SLLS151D - DECEMBER 1988 - REVISED APRIL 2003

 Meet or Exceed the Requirements of SN65C1154N PACKAGE SN75C1154N VACKAGE SN75C1154N VACKAGE SN75C1154N VACKAGE SN75C1154N VACKAGE (TOP VIEW) V.28 								
 Very Low Power Consumption 5 mW Typ 	V _{DD} [1 20] V _{CC} 1RA [2 19] 1RY							
 Wide Driver Supply Voltage ±4.5 V to ±15 V 	1DY [] 3 18 [] 1DA 2RA [] 4 17] 2RY							
 Driver Output Slew Rate Limited to 30 V/µs Max 	2DY [] 5 16 [] 2DA 3RA [] 6 15 [] 3RY							
 Receiver Input Hysteresis 1000 mV Typ Push-Pull Receiver Outputs 	3DY [] 7 14 [] 3DA 4RA [] 8 13 [] 4RY							
 Push-Pull Receiver Outputs On-Chip Receiver 1-µs Noise Filter 	4DY [] 9 12 [] 4DA V _{SS} [] 10 11 [] GND							

description/ordering information

The SN65C1164 and SN75C1154 are low-power BiMOS devices containing four independent drivers and receivers that are used to interface data terminal equipment (DTE) with data circuit-terminating equipment (DCE). These devices are designed to conform to TIA/EIA-232-F. The drivers and receivers of the SN65C1154 and SN75C1154 are similar to those of the SN75C188 quadruple driver and SN75C189A quadruple receiver, respectively. The drivers have a controlled output slew rate that is limited to a maximum of 30 V/ μ s and the receivers have filters that reject input noise pulses of shorter than 1 μ s. Both these features eliminate the need for external components.

The SN65C1154 and SN75C1154 have been designed using low-power techniques in a BiMOS technology. In most applications, the receivers contained in these devices interface to single inputs of peripheral devices such as ACEs, UARTs, or microprocessors. By using sampling, such peripheral devices usually are insensitive to the transition times of the input signals. If this is not the case, or for other uses, it is recommended that the SN65C1154 and SN75C1154 receiver outputs be buffered by single Schmitt input gates or single gates of the HCMOS, ALS, or 74F logic families.

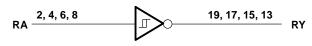
TA	PACKAG	€‡	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	PDIP (N)	Tube of 20	SN65C1154N	SN65C1154N
	PDIP (N)	Tube of 20	SN75C1154N	SN75C1154N
0°C to 70°C	SOIC (DW)	Tube of 25	SN75C1154DW	SN75C1154
0°C 1070°C		Reel of 2500	SN75C1154DWR	311/301134
	SOP (NS)	Reel of 2000	SN75C1154NSR	SN75C1154

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

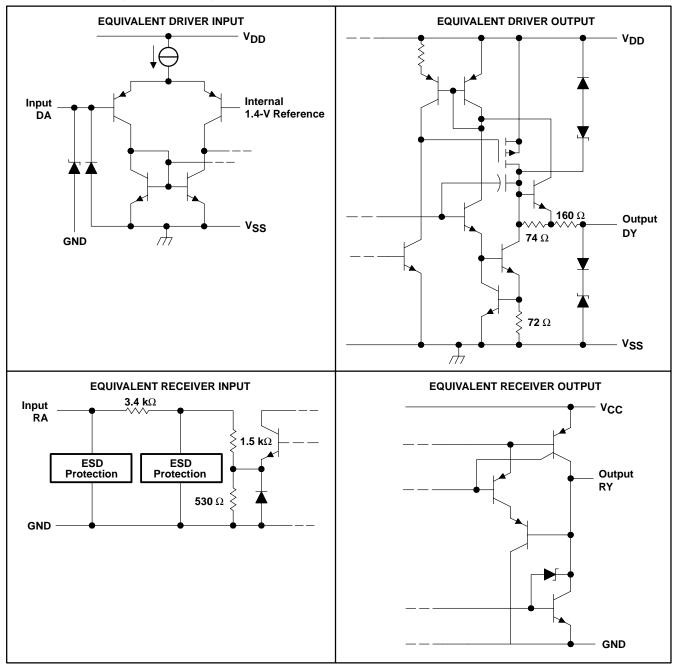


Copyright © 2003, Texas Instruments Incorporated

SLLS151D - DECEMBER 1988 - REVISED APRIL 2003

logic diagram (positive logic)

Typical of Each Receiver



Typical of Each Driver

SLLS151D - DECEMBER 1988 - REVISED APRIL 2003

schematics of inputs and outputs

Resistor values shown are nominal.

