulate 400Hz with 50kHz deviation) into Pin 53. (4) Measure the output amplitude at Pin 2, that is "VAUAC4P". (Au Gain : 0, AF-G : 0) (5) Input a 4.5MHz, 90dBµV FM signal (Modulate 400Hz with 25kHz deviation) into Pin 53. (6) Measure the output amplitude at Pin 2, that is "VAUAC4N". (Au Gain : 1, AF-G : 1)
S2	Audio Distortion / DAUDIO	Audio ATT : 127 Others : Preset	 (1) Input a 5.5MHz, 90dBµV FM signal (Modulate 400Hz with 50kHz deviation) into Pin 53. (2) Measure the distortion of Pin 2 output, that is "DAUDIOP". (3) Input a 4.5MHz, 90dBµV FM signal (Modulate 400Hz with 25kHz deviation) into Pin 53. (4) Measure the distortion of Pin 2 output, that is "DAUDION".
S3	Audio S/N /S/N _{SIF}	Audio ATT : 127 Others : Preset	 (1) Input a 5.5MHz, 90dBµV non-modulation signal into Pin 53. (2) Measure the output amplitude at Pin 2, that is VNOAUACP. (3) Calculate ;

SIF & audio stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), Ta = 25°C)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
S4	AMR / AMR	Audio ATT : 127 Others : Preset	 (1) Input a 5.5MHz, 90dBµV AM signal (Modulate 400Hz with 30%) into Pin 53. (2) Measure the output amplitude at Pin 2, that is VAMAU. (3) Calculate ; "AMR" = 20*ℓog (VAUAC5P / VAMAU)
\$5	Limiting Sensitivity /E _{LIM}	Audio ATT : 127 Others : Preset	 (1) Input a 5.5MHz, 90dBµV FM signal (Modulate 400Hz with 50kHz deviation) into Pin 53. (2) Decreasing the input level, measure the input level at which Pin 2 output amplitude turns to be - 3dB against VAUAC5P, that is "ELIM".
S6	Band Width (5.5MHz / PAL) / FAUH5P / FAUL5P	Audio ATT : 127 Others : Preset	 (1) Input a 5.5MHz, 90dBµV FM signal (Modulate 400Hz with 50kHz deviation) into Pin 53. (2) Increasing the input frequency, measure the frequency at which Pin 2 output turns to be – 3dB against VAUAC5P, that is "FAUH5P". (2) Decreasing the input frequency, measure the frequency at which Pin 2 output turns to be – 3dB against VAUAC5P, that is "FAUH5P".
\$7	Band Width (4.5MHz / PAL) ^{/ F} AUH4N ^{/ F} AUL4N	Audio ATT : 127 Au Gain : 1 AF-G : 1 Others : Preset	 (1) Input a 4.5MHz, 90dBµV FM signal (Modulate 400Hz with 25kHz deviation) into Pin 53. (2) Increasing the input frequency, measure the frequency at which Pin 2 output turns to be - 3dB against VAUAC4N, that is "FAUH4N". (3) Decreasing the input frequency, measure the frequency at which Pin 2 output turns to be - 3dB against VAUAC4N, that is "FAUH4N".

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
58	Attenuator Gain / GATTMAX / GATTCEN / GATTMIN	Audio ATT : 0/64/127 Au SW : 1 Others : Preset	 (1) Input a 1MHz, 500mV_{rms} signal into Pin 55. (2) Set Audio ATT to 0/64/127 and measure the Pin 2 output amplitude for each bus data, that is VATTMAX/VATTCEN/VATTMIN. (3) Calculate ;
S9	Offset between TV/Ext. /VAUOFFSET	Audio ATT : 127 Au SW : 0/1 Others : Preset	 Input a 5.5MHz, 90dBμV non-modulation signal into Pin 53. Connect Pin 55 to GND via a 4.7μF capacitor. Switching Au SW to 0/1 and measure the change of Pin 2 DC level, that is "VAUOFFSET".
S10	DC Change by Volume / ΔVVOLDC	Audio ATT : 0/127 Au SW : 1 Others : Preset	 (1) Connect Pin 55 to GND via a 4.7μF capacitor. (2) Switching Audio ATT to 0/127 and measure the change of Pin 2 DC level, that is "ΔVVOLDC".

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
V1	TV Input Dynamic Range / DR _{TV} External Input Dynamic Range / DR _{EXT}	Video SW : 00/01 Others : Preset	 (1) Input a white signal with sync into Pin 41 & 43. (2) Increasing the input amplitude, measure the amplitude (Include sync) at which the Pin 35 output is clipped, that is "DR_{TV}" (Video SW : 00) / "DR_{EXT}" (Video SW : 01)
V2	TV Mode Gain /G _{TV} Ext. Mode Gain /G _{EXT}	Video SW : 00/01 Others : Preset	 (1) Input a 1V_{p-p}, white signal with sync into Pin 41 & 43. (2) Set Video SW to 00 and measure the gain between Pin 43 and Pin 35, that is "G_{TV}" (3) Set Video SW to 01 and measure the gain between Pin 41 and Pin 35, that is "G_{EXT}"
V3	AV SW Cross-Talk / CTSWTE / CTSWET	Video SW : 00/01 Others : Preset	 (1) Input a PAL red signal with sync into Pin 43 and connect Pin 41 to GND via a 1μF capacitor. (2) Set Video SW 01, measure the amplitude of 4.43MHz signal at Pin 35 and calculate the cross-talk, that is "CT_{SWTE}". (3) Input a red signal into Pin 41 and connect Pin 43 to GND via a 1μF capacitor. (4) Set Video SW 00, measure the amplitude of 4.43MHz signal at Pin 35 and calculate the cross-talk, that is "CT_{SWTE}".
V4	Y Input Dynamic Range / DR _Y	Uni-Color : 32 Brightness : 0 Color : 0 Others : Preset	 (1) Input a white signal with sync into Pin 43 & 39. (2) Increasing the Pin 39 input amplitude, measure the amplitude (include sync) at which the Pin 18 output is clipped, that is "DRy".
V5	Y Input Pedestal Clamp Voltage /VYCLP	All : Preset	 Input a composite sync signal into Pin 43. Connect Pin 39 to GND via a 1μF capacitor. Measure the DC Voltage at Pin 39, that is "VYCLP".
V6	Y Delay Time ^{/ t} YDEL	Uni-Color : 63 Color : 0 Others : Preset	 (1) Input a 2T pulse with sync into Pin 43 & 39. (2) Observe the Pin 18 output, measure the delay time between Pin 39 and Pin 18, that is "typel".

Video stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), Ta = 25°C)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
V7	Brightness Characteristics / VBRTMAX / VBRTCEN / VBRTMIN Brightness Data Sensitivity / 4VBRT	Brightness : 0/64/127 Color : 0 Others : Preset	 Input a OIRE black signal with sync into Pin 43 & 39. Measure the DC level of picture period at Pin 18 for Brightness : 127/64/0, that is "VBRTMAX"/"VBRTCEN"/"VBRTMIN". Calculate ; "ΔVBRT" = (VBRTMAX - VBRTMIN)/127
V8	Uni-Color Characteristics for Y / GUCYMAX / GUCYCEN / GUCYMIN	Uni-Color : 0/32/63 Color : 0 Others : Preset	 (1) Input a 50IRE (0.357V) white signal with sync into Pin 43 & 39. (2) Measure the output picture amplitude at Pin 18 for Uni-Color 63/32/0, that is VUCYMAX / VUCYCEN \ VUCYMIN. (3) Calculate ;
∨9	Sub-Contrast Characteristics / GSCONMAX / GSCONMIN	Sub-Contrast : 0/8/15 Uni-Color : 63 Color : 0 Others : Preset	 (1) Input a 50IRE white signal with sync into Pin 43 & 39. (2) Measure the output picture amplitude at Pin 18 for Sub-Contrast 15/8/0, that is VSCONMAX/VSCONCEN/VSCONMIN. (3) Calculate ; "GSCONMAX" = 20*ℓog (VSCONMAX/VSCONCEN) "GSCONMIN" = 20*ℓog (VSCONMIN/VSCONCEN)
V10	Sharpness Peaking Frequency / FSHP	Sharpness : 63 Uni-Color : 63 Color : 0 Others : Preset	 Input a 0.5V_{p-p} sweep signal with sync into Pin 43 & 39. Measure the frequency at which the Pin 18 output amplitude is Max., that is "F_{SHP}".
V11	Sharpness Control Characteristics / G _{SHMAX} / G _{SHCEN} / G _{SHMIN}	Sharpness : 0/32/63 Uni-Color : 63 Color : 0 Others : Preset	 Input a 0.5V_{p-p} sweep signal with sync into Pin 43 & 39. Measure the output picture amplitude for 100kHz at Pin 18, that is V_{SH100k}. Measure the output picture amplitude for F_{SHP} when Sharpness is max., center and min., that is V_{SHMAX}, V_{SHCEN} and V_{SHMIN}. Calculate ; "G_{SHMAX}" = 20*ℓog (V_{SHMAX}/V_{SH100k}) "G_{SHCEN}" = 20*ℓog (V_{SHCEN}/V_{SH100k}) "G_{SHMIN}"20*ℓog (V_{SHMIN}/V_{SH100k})

ΝΟΤΕ	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
V12	Y Frequency Response /FRy	Uni-Color : 63 Sharpness : Adjust Color : 0 Others : Preset	 (1) Input a 0.5V_{p-p} sweep signal with sync into Pin 43 & 39. (2) Adjust Sharpness so that the output amplitude for F_{SHP} equals V_{SH100k}. (3) Measure the frequency at which the output amplitude is 3dB down against V_{SH100k}, which is "FR_Y".
V13	Black Expansion Start Point / V _{BLEX} Uni-Color : 63		 (1) Input a 100IRE ramp signal with sync into Pin 43 & 39. (2) Supply 2.4V/2.0V to Pin 44 and observe the Pin 18 output. (3) Measure "VBLEX" and "GBLEX".
VIS	Black Expansion AMP Gain / G _{BLEX}	– Color : 0 Others : Preset	G _{BLEX} : Ratio of slope below VBLEX VBLEX VBLEX
V14	Black Peak Detection Level / <u>AVBLPD</u>	Others : Preset	 (1) Input a composite sync signal into Pin 43. (2) Increasing the Pin 39 DC level, measure the level at which the Pin 44 voltage drops down, that is V_{BLPD}. (3) Calculate ; "△V_{BLPD}" = V_{BLPD} - V39
V15	WPS Level / V _{WPS}	Uni-Color : 63 Brightness : 127 Color : 0 Others : Preset	 Input a 100IRE ramp signal with sync into Pin 43 & 39. Measure the amplitude from cut-off level to peak (At which output signal is clipped), that is "VWPS".
V16	Chroma Trap Gain / G _{TRAP} 358, G _{TRAP} 443	C-Trap : 0/1 Uni-Color : 63 Color : 0 Others : Preset	 (1) Input a 0.5V_{p-p}, 3.58MHz signal with sync into Pin 43 & 39. (2) Measure the 3.58MHz amplitude at Pin 18 for Chroma Trap : 1/0, that is VTRAPON / VTRAPOFF. (3) Calculate ;

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
V17	Half Tone Characteristics for Y / G _{HTY}	Half Tone · 0/1	 (1) Input a 100IRE white signal with sync into Pin 43 & 39. (2) Measure the output picture amplitude at Pin 18 for Half Tone : 1/0, that is V_{HTYON}/ V_{HTYOFF}. (3) Calculate ; "G_{HTY}" = 20*ℓog (V_{HTYON}/V_{HTYOFF})

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
C1	ACC Characteristics /VACCH /VACCL	Mute : 01 Uni-Color : 63 Others : Preset	 Input a 4.43MHz PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. Changing the amplitude of burst and chroma, measure the input amplitude at which Pin 20 output amplitude is + 1dB / – 1dB against the one for 300mVp-p input, that is "VACCH" / "VACCL".
C2	TOF Characteristics (4.43MHz) / F0T443 / QT443 BPF Characteristics (4.43MHz) / F0B443 / QB443 TOF Characteristics (3.58MHz) / F0T358 / QT358 BPF Characteristics (3.58MHz) / F0B358 / QB358	TEST : 01000111 C-BPF : 0/1 Color : 010/101 System Others : Preset	 Set C-BPF to 1 and Color System to 010. Input a sweep signal into Pin 43. Observe the frequency response at Pin 18 and measure the Peaking Frequency/Q of chroma filter, that is "F0T443" / "QT443". Set C-BPF to 0 and Color System to 010 and repeat (2) & (3), that is "F0B443" / "QB443". Set C-BPF to 1 and Color System to 101 and repeat (2) & (3), that is "F0T358" / "QT358". Set C-BPF to 0 and Color System to 101 and repeat (2) & (3), that is "F0B358" / "QB358".
C3	C Delay Time /tCDEL Delay Time Difference between Y/C /Δty/C	Mute : 01 Uni-Color : 63 Others : Preset	 (1) Input a 4.43MHz, PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (2) Observe the Pin 18 output, measure the delay time between Pin 43 and Pin 18, that is "t_{CDEL}". (3) Calculate ; "Δt_{Y/C}" = t_{YDEL} - t_{CDEL}
C4	Color Characteristics / GCOLMAX / GCOLMIN	Color : 0/64/127 Mute : 01 Uni-Color : 63 Others : Preset	 (1) Input a 4.43MHz PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (2) Measure the Pin 18 amplitude for Color 127 /64/0, that is V_{COLMAX}/V_{COLCEN}/ V_{COLMIN}. (3) Calculate ; "G_{COLMAX}" = 20*ℓog (V_{COLMAX}/V_{COLCEN}) "G_{COLMIN}" = 20*ℓog (V_{COLMIN}/V_{COLCEN})

Chrome stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), Ta = 25°C)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
С5	Uni-Color Characteristics for C / GUCC	Uni-Color : 0/63 Mute : 01 Others : Preset	 Input a 4.43MHz, PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. Measure the Pin 18 amplitude for Uni-Color 63 / 0, that is VUCCMAX and VUCCMIN. Calculate ; "GUCC" = 20*ℓog (VUCCMIN / VUCCMAX)
C6	Tint Characteristics (3.58MHz) / $\Delta \theta$ 358MAX / $\Delta \theta$ 358MIN	Tint : 0/64/127 Mute : 01 Uni-Color : 63 Others : Preset	 Input a 3.58MHz NTSC rainbow color-bar (286mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. Set Tint to 64 and adjust the burst phase so that the 6th bar of Pin 20 output is maximum, that is θ_{358CEN}. Change Tint to 127/0 and adjust the burst phase so that the 6th bar of Pin 20 output is maximum, that is θ_{358MAX}/θ_{358MIN}. Calculate ;
	Tint Characteristics (4.43MHz) /Δθ443MAX /Δθ443MIN		"Δ $θ_{358MAX}$ " = - ($θ_{358MAX} - θ_{358CEN}$) "Δ $θ_{358MIN}$ " = - ($θ_{358MIN} - θ_{358CEN}$) (5) Input a 4.43MHz NTSC rainbow color-bar (286mV _{p-p} , burst : chroma = 1 : 1) with sync into Pin 43 and repeat (2) & (3), that is $θ_{443CEN} / θ_{443MAX} / θ_{443MIN}$. (6) Calculate ; "Δ $θ_{443MAX}$ " = - ($θ_{443MAX} - θ_{443CEN}$) "Δ $θ_{443MIN}$ " = - ($θ_{443MIN} - θ_{443CEN}$)
67	Relative Amplitude (PAL) / VPR / B / VPG / B	Mute : 01 — Uni-Color : 63 Others : Preset	 (1) Input a 4.43MHz, PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (2) Measure the amplitude of Pin 18/19/20 output, that is "VPROUT"/"VPGOUT"/ "VPBOUT" (3) Calculate ; "VPR/B" = VPROUT/VPBOUT
C7	Relative Amplitude (NTSC) / VNR / B / VNG / B		 "VPG / B" = VPGOUT / VPBOUT (4) Input a 3.58MHz NTSC rainbow color-bar (286mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43, then repeat (2), that is VNROUT / VNGOUT / VNBOUT. (5) Calculate ; "VNR / B" = VNROUT / VNBOUT "VNG / B" = VNGOUT / VNBOUT

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
	Relative Phase (PAL) ^{/ θ} PR-B ^{/ θ} PG-B	Mute : 01	(1) Input a 4.43MHz PAL rainbow color-bar (300mV _{p-p} , burst : chroma = 1 : 1) with sync into Pin 43. (2) Observe the Pin 18 / 19 / 20 output, measure the R/G/B modulation angle ($\theta_{PR} / \theta_{PG} / \theta_{PB}$) accoeding following figure and equality. $\theta_{P*} = \theta_{0*} - \left\{ \tan^{-1} \left(\frac{1}{\frac{2A}{B} + \sqrt{3}} \right) - 15 \right\}$
C8	Relative Phase (NTSC) / θ _{NR-B} / θ _{NG-B}	Uni-Color : 63 Others : Preset	For θ_{PR} ; Peak : 3rd bar, $\theta_{0R} = 90$ For θ_{PG} ; Peak (Negative) : 4th bar, $\theta_{0G} = 240$ For θ_{PB} ; Peak : 6th bar, $\theta_{0B} = 0$ (3) Calculate ; " $\theta_{PR-B}" = \theta_{PR} - \theta_{PB}$ " $\theta_{PG-B}" = \theta_{PG} - \theta_{PB}$ (4) Input a 3.58MHz NTSC rainbow color-bar (286mV _{p-p} , burst : chroma = 1 : 1) with sync into Pin 43, then repeat (2), that is $\theta_{NR} / \theta_{NG} / \theta_{NB}$. (5) Calculate ; " $\theta_{NR-B}" = \theta_{NR} - \theta_{NB}$ " $\theta_{NG-B}" = \theta_{NR} - \theta_{NB}$

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
	АРС Pull-In Range (4.43MHz) / ⊿F4APCP + / ^Д F4APCP –		 Input a 4.43MHz PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. Set Color System to 010 (443PAL). For higher frequency than 4.43MHz, measure the burst frequency at which Pin 29 DC level changes from low to high/ form high to laws that is 5
С9	APC Hold Range (4.43MHz) /ΔF4APCH + /ΔF4APCH –	Color System : 010/101	 from high to low, that is F4APCP + / F4APCH + · (4) For lower frequency than 4.43MHz, repeat (2), that is F4APCP - / F4APCH - · (5) Calculate ; "ΔF4APCP + " = F4APCP + - 4433619 "ΔF4APCP - " = 4433619 - F4APCP -
	APC Pull-In Range (3.58MHz) / ^Д F3APCP + / ^Д F3APCP –	Others : Preset	 "△F4APCH + " = F4APCH + -4433619 "△F4APCH - " = 4433619 - F4APCH - (6) Input a 3.58MHz NTSC rainbow color-bar (286mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (7) Set Color System to 101 (358NTSC). (8) For higher frequency than 3.58MHz, repeat (2), that is F3APCP + /F3APCH + .
	АРС Hold Range (3.58MHz) ^{/ Δ} F3АРСН + / ^Δ F3АРСН –		(9) For lower frequency than 3.58MHz, repeat (2), that is $F_{3APCP} - /F_{3APCH}$ (10) Calculate ; " $\Delta F_{3APCP} + " = F_{3APCP} + -3579545$ " $\Delta F_{3APCP} - " = 3579545 - F_{3APCP} -$ " $\Delta F_{3APCH} + " = F_{3APCH} + -3579545$ " $\Delta F_{3APCH} - " = 3579545 - F_{3APCH} -$

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
C10	APC Control Sensitivity (4.43MHz) /β443	Color System : 010/101	 (1) Connect Pin 43 to GND via a 1μF capacitor. (2) Set Color System to 010 (443PAL). (3) Adjust Pin 10 voltage so that the Pin 29 output frequency is 4.433619MHz, that is V4APCCEN. (4) Measure the Pin 29 output frequency when Pin 10 voltage is V4APCCEN + 100mV / V4APCCEN - 100mV, that is F4APC + / F4APC (5) Calculate ; "β443" = (F4APC + -F4APC -)/200
	APC Control Sensitivity (3.58MHz) 1 ^β 358	Others : Preset	 (6) Set Color System to 101 (358NTSC). (7) Adjust Pin 10 voltage so that the Pin 29 output frequency is 3.579545MHz, that is V3APCCEN. (8) Measure the Pin 29 output frequency when Pin 10 voltage is V3APCCEN + 100mV / V3APCCEN - 100mV, that is F3APC + / F3APC (9) Calculate ; "β358" = (F3APC + -F3APC -)/200
C11	PAL ID Sensitivity (Normal Mode) / VPALIDON / VPALIDOFF PAL ID Sensitivity (Low Mode) / VPALIDLON / VPALIDLOFF NTSC ID Sensitivity (Normal Mode) / VNTIDON / VNTIDOFF NTSC ID Sensitivity (Low Mode) / VNTIDLOFF	ID SW : 0/1 Color System : 010/101 Mute : 01 Uni-Color : 63 Others : Preset	 (1) Set ID SW to 0. (2) Set Color System to 010 (443PAL). (3) Input a 4.43MHz PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (4) Measure the burst amplitude at which Pin 29 DC level changes from low to high / from high to low, that is "VPAUDON" /

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
C12	ID Output Level / VIDH / VIDL	All : Preset	 Input a 4.43MHz PAL color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. Measure the center DC level of Pin 29 output, that is "V_{IDH}". Connect Pin 43 to GND via a 1µF capacitor and repeat (2), that is "V_{IDL}".
C13	SECAM ID Det. Current / ISECAM	All : Preset	 Input a 4.43MHz NTSC color-bar with sync into Pin 43. Connect Pin 37/38 to GND via a 0.1µF capacitor. Pulling the current out of Pin 29, measure the current at which a demodulated output signal disappears at Pin 20, that is "ISECAM".
C14	fsc Continuous Wave Output Level / V _{CW}	CW SW : 1 Others : Preset	Measure the amplitude of Pin 29 output, that is " V_{CW} ".
C15	Sub-Carrier Remain on RGB Output / VSCR / VSCG / VSCB	Mute : 01 Uni-Color : 63 Others : Preset	 Input a 4.43MHz PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. Measure the amplitude of 4.43MHz signal at Pin 18/19/20, that is "V_{SCR}"/"V_{SCG}"/ "V_{SCB}".
C16	Half Tone Characteristics for C / G _{HTC}	Half Tone : 1 Mute : 01 Uni-Color : 63 Others : Preset	 (1) Input a 4.43MHz PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (2) Set Half Tone to 1 and measure the amplitude of Pin 20 output, that is VPBHTC. (3) Calculate ; "GHTC" = 20*ℓog (VPBHTC / VPBOUT)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
T1	V-BLK Pulse Output Level /VVBLK H-BLK Pulse Output Level /VHBLK	- All : Preset	 (1) Input a composite sync signal into Pin 43. (2) Measure the DC level of V/H blanking period at Pin 20, that is "VVBLK" / "VHBLK".
Т2	RGB Output Black Level (0IRE DC) / VBLACK	Color : 0 Others : Preset	 Input a OIRE Y signal with sync into Pin 43 & 39. Measure the DC level of picture period at Pin 20, that is "V_{BLACK}".
ТЗ	RGB Output White Level (100IRE AC) /VWHITE	Uni-Color : 63 Color : 0 Others : Preset	 (1) Input a 100IRE Y signal with sync into Pin 43 & 39. (2) Measure the amplitude from 0 to 100IRE at Pin 20, that is "VWHITE".
Т4	Cut-Off Voltage Variable Range /ΔVCUT + /ΔVCUT –	B Cut Off : 0/255 Color : 0 Others : Preset	 Input a OIRE Y signal with sync into Pin 43 & 39. Measure the DC level of picture period at Pin 20 for B Cut-off: 255/0, that is VCUTMAX/VCUTMIN. Calculate ; "ΔVCUT + " = VCUTMAX - VBLACK "ΔVCUT - " = VCUTMIN - VBLACK
Т5	Drive Control Variable Range / G _{DR} + / G _{DR} –	B Drive : 0/127 Uni-Color : 63 Color : 0 Others : Preset	 (1) Input a 100IRE Y signal with sync into Pin 43 & 39. (2) Measure the amplitude from 0 to 100IRE at Pin20 for B drive 127/0, that is VDRMAX/ VDRMIN. (3) Calculate ; "GDR + " = 20*ℓog (VDRMAX/VWHITE) "GDR - " = 20*ℓog (VDRMIN/VWHITE)
Т6	ABCL Control Voltage Range /VABCLH /VABCLL ACL Gain /GACL	ABL Gain : 11 Uni-Color : 63 Color : 0 Others : Preset	 (1) Input a 100IRE Y signal with sync into Pin 43 & 39. (2) Decreasing the Pin 21 voltage, measure the voltage at which Pin 20 output begins / stops decreasing, that is VABCLH" / "VABCLL". (3) Measure the minimum amplitude of Pin 20 output, that is VACLMIN. (4) Calculate ; "GACL" = 20* log (VACLMIN / VWHITE)

Text stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), Ta = 25°C)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
Τ7	ABL Start Point /VABLP0 /VABLP1 /VABLP2 /VABLP3	ABL Start Point : 00/01/10/11 ABL Gain : 11 Uni-Color : 63 Color : 0 Others : Preset	 (1) Input a OIRE Y signal with sync into Pin 43 & 39. (2) For ABL Point 00/01/10/11, decreasing the Pin 21 voltage, measure the voltage the voltage at which Pin 20 output begins decreasing, that is VABL1/VABL2/VABL3/ VABL4. (3) Calculate ; "VABLP0" = VABL1 - VABCLH "VABLP1" = VABL2 - VABCLH "VABLP2" = VABL3 - VABCLH "VABLP2" = VABL3 - VABCLH
Т8	ABL Gain /VABLG0 /VABLG1 /VABLG2 /VABLG3	ABL Gain : 00/01/10/11 Uni-Color : 63 Color : 0 Others : Preset	 (1) Input a OIRE Y signal with sync into Pin 43 & 39. (2) For ABL Gain 00/01/10/11, measure the DC level of picture period at Pin 20 when Pin 21 voltage is VABCLL, that is VABL5/ VABL6/VABL7/VABL8. (3) Calculate ; "VABLG0" = VABL5 - VBLACK "VABLG1" = VABL5 - VBLACK "VABLG2" = VABL7 - VBLACK "VABLG2" = VABL7 - VBLACK "VABLG3" = VABL8 - VBLACK
Т9	Analog RGB Dynamic Range / DR _{TX}	RGB Contrast : 32 Others : Preset	 (1) Input a composite sync signal into Pin 43. (2) Supply 2V to Pin 13. (3) Input a signal of following figure into Pin 16. PIN 43

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
Т10	Analog RGB Contrast Control Characteristic / GTXCMAX / GTXCCEN / GTXCMIN	RGB Contrast : 32 Others : Preset	 (1) Input a composite sync signal into Pin 43. (2) Supply 2V to Pin 13. (3) Input a signal of NOTE : Tg figure into Pin 16. (4) For RGB Contrast 63/32/0, measure the amplitude of Pin 20 output, that is VTXCMAX/VTXCCEN/VTXCMIN. (5) Calculate ; "GTXCMAX" = 20*ℓog (VTXCMAX/0.2) "GTXCCEN" = 20*ℓog (VTXCCEN/0.2) "GTXCMIN" = 20*ℓog (VTXCMIN/0.2)
T11	Analog RGB Brightness Control Characteristic / VTXBRMAX / VTXBRCEN / VTXBRMIN	Brightness : 0/64/127 Others : Preset	 (1) Supply 2V to Pin 13. (2) Connect Pin 16 to GND via a 0.1μF capacitor. (3) For Brightness 127/64/0, measure the DC level of picture period at Pin 20, that is "VTXBRMAX" / "VTXBRCEN" / "VTXBRMIN".
T12	Analog RGB Mode Switching Level / V _{YS}	RGB Contrast : 32 Others : Preset	 (1) Input a composite sync signal into Pin 43. (2) Input a signal of NOTE : Tg figure into Pin 16. (3) Increasing the Pin 13 voltage, measure the voltage at which the signal inputted into Pin 16 appears at Pin 20, that is "VYS".
T13	Analog RGB Mode Transfer Characteristic / τRγs / tPRγs / τFγs / tPFγs	All : Preset	 (1) Input a 50IRE Y signal with sync into Pin 43 & 39. (2) Connect Pin 16 to GND via a 0.1µrF capacitor. (3) According to following figure, measure the Analog RGB Mode Transfer Characteristic

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
T14	Cross Talk from Analog RGB to TV / CT _{TX-TV}	Uni-Color : 63 RGB Contrast : 63 Others : Preset	 (1) Input a composite sync signal into Pin 43. (2) Connect Pin 39 to GND via a 1μF capacitor. (3) Input a signal of following figure into Pin 16. Pin 43 1H 0.5Vp-p Pin 16
			 (4) Measure the amplitude of 4MHz signal at Pin 20, that is V_{TX-TV}. (5) Calculate ; "CT_{TX-TV}" = 20*ℓog (V_{TX-TV} / 0.5)
T15	Cross Talk from TV to Analog RGB / CT _{TV-TX}	Uni-Color : 63 RGB Contrast : 63 Others : Preset	 Input a 4MHz, 0.5V_{p-p} Y signal with sync into Pin 43 & 39. Connect Pin 16 to GND via a 0.1µF capacitor. Supply 2V to Pin 13. Measure the amplitude of 4MHz signal at Pin 20, that is V_{TV-TX}. Calculate ; "CT_{TV-TX}" = 20*ℓog (V_{TV-TX} / 0.5)
Т20	SECAM Black Level Adj. Characteristics / VSECBMAX / VSECRMAX / VSECRMIN / VSECRMIN	Color System : 111 B-Y Black Adj : 0/8/15 R-Y Black Adj :	 (1) Connect Pin 29 to GND via a 5.1kΩ resistor. (2) For B-Y/R-Y Black Adj. : 8, measure the DC level of picture period at Pin 20/18, that is VSECBCEN/VSECRCEN. (3) For B-Y Black Adj. : 0/15, measure the DC level change of picture period against VSECBCEN at Pin 20, that is "VSECBMIN"/"VSECBMAX". (4) For R-Y Black Adj. : 0/15, measure the DC
	SECAM Black Level Adj. Data Sensitivity / ΔVSECB / ΔVSECR	0/8/15	 level change of picture period against VSECRCEN at Pin 18, that is "VSECRMIN" / "VSECRMAX". (5) Calculate ; "

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
D1	AFC Inactive Period ^{/ T} 50AFCOFF ^{/ T} 60AFCOFF	All : Preset	 (1) Input a 50Hz/60Hz composite sync signal into Pin 43. (2) Measure "T_{50AFCOFF}" / "T_{60AFCOFF}" at Pin 40. (cf. Fig.D1)
D2	H-OUT Start Voltage ^{/ V} HON	All : Preset	 (1) Let Pin 3 / 17 / 52 / 36 / 46 be open. (2) Increasing Pin 28 voltage, measure the voltage at which H OUT pulse appears at Pin 32, that is "V_{HON}".
D3	H-OUT Pulse Duty /WHOUT	All : Preset	 (1) Measure t_{HOUT1} & t_{HOUT2} at Pin 32. t_{HOUT1} t_{HOUT2} (2) Calculate ; "WHOUT" = t_{HOUT1} / (t_{HOUT1} + t_{HOUT2}) *100
D4	H-OUT Freq. on AFC Stop Mode /FHAFCOFF	AFC Gain : 11 Others : Preset	 Input a 50Hz composite sync signal into Pin 43. Measure the H OUT frequency at Pin 32, that is "FHAFCOFF".
D5	Horizontal Free-Run Frequency / FH50FR / FH60FR	V-Freq : 10/11 Others : Preset	For V-Freq 10/11, measure the H OUT frequency at Pin 32, that is "FH50FR"/"FH60FR"
D6	Horizontal Freq. Variable Range ^{/ F} HMAX ^{/ F} HMIN	All : Preset	 (1) Connect Pin 40 to V_{CC} via a 10kΩ and measure the H OUT frequency at Pin 32, that is "F_{HMAX}". (2) Connect Pin 40 to GND via a 68kΩ and measure the H OUT frequency at Pin 32, that is "F_{HMIN}".
D7	Horizontal Freq. Control Sensitivity ^{7 B} HAFC	All : Preset	 Measure the Pin 40 voltage at which H OUT frequency is 15.734kHz, that is V_{H15734}. Measure the H OUT frequency when Pin 40 voltage is V_{H15734} + 50mV / V_{H15734} - 50mV, that is F_{HHIGH} / F_{HLOW}. Calculate ; "βHAFC" = (F_{HHIGH} - F_{HLOW}) / 100

DEF stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), Ta = 25°C)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
D8	Horizontal Pull-in Range / ⊿FHPH / ⊿FHPL	All : Preset	 (1) Input a composite sync signal into Pin 43. (2) Decreasing the horizontal frequency from 17kHz, measure the frequency at which H OUT synchronized with Sync Out (Pin 31), that is FHPH. (3) Increasing the horizontal frequency from 14kHz, measure the frequency at which H OUT synchronized with Sync Out (Pin 31), that is FHPL. (4) Calculate ; "ΔFHPH" = FHPH - 15734 "ΔFHPL" = 15625 - FHPL
D9	H-OUT Voltage ^{/ V} HOUTH ^{/ V} HOUTL	All : Preset	 (1) Measure the high level of H OUT at Pin 32, that is "V_{HOUTH}". (2) Measure the Low level of H OUT at Pin 32, that is "V_{HOUTL}".
D10	Horizontal Freq. Dependence on V _{CC} / <i>Δ</i> FHVCC	All : Preset	 (1) Measure the H OUT frequency when H V_{CC} is 8.5V/9.5V, that is F_{HVCCH}/F_{HVCCL}. (2) Calculate ; "ΔF_{HVCC}" = (F_{HVCCH} - F_{HVCCL})/1
D11	FBP Phase / PH _{FBP}	All : Preset	(1) Input a composite sync signal into Pin 43. (2) According to the following figure, measure "PHFBP" & "PHHSYNC". Sync In a -4 -4.7μ s $0.25V$
D11	H-Sync. Phase / PHHSYNC		(#43) a / 2 - PH _{FBP} H.AFC (#40) - PH _{HSYNC} FBP IN (#30)

5² 듒 <u>ភ</u>្ជី < 25H ਤੂ **<** 47 **4** 26H 57 K H27 똜 ∄ < HEZ HZZ 24H 22H <u>₹</u> < 21H 23H ΗL ∄ **<** 20H ₹**₹** HOS HL **4** 21H 19H 19H 20H 181 20H 18H H61 17H 19H 17H 18H 16H 18H 16H ž 15H 17H 151 16H 14H 16H 14H 13H 15H 13H - 14H 12H 141 HZ 13H нн 13H HLL 1**2**H 10H 12H Б 10H 11H 114 ŝ j E Ē £ ප HOL R 3 ¥ £ F 8 귫 굞 Н9 Н 똜 H R 3 ž H 푹 B Ж 똜 60AFCOFF 굞 Ŧ 60AFCOF Odd Field + 🗄 + Even Field Ϋ́ Ę Even Field - - - Odd Field 311H 312H 1H 7u FOF Ψ **SUAFCOFF** ÷ ΞE E Odd Field - Even Field 262H 263H 1H 2H 313H c ZH • • • 312H Ë 263H 3111 **262**H 310H 310H 261H 뛄 261H 309H 260H 306H 260H 308H 259H 307H 25mV 259H 107H 258H TB1231CN - 65 Pin 40 Signal Pin 40 Signal Pin 40 Signal Pin 40 Signal 50Hz 60Hz CVBS CVBS CVBS CVBS

1998-05-12 65/77

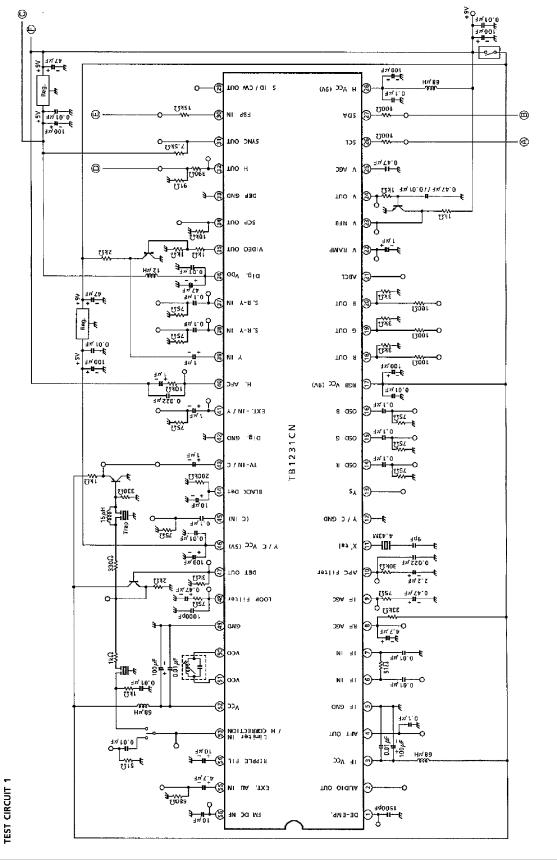
ΝΟΤΕ	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
D12	Horizontal Position Variable Range /∆PHHPOS	H Position : 0/31 Others : Preset	 (1) Input a composite sync signal into Pin 43. (2) Changing Horizontal Position from 0 to 31, measure "△PH_{HPOS}" according to the following figure. (00) (#30) (#30)
D13	AFC-2 Pulse Threshold Level /VAFC2	All : Preset	 (1) Input a composite sync signal into Pin 43. (2) Decreasing the FBP high level, measure the DC level at which H OUT phase changes against Sync Out phase, that is "V_{AFC2}".
D14	H-BLK Pulse Threshold Level / VHBLK	All : Preset	 (1) Input a composite sync signal into Pin 43. (2) Increasing the FBP high level, measure the DC level at which H blanking begins to work, that is "V_{HBLK}".
D15	Black Peak Det. Stop Period (H) / PH _{BPDET} / W _{BPDET}	TEST : 00001000 Others : Preset	(1) Input a composite sync signal into Pin 43. (2) According to the following figure, measure "PHBPDET" & "WBPDET". Sync IN (#43) H.AFC (#40) SCP OUT (#34) WBPDET (#34) WBPDET (#34) WBPDET (#34) WBPDET (#34) WBPDET (#34) (#34
D16		TEST : 00001000 V Position : 001 Others : Preset	 (1) Input a composite sync signal into Pin 43. (2) According to the following figure, measure "PHCP" & "WCP". Sync IN
	Clamp Pulse Width /W _{CP}		H.AFC (#40) SCP OUT (#34) H.AFC PHCP WCP HCP HCP HCP HCP

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
D17	Gate Pulse Start Phase /PHGP	All : Preset	 (1) Input a composite sync signal into Pin 43. (2) According to the following figure, measure "PHGP" & "WGP". 63.5µs 63.5µs 63.5µs 0.25v
	Gate Pulse Width / WGP		H.AFC (#40) SCP OUT (#34) H.AFC WGP 9V 6V 0V
D18	Sync. Output Low Level / VSYNCL	All : Preset	 (1) Input a composite sync signal into Pin 43. (2) Measure the DC voltage of Sync Out low level, that is "VSYNCL".
D19	Vertical Oscillation Start Voltage / VVON	All : Preset	 (1) Let Pin 3 / 17 / 52 / 36 / 46 be open. (2) Increasing Pin 28 voltage, measure the voltage at which V Ramp signal appears at Pin 22, that is "VVON".
D20	Vertical Free-Run Frequency /FVAUFR /FV60FR	V-Freq : 00/01 Others : Preset	For V-Freq 00/01, measure the frequency of V Ramp at Pin 22, that is "FVAUFR"/"FV60FR".
D21	Gate Pulse V-Masking Period / T50GPM / T60GPM	All : Preset	 (1) Input a 50Hz/60Hz composite sync signal into Pin 43. (2) Measure "T_{50GPM}"/"T_{60GPM}" at Pin 34. (cf. Fig.D₂₁)
D22	V.Ramp DC on Service Mode / VNOVRAMP	MUTE : 11 Others : Preset	Measure the DC level of Pin 22, that is "VNOVRAMP".

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
	Vertical Pull-in Range (Auto) / ^F VPAUL / ^F VPAUH	V-Freg : 00/01	 (1) Input a composite sync signal into Pin 43. (2) For V-Freq 00/01, increasing the input vertical period from 220H by 0.5H step, measure the period at which V OUT signal synchronized with Sync out, that is "FVPAUL" / "FVP60L". (3) For V-Freq 00/01, decreasing the input vertical period from 360H by 0.5H step, measure the period at which V OUT signal synchronized with Sync out, that is "FVPAUL" / "FVP60L".
023	23 Vertical Pull-In Range (60Hz) / FVP60L / FVP60H	Others : Preset	
D24	Vertical Period on Fixed Mode /TV313 /TV263	V-Freq : 10/11 Others : Preset	For V-Freq 10/11, measure the vertical period at Pin 34, that is " T_{V263} "/" T_{V313} ".
D25	V-BLK Start Phase /PH50VBLK /PH60VBLK V-BLK Width /W50VBLK /W60VBLK	- All : Preset	 (1) Input a 50Hz/60Hz composite sync signal into Pin 43. (2) Measure "T50AFCOFF" / "T60AFCOFF" at Pin 40. (cf. Fig.D25)
D26	Picture Mute Period /W50PM /W60PM	TEST : 00001000 Others : Preset	 (1) Input a 50Hz / 60Hz composite sync signal into Pin 43. (2) According to a following figure, measure "W50PM" / "W60PM".

78H 2 č Ж **С** <u>з</u>б 27H Ha < EC4 ЪŽ 26H 5H 15 Fa < ¥ < ត្ត < ₫ **<** Ξ **7**3H Han C 22H 3 등 22H т М 21H ₹ **<** 214 ⊼ < 20H 52 K 20H H **4** 21H H61 19H 20H 20H **18**H 18H Ē H HZL HZ1 **18**H 16H 18H 16H 174 15H H71 15H 16H 14H 16H 14H 15H 13H ΞŦ 13H 14H 14H HZI · †2H 13H H HE1 11H 12H 12H HOF HOF D21 HUL --ΗÖ Ηt 똜 Fig. H6 10H Ē 똜 꿃 £ £ ŝ Ħ 5 뷺 ξ 튧 E. ΗZ ÷ H ΗS Æ £ 윤 Ŧ НS t 놂 ÷ ΗE Ŧ Odd Field - Even Field 312H 313H 1H 2H 킄 T60GPM Even Fleid - - Odd Fleid 311H 312H 1H 2H 뜐 똜 Г 퐀 -Even Field 0GPb ב Even Filed - - - Odd Field 픑 ÷ Odd Field ; 562H 311H Л 310H 310H 261H HE020 261H 309H 260H 908H 260H 259H 308 307H 97H 258H TB1231CN ~ 69 Pin 34 Signal Pin 34 Signal Pin 34 Signal Pin 34 Signal 50Hz 60Hz CVBS CVBS CVBS CVBS

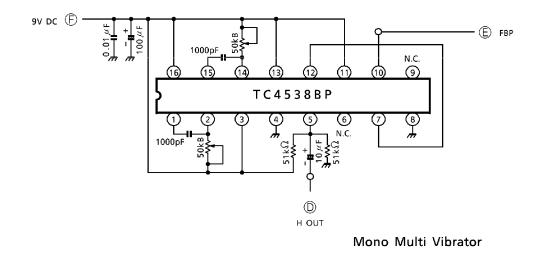
1998-05-12 69/77

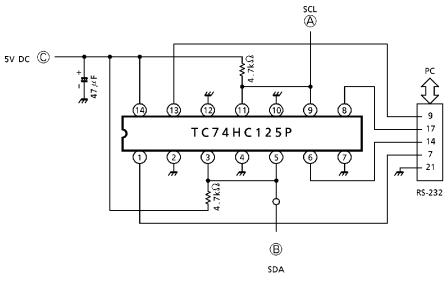

<u>з</u>ен 27H 25H S^E ¥ < 5g < 24H 25¥ E S 25H 23H ₹ **<** 22H 24H 22H ₹ 8 ΗLZ 23H 21H Н<u>г</u>2 **<** 20H H22 < 20H H **Z** 21H 5 1<u>6</u>1 20H 18H 20H 18H 19H 17H **19**H 17H 18H 181 **18**H 16H 17H 15H 17H 16H 14H 16H 14H 15H 13H 15H • • • 臣 Ŧ 12H 14H W50VBLK SOVBLK 늰 13H W60VBLI ΗĻ 13H 11H 12H SOVBL 12H 10H D25 10H 11H 11H £ Ë. HOL 동 10H 뮰 끏 £ ž 5 ₩ Fê க 3 ¥ ... 노 £ HS Ц ŧ Ĥ PHEOVIBLK PH60VBL ₽₽ ΗS 픖 Ξ Ŧ 픐 . J. PHSOVBLK ŧ 2H H PH SOVBL Even Field c . **.**.... ΗE Ŧ Ĩ ¥ Ę odd Field + -Even fleld •• ΥZ 313H H 312H Odd Field - 📜 263H 311H Z62H 262H 310H HOLE 261H 309H H50E 260H 260H 308H 30BH 259H 259H 307H 307H 258H TB1231CN - 70 Pin 34 Signal Pin 34 Signal Pin 34 Signal Pîn 34 Signal 50Hz 60Hz SBS CVBS CVBS CVBS

1998-05-12 70/77

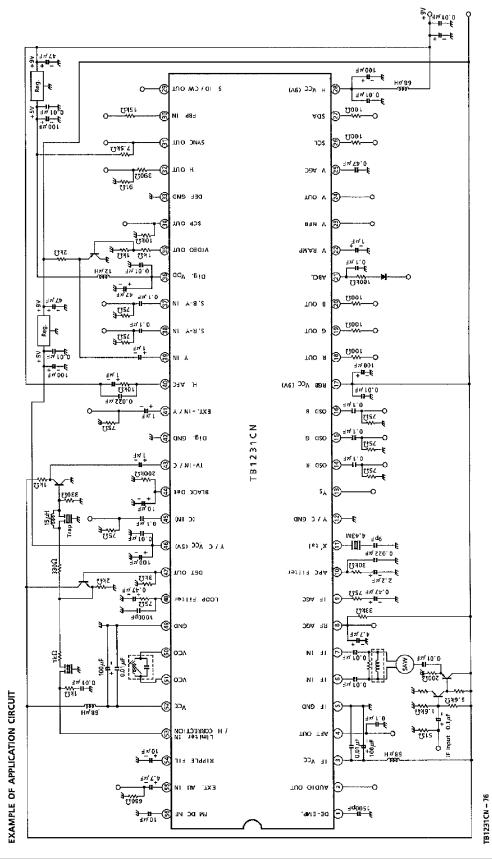
NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
D27	Sand Castle Pulse Level / VSCPH / VSCPM / VSCPL	All : Preset	Measure "V _{SCPH} " / "V _{SCPM} " / "V _{SCPL} " at Pin 34.
D28	Vertical Ramp Amplitude /VVRAMP	All : Preset	Measure the V Ramp amplitude at Pin 22, that is "VVRAMP".
	Vertical AMP Gain / G _{VAMP}		 (1) Let Pin 24 be open. (2) Changing the Pin 23 DC voltage, measure "VVOMAX" / "VVOMIN" / "GVAMP" according to a following figure.
D29	Vertical AMP Max. Output Level /VVOMAX	All : Preset	#23 DC
	Vertical AMP Min. Output Level / VVOMIN		ΔV = G _{VAMP} = 20ℓog (ΔV#23 / ΔV#24) #24 DC
D30	Vertical AMP Max. Output Current ^{/ I} VOMAX	All : Preset	 (1) Supply 7V to Pin 23. (2) Measure the Current from Pin 24 to GND, that is "IVOMAX".
	Vertical NFB Amplitude / V _{NFB}	─ V Size : 0/32/63 Others : Preset	 Measure the amplitude of NFB V Ramp at Pin 23, that is "V_{NFB}". Measure the amplitude of NFB V Ramp at Pin 23 for V-Size 0/63, that is V_{NFBMIN}/
D31	Vertical Amplitude Variable Range / ^Δ VVRAMPH / ^Δ VVRAMPL		VNFBMAX. (3) Calculate ; " Δ VVRAMPH" = (VNFBMAX - VNFB) / VNFB*100 " Δ VVRAMPL" = (VNFBMIN - VNFB) / VNFB*100

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
D32	Vertical Linearity Variable Range / ΔVLIN1 + / ΔVLIN1 – / ΔVLIN2 + / ΔVLIN2 –	V Linearity : 0/8/15 Others : Preset	(1) For V linearity 8, Measure V ₁ (From center to max.) and V ₂ (From center to min.) at Pin 22 according to a following figure. (2) For V linearity 15/0, measure V _{LIN1} + / V ₁ V_2 V_1 V_2 V_1 V_2 V_1 V_2
D33	Vertical S Correction Variable Range / Δ VS1 + / Δ VS1 – / Δ VS2 + / Δ VS2 –	V S Corr. : 0/8/15 Others : Preset	 (1) For V S Correction : 8, measure V₁ and V₂ at Pin 22 according to a figure of NOTE : D₃₂. (2) For V S Correction : 15/0, measure V_{S1 + /} V_{S1 -} and V_{S2 + /}V_{S2 -}. (3) Calculate ; "ΔV_{S1 +} " = (V_{S1 +} - V₁)/V₁*100 "ΔV_{S1 -} " = (V_{S1 -} - V₁)/V₁*100 "ΔV_{S2 +} " = (V_{S2 +} - V₂)/V₂*100 "ΔV_{S2 -} " = (V_{S2 -} - V₂)/V₂*100


NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
D34	V-AGC Current / IVAGCH / IVAGCL	V-AGC : 0/1 Others : Preset	 (1) Connect Pin 25 to GND via a 200 resistor. (2) For V-AGC : 0/1, measure V_{VAGCL}/ VVAGCH at Pin 25 according to a following figure. (3) Calculate ; "IVAGCL" = VVAGCL/200 "IVAGCH" = VVAGCH/200
D35	Vertical Guard Voltage / VVG	All : Preset	Decreasing the Pin 23 voltage from 5V, measure the voltage at which Pin 20 output drops to blanking level, that is "VVG".
D36	V Integral constant /T _{VSY}	Video SW : 01 Vertical position : 010 Horizontal position : 10000 TEST MODE : 00001000 (34pin : TEST pulse output)	(1) Input a C-sync into TV- IN/C (43pin). (2) Measure T _{VSY} . 43Pin C-sync input 34Pin Test Pulse output

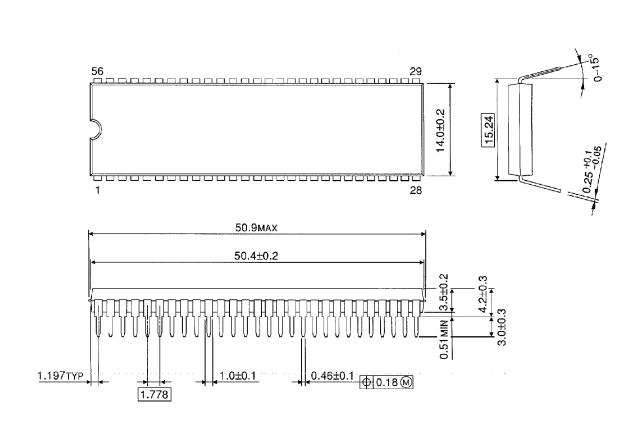


1998-05-12 74/77


TB1231CN-74

TEST CIRCUIT 2

I²C BUS Interface



1998-05-12 76/77

OUTLINE DRAWING

SDIP56-P-600-1.78

Unit : mm

Weight : 5.55g (Typ.)

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.