FEATURES

- Bidirectional Voltage Translator
- 4.5 V to 5.5 V on A Port and 2.7 V to 5.5 V on B Port
- Control Inputs $\mathrm{V}_{\mathrm{IH}} / \mathbf{V}_{\mathrm{IL}}$ Levels Are Referenced to $\mathrm{V}_{\mathrm{cca}}$ Voltage
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

DB, DW, NS, OR PW PACKAGE
(TOP VIEW)

NC - No internal connection

DESCRIPTION/ORDERING INFORMATION

This 8 -bit (octal) noninverting bus transceiver uses two separate power-supply rails. The A port, $\mathrm{V}_{C C A}$, is dedicated to accepting a $5-\mathrm{V}$ supply level, and the configurable B port, which is designed to track $\mathrm{V}_{\text {CCB }}$, accepts voltages from 3 V to 5 V . This allows for translation from a $3.3-\mathrm{V}$ to a $5-\mathrm{V}$ environment and vice versa.
The SN74LVCC4245A is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable ((OE) input can be used to disable the device so the buses effectively are isolated. The control circuitry (DIR, OE) is powered by $\mathrm{V}_{\text {CCA }}$.

ORDERING INFORMATION

TA	PACKAGE ${ }^{(1)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SOIC - DW	Tube of 25	SN74LVCC4245ADW	LVCC4245A
		Reel of 2000	SN74LVCC4245ADWR	
	SOP - NS	Reel of 2000	SN74LVCC4245ANSR	LVCC4245A
	SSOP - DB	Reel of 2000	SN74LVCC4245ADBR	LG245A
	TSSOP - PW	Tube of 60	SN74LVCC4245APW	LG245A
		Reel of 2000	SN74LVCC4245APWR	
		Reel of 250	SN74LVCC4245APWT	

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
FUNCTION TABLE
(EACH TRANSCEIVER)

INPUTS		OPERATION
$\overline{\text { OE }}$	DIR	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

LOGIC DIAGRAM (POSITIVE LOGIC)

Absolute Maximum Ratings ${ }^{(1)}$
over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}} \\ & \mathrm{~V}_{\mathrm{CCB}} \\ & \hline \end{aligned}$	Supply voltage range		-0.5	6	V
V_{1}	Input voltage range ${ }^{(2)}$	I/O ports (A port)	-0.5	$\mathrm{V}_{\text {CCA }}+0.5$	V
		I/O ports (B port)	-0.5	$\mathrm{V}_{\text {CCB }}+0.5$	
		Except l/O ports	-0.5	$\mathrm{V}_{\text {CCA }}+0.5$	
V_{O}	Output voltage range ${ }^{(2)}$	A port	-0.5	$\mathrm{V}_{\text {CCA }}+0.5$	V
		B port	-0.5	$\mathrm{V}_{\mathrm{CCB}}+0.5$	
I_{IK}	Input clamp current	$\mathrm{V}_{1}<0$		-50	mA
l_{K}	Output clamp current	$\mathrm{V}_{\mathrm{O}}<0$		-50	mA
Io	Continuous output current			± 50	mA
Continuous current through $\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}$, or GND				± 100	mA
$\theta_{\text {JA }}$	Package thermal impedance ${ }^{(3)}$	DB package		63	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		DW package		46	
		NS package		65	
		PW package		88	
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) This value is limited to 6 V maximum.
(3) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions ${ }^{(1)}$

		$\mathrm{V}_{\text {CCA }}$	$\mathrm{V}_{\text {CCB }}$	MIN	NOM MAX	UNIT
$\mathrm{V}_{\text {CCA }}$	Supply voltage			4.5	$5 \quad 5.5$	V
$\mathrm{V}_{\text {CCB }}$	Supply voltage			2.7	3.35 .5	V
$\mathrm{V}_{\text {IHA }}$	High-level input voltage	4.5 V	2.7 V	2		V
			3.6 V	2		
		5.5 V	5.5 V	2		
$\mathrm{V}_{\text {IHB }}$	High-level input voltage	4.5 V	2.7 V	2		V
			3.6 V	2		
		5.5 V	5.5 V	3.85		
$\mathrm{V}_{\text {ILA }}$	Low-level input voltage	4.5 V	2.7 V		0.8	V
			3.6 V		0.8	
		5.5 V	5.5 V		0.8	
$\mathrm{V}_{\text {ILB }}$	Low-level input voltage	4.5 V	2.7 V		0.8	V
			3.6 V		0.8	
		5.5 V	5.5 V		1.65	
V_{IH}	High-level input voltage (control pins) (referenced to $\mathrm{V}_{\text {CCA }}$)	4.5 V	2.7 V	2		V
			3.6 V	2		
		5.5 V	5.5 V	2		
VIL	Low-level input voltage (control pins) (referenced to $\mathrm{V}_{\text {CCA }}$)	4.5 V	2.7 V		0.8	V
			3.6 V		0.8	
		5.5 V	5.5 V		0.8	
$\mathrm{V}_{\text {IA }}$	Input voltage			0	$\mathrm{V}_{\text {CCA }}$	V
$\mathrm{V}_{\text {IB }}$	Input voltage			0	$\mathrm{V}_{\text {CCB }}$	V
$\mathrm{V}_{\text {OA }}$	Output voltage			0	$V_{\text {CCA }}$	V
$\mathrm{V}_{\text {OB }}$	Output voltage			0	$\mathrm{V}_{\text {CCB }}$	V
$\mathrm{I}_{\text {OHA }}$	High-level output current	4.5 V	3 V		-24	mA
$\mathrm{I}_{\text {OHв }}$	High-level output current	4.5 V	2.7 V to 4.5 V		-24	mA
IOLA	Low-level output current	4.5 V	3 V		24	mA
$\mathrm{I}_{\text {OLB }}$	Low-level output current	4.5 V	2.7 V to 4.5 V		24	mA
T_{A}	Operating free-air temperature			-40	85	${ }^{\circ} \mathrm{C}$

(1) All unused inputs of the device must be held at the associated V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCAS584M-NOVEMBER 1996-REVISED MARCH 2005

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST	NDITIONS	$\mathrm{V}_{\text {cCA }}$	$\mathrm{V}_{\text {cCB }}$	MIN	TYP	MAX	UNIT		
$\mathrm{V}_{\text {OHA }}$		$\mathrm{IOH}=-100 \mu \mathrm{~A}$		4.5 V	3 V	4.4	4.49		V		
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$		4.5 V	3 V	3.76	4.25				
$\mathrm{V}_{\text {OHB }}$		$\mathrm{IOH}=-100 \mu \mathrm{~A}$		4.5 V	3 V	2.9	2.99		V		
		$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$		4.5 V	2.7 V	2.2	2.5				
		3 V	2.46		2.85						
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$		4.5 V	2.7 V	2.1	2.3				
		3 V	2.25		2.65						
		4.5 V	3.76		4.25						
$V_{\text {OLA }}$				$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		4.5 V	3 V			0.1	V
		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$		4.5 V	3 V		0.21	0.44			
$\mathrm{V}_{\text {OLB }}$				$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		4.5 V	3 V			0.1	V
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		4.5 V	2.7 V		0.11	0.44			
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		4.5 V	2.7 V		0.22	0.5			
		3 V			0.21	0.44					
		4.5 V			0.18	0.44					
1	Control inputs			$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }}$ or GND		5.5 V	3.6 V		± 0.1	± 1	$\mu \mathrm{A}$
				5.5 V			± 0.1	± 1			
$\mathrm{loz}^{(1)}$	A or B ports	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CCA/B }}$ or GND,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or V_{IH}			5.5 V	3.6 V		± 0.5	± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCA }}$	B to A	$\mathrm{A}_{\mathrm{n}}=\mathrm{V}_{\mathrm{CC}}$ or GND		5.5 V	Open		8	80	$\mu \mathrm{A}$		
		$\mathrm{l}_{0}(\mathrm{~A}$ port) $=0$,	$\mathrm{B}_{\mathrm{n}}=\mathrm{V}_{\text {CCB }}$ or GND	5.5 V	3.6 V		8	80			
					5.5 V		8	80			
$\mathrm{I}_{\text {CCB }}$	A to B	$A_{n}=V_{\text {CCA }}$ or GND,	$I_{0}(B$ port $)=0$	5.5 V	3.6 V		5	50	$\mu \mathrm{A}$		
					5.5 V		8	80			
$\Delta \mathrm{l}_{\mathrm{CCA}}{ }^{(2)}$	A port	$V_{1}=V_{C C A}-2.1 \mathrm{~V} \text {, Oth }$ $\overline{O E}$ at GND and DIR	inputs at $V_{C C A}$ or $G N D$, CA	5.5 V	5.5 V		1.35	1.5	mA		
	OE	$V_{1}=V_{C C A}-2.1 \mathrm{~V} \text {, Oth }$ DIR at $V_{C C A}$ or GND	inuts at $\mathrm{V}_{\mathrm{CCA}}$ or GND ,	5.5 V	5.5 V		1	1.5			
	DIR	$V_{I}=V_{C C A}-2.1 \mathrm{~V} \text {, Oth }$ $\frac{1}{\mathrm{OE}}$ at $\mathrm{V}_{\text {CCA }}$ or GND	inputs at $V_{C C A}$ or $G N D$,	5.5 V	3.6 V		1	1.5			
$\Delta l_{\text {CCB }}{ }^{(2)}$	B port	$V_{1}=V_{C C B}-0.6 \mathrm{~V} \text {, Oth }$ $\mathrm{OE} \text { at GND and DIR a }$	inputs at $\mathrm{V}_{\mathrm{CCB}}$ or GND , N	5.5 V	3.6 V		0.35	0.5	mA		
C_{i}	Control inputs	$\mathrm{V}_{1}=\mathrm{V}_{\text {CCA }}$ or GND		Open	Open		5		pF		
$\mathrm{C}_{\text {io }}$	A or B ports	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CCAB }}$ or GND		5 V	3.3 V		11		pF		

(1) For I/O ports, the parameter I_{Oz} includes the input leakage current.
(2) This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or the associated V_{CC}.

Switching Characteristics

over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure_1 through Eigure - 4

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CCB}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCA}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \\ \mathrm{v}_{\mathrm{CCB}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{gathered}$		UNIT
			MIN	MAX	MIN	MAX	
$\mathrm{t}_{\text {PHL }}$	A	B	1	7.1	1	7	ns
$\mathrm{t}_{\text {PLH }}$			1	6	1	7	
$\mathrm{t}_{\text {PHL }}$	B	A	1	6.8	1	6.2	ns
$\mathrm{t}_{\text {PLH }}$			1	6.1	1	5.3	
$t_{\text {PzL }}$	$\overline{\mathrm{OE}}$	A	1	9	1	9	ns
$\mathrm{t}_{\text {PzH }}$			1	8.3	1	8	
$\mathrm{t}_{\text {PzL }}$	$\overline{\mathrm{OE}}$	B	1	8.2	1	10	ns
$\mathrm{t}_{\text {PzH }}$			1	8.1	1	10.2	
tpLz	$\overline{\mathrm{OE}}$	A	1	4.7	1	5.2	ns
$\mathrm{t}_{\text {PHZ }}$			1	4.9	1	5.2	
tplz	$\overline{\mathrm{OE}}$	B	1	5.4	1	5.4	ns
$\mathrm{t}_{\text {PHZ }}$			1	6.3	1	7.4	

Operating Characteristics

$\mathrm{V}_{\mathrm{CCA}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS		TYP	UNIT
C_{pd}	Power dissipation capacitance per transceiver	Outputs enabled	$\mathrm{C}_{\mathrm{L}}=0$,	$\mathrm{f}=10 \mathrm{MHz}$	20	pF
		Outputs disabled			6.5	

Power-Up Considerations ${ }^{(1)}$

TI level-translation devices offer an opportunity for successful mixed-voltage signal design. A proper power-up sequence always should be followed to avoid excessive supply current, bus contention, oscillations, or other anomalies caused by improperly biased device pins. Take these precautions to guard against such power-up problems:

1. Connect ground before any supply voltage is applied.
2. Power up the control side of the device ($\mathrm{V}_{\mathrm{CCA}}$ for all four of these devices).
3. Tie $\overline{O E}$ to $V_{C C A}$ with a pullup resistor so that it ramps with $V_{C C A}$.
4. Depending on the direction of the data path, DIR can be high or low. If DIR high is needed (A data to B bus), ramp it with $\mathrm{V}_{\text {CCA }}$. Otherwise, keep DIR low.
(1) Refer to the TI application report, Texas Instruments Voltage-Level-Translation Devices, literature number SCEA021.

PARAMETER MEASUREMENT INFORMATION FOR A TO B
$\mathrm{V}_{\mathrm{CCA}}=4.5 \mathrm{~V}$ TO 5.5 V AND $\mathrm{V}_{\mathrm{CCB}}=2.7 \mathrm{~V}$ TO 3.6 V

TEST	S1
$\mathbf{t}_{\text {PLH }} / \mathbf{t}_{\text {PHL }}$	Open
$\mathbf{t}_{\text {PLZ }} / \mathbf{t}_{\text {PZL }}$	$6 \mathbf{V}$
$\mathbf{t}_{\text {PHZ }} / \mathbf{t}_{\text {PZH }}$	GND

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time, with one transition per measurement.
E. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION FOR A TO B $\mathrm{V}_{\mathrm{CCA}}=4.5 \mathrm{~V}$ TO 5.5 V AND $\mathrm{V}_{\mathrm{CCB}}=3.6 \mathrm{~V}$ TO 5.5 V

TEST	S1
$\mathbf{t}_{\text {PLH }} / \mathbf{t}_{\mathbf{P H L}}$	Open
$\mathbf{t}_{\text {PLZ }} / \mathbf{t}_{\text {PZL }}$	7 V
$\mathbf{t}_{\text {PHZ }} / \mathbf{t}_{\text {PZH }}$	GND

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time, with one transition per measurement.
E. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION FOR B TO A
 $\mathrm{V}_{\mathrm{CCA}}=4.5 \mathrm{~V}$ to 5.5 V AND $\mathrm{V}_{\mathrm{CCB}}=2.7 \mathrm{~V}$ TO 3.6 V

TEST	S1
$\mathbf{t}_{\text {PLH }} / \mathbf{t}_{\text {PHL }}$	Open
$\mathbf{t}_{\text {PLZ }} / \mathbf{t}_{\text {PZL }}$	$2 \times \mathbf{V}_{\text {CCA }}$
$\mathbf{t}_{\text {PHZ }} / \mathbf{t}_{\text {PZH }}$	GND

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time, with one transition per measurement.
E. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION FOR B TO A $\mathrm{V}_{\mathrm{CCA}}=4.5 \mathrm{~V}$ TO 5.5 V AND $\mathrm{V}_{\mathrm{CCB}}=3.6 \mathrm{~V}$ TO 5.5 V

TEST	S1
$\mathbf{t}_{\text {PLH }} / \mathbf{t}_{\text {PHL }}$	Open
$\mathbf{t}_{\text {PLZ }} / \mathbf{t}_{\text {PZL }}$	7 V
$\mathbf{t}_{\text {PHZ }} / \mathbf{t}_{\text {PZH }}$	GND

NOTES:
A. $\quad C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time, with one transition per measurement.
E. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN74LVCC4245ADBR	ACTIVE	SSOP	DB	24	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LG245A	Samples
SN74LVCC4245ADBRE4	ACTIVE	SSOP	DB	24	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LG245A	Samples
SN74LVCC4245ADW	ACTIVE	SOIC	DW	24	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCC4245A	Samples
SN74LVCC4245ADWE4	ACTIVE	SOIC	DW	24	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCC4245A	Samples
SN74LVCC4245ADWR	ACTIVE	SOIC	DW	24	2000	RoHS \& Green	NIPDAU \| SN	Level-1-260C-UNLIM	-40 to 85	LVCC4245A	Samples
SN74LVCC4245ADWRG4	ACTIVE	SOIC	DW	24	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCC4245A	Samples
SN74LVCC4245ANSR	ACTIVE	SO	NS	24	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCC4245A	Samples
SN74LVCC4245APW	ACTIVE	TSSOP	PW	24	60	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LG245A	Samples
SN74LVCC4245APWR	ACTIVE	TSSOP	PW	24	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LG245A	Samples
SN74LVCC4245APWRE4	ACTIVE	TSSOP	PW	24	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LG245A	Samples
SN74LVCC4245APWRG4	ACTIVE	TSSOP	PW	24	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LG245A	Samples
SN74LVCC4245APWT	ACTIVE	TSSOP	PW	24	250	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LG245A	Samples
SN74LVCC4245APWTE4	ACTIVE	TSSOP	PW	24	250	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LG245A	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVCC4245A :

- Enhanced Product: SN74LVCC4245A-EP

NOTE: Qualified Version Definitions:

- Enhanced Product - Supports Defense, Aerospace and Medical Applications

TeXAS

TAPE AND REEL INFORMATION

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 $(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN74LVCC4245ADBR | SSOP | DB | 24 | 2000 | 330.0 | 16.4 | 8.2 | 8.8 | 2.5 | 12.0 | 16.0 | Q1 |
| SN74LVCC4245ADWR | SOIC | DW | 24 | 2000 | 330.0 | 24.4 | 10.75 | 15.7 | 2.7 | 12.0 | 24.0 | Q1 |
| SN74LVCC4245ADWR | SOIC | DW | 24 | 2000 | 330.0 | 24.4 | 10.75 | 15.7 | 2.7 | 12.0 | 24.0 | Q1 |
| SN74LVCC4245ADWRG4 | SOIC | DW | 24 | 2000 | 330.0 | 24.4 | 10.75 | 15.7 | 2.7 | 12.0 | 24.0 | Q1 |
| SN74LVCC4245ANSR | SO | NS | 24 | 2000 | 330.0 | 24.4 | 8.3 | 15.4 | 2.6 | 12.0 | 24.0 | Q1 |
| SN74LVCC4245APWR | TSSOP | PW | 24 | 2000 | 330.0 | 16.4 | 6.95 | 8.3 | 1.6 | 8.0 | 16.0 | Q1 |
| SN74LVCC4245APWT | TSSOP | PW | 24 | 250 | 330.0 | 16.4 | 6.95 | 8.3 | 1.6 | 8.0 | 16.0 | Q1 |

PACKAGE MATERIALS INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVCC4245ADBR	SSOP	DB	24	2000	853.0	449.0	35.0
SN74LVCC4245ADWR	SOIC	DW	24	2000	350.0	350.0	43.0
SN74LVCC4245ADWR	SOIC	DW	24	2000	364.0	361.0	36.0
SN74LVCC4245ADWRG4	SOIC	DW	24	2000	350.0	350.0	43.0
SN74LVCC4245ANSR	SO	NS	24	2000	367.0	367.0	45.0
SN74LVCC4245APWR	TSSOP	PW	24	2000	853.0	449.0	35.0
SN74LVCC4245APWT	TSSOP	PW	24	250	853.0	449.0	35.0

TUBE

B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W $(\mathbf{m m})$	T $(\boldsymbol{\mu m})$	B (mm)
SN74LVCC4245ADW	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74LVCC4245ADWE4	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74LVCC4245APW	PW	TSSOP	24	60	530	10.2	3600	3.5

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DW (R-PDSO-G24) PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AD.

DW (R-PDSO-G24)

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Refer to IPC7351 for alternate board design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