SLLS151D - DECEMBER 1988 - REVISED APRIL 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage: V _{DD} (see Note 1)	15 V
V _{SS}	
V _{CC}	
Input voltage range, V _I : Driver	\ldots V _{SS} to V _{DD}
Receiver	
Output voltage range, V _O :Driver	$(V_{SS} - 6 V)$ to $(V_{DD} + 6 V)$
Receiver	
Package thermal impedance, θ_{JA} (see Notes 2 and 3): DV	/ package 58°C/W
Ng	backage 69°C/W
NŠ	package 60°C/W
Operating virtual junction temperature, T _J	150°C
Storage temperature range, T _{stg}	
Lead temperature 1,6 mm (1/16 inch) from case for 10 sec	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage s are with respect to the network GND terminal.

- 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

			MIN	NOM	MAX	UNIT
V _{DD}	Supply voltage	4.5	12	15	V	
VSS	Supply voltage	-4.5	-12	-15	V	
VCC	Supply voltage		4.5	5	6	V
VI	Input voltage	Driver	V _{SS} + 2		V _{DD}	v
VI		Receiver			±25	
VIH	High-level input voltage	Driver	2			V
VIL	Low-level input voltage	Driver			0.8	V
ЮН	High-level output current	Receiver			-1	mA
IOL	High-level output current	Receiver			3.2	mA
ТА	Operating free-air temperature	SN65C1154	-40		85	°C
		0		70	5	

SLLS151D - DECEMBER 1988 - REVISED APRIL 2003

DRIVER SECTION

electrical characteristics over operating free-air temperature range, V_{DD} = 12 V, V_{SS} = –12 V, V_{CC} = 5 V $\pm 10\%$ (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS		MIN	түр†	MAX	UNIT
Vou	High-level output voltage	V _{IL} = 0.8 V,	RL = 3 kΩ,	V _{DD} = 5 V,	$V_{SS} = -5 V$	4	4.5		V
Vон	High-level output voltage	See Figure 1	_	V _{DD} = 12 V,	$V_{SS} = -12 V$	10	10.8		v
Vei	Low-level output voltage	V _{IH} = 2 V,	$V_{IH} = 2 V$, $R_I = 3 k\Omega$, V		$V_{SS} = -5 V$		-4.4	-4	V
VOL	(see Note 4)	See Figure 1		V _{DD} = 12 V,	$V_{SS} = -12 V$		-10.7	-10	v
IН	High-level input current	V _I = 5 V,	See Figure 2					1	μA
۱ _{IL}	Low-level input current	$V_{I} = 0,$	See Figure 2					-1	μA
IOS(H)	High-level short-circuit output current [‡]	V _I = 0.8 V,	$V_{O} = 0 \text{ or } V_{SS},$	See Figure 1		-7.5	-12	-19.5	mA
IOS(L)	Low-level short-circuit output current [‡]	V _I = 2 V,	$V_O = 0 \text{ or } V_{DD},$	See Figure 1		7.5	12	19.5	mA
	Supply ourrept from Van	No load,		V _{DD} = 5 V,	$V_{SS} = -5 V$		115	250	
ססו	Supply current from VDD	All inputs at 2 V	/ or 0.8 V	V _{DD} = 12 V,	$V_{SS} = -12 V$		115	250	μA
	Supply ourropt from Vee	No load,		V _{DD} = 5 V,	$V_{SS} = -5 V$		-115	-250	
155			All inputs at 2 V or 0.8 V		$V_{SS} = -12 V$		-115	-250	μA
r _o	Output resistance	V _{DD} = V _{SS} = V	$V_{\rm CC} = 0$, $V_{\rm O} = -2$	2 V to 2 V,	See Note 5	300	400		Ω

[†] All typical values are at $T_A = 25^{\circ}C$.

[‡] Not more than one output should be shorted at one time.

NOTES: 4. The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only.

5. Test conditions are those specified by TIA/EIA-232-F.

switching characteristics, V_{DD} = 12 V, V_{SS} = –12 V, V_{CC} = 5 V \pm 10%, T_A = 25°C (see Figure 3)

					•	-	•
	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low- to high-level output§	$R_L = 3 \text{ to } 7 \text{ k}\Omega,$	CL = 15 pF		1.2	3	μs
^t PHL	Propagation delay time, high- to low-level output§	$R_L = 3 \text{ to } 7 \text{ k}\Omega$,	CL = 15 pF		2.5	3.5	μs
^t TLH	Transition time, low- to high-level $\operatorname{output} \P$	$R_L = 3 \text{ to } 7 \text{ k}\Omega,$	CL = 15 pF	0.53	2	3.2	μs
^t THL	Transition time, high- to low-level $\operatorname{output} \P$	$R_L = 3 \text{ to } 7 \text{ k}\Omega,$	CL = 15 pF	0.53	2	3.2	μs
^t TLH	Transition time, low- to high-level output [#]	$R_L = 3 \text{ to } 7 \text{ k}\Omega$,	CL = 2500 pF		1	2	μs
^t THL	Transition time, high- to low-level output [#]	$R_L = 3 \text{ to } 7 \text{ k}\Omega$,	CL = 2500 pF		1	2	μs
SR	Output slew rate	$R_L = 3 \text{ to } 7 \text{ k}\Omega$,	CL = 15 pF	4	10	30	V/µs

§ tPHL and tPLH include the additional time due to on-chip slew rate control and are measured at the 50% points.

¶ Measured between 10% and 90% points of output waveform

[#] Measured between 3 V and –3 V points of output waveform (TIA/EIA-232-F conditions) with all unused inputs tied either high or low

SLLS151D - DECEMBER 1988 - REVISED APRIL 2003

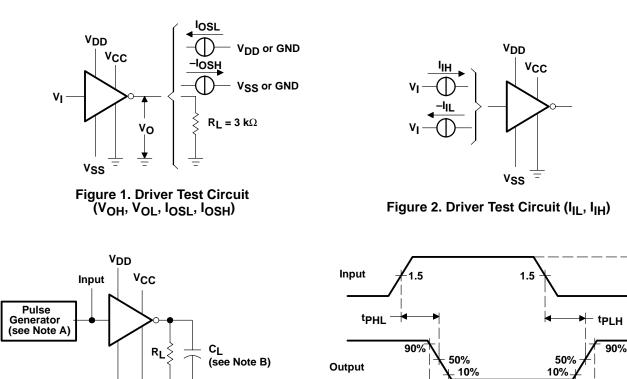
RECEIVER SECTION

electrical characteristics over operating free-air temperature range, $V_{DD} = 12 V$, $V_{SS} = -12 V$, V_{CC} = 5 V \pm 10% (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	MIN	TYP†	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	See Figure 5		1.7	2.1	2.55	V
V _{IT} _	Negative-going input threshold voltage	See Figure 5		0.65	1	1.25	V
V _{hys}	Input hysteresis voltage (V _{IT+} – V _{IT–})			600	1000		mV
		$V_{I} = 0.75 V$, $I_{OH} = -20 \mu A$,	See Figure 5 and Note 6	3.5			
Vari	High-level output voltage		V _{CC} = 4.5 V	2.8	4.4		V
VOH	nightever output voltage	V _I = 0.75 V, I _{OH} = −1 mA, See Figure 5	V _{CC} = 5 V	3.8	4.9		v
			V _{CC} = 5.5 V	4.3	5.4		
VOL	Low-level output voltage	VI = 3 V, IOL = 3.2 mA,	See Figure 5		0.17	0.4	V
	Lich lovel input ourrest	Vj = 25 V		3.6	4.6	8.3	~
ін	High-level input current	V _I = 3 V	0.43	0.55	1	mA	
L.		V _I = -25 V	-3.6	-5	-8.3	mA	
۱L	Low-level input current	V _I = -3 V		-0.43	-0.55	-1	mA
IOS(H)	Short-circuit output at high level	$V_{I} = 0.75 V, V_{O} = 0,$	See Figure 4		-8	-15	mA
IOS(L)	Short-circuit output at low level	$V_I=V_{CC},\qquad V_O=V_{CC},$	See Figure 4		13	25	mA
laa	Supply current from V = =	No load,	$V_{DD} = 5 V$, $V_{SS} = -5 V$	400 600		600	μA
lcc	Supply current from V_{CC}	All inputs at 0 or 5 V	$V_{DD} = 12 \text{ V}, V_{SS} = -12 \text{ V}$		400	600	μΑ

[†] All typical values are at $T_A = 25^{\circ}C$. NOTE 6: If the inputs are left unconnected, the receiver interprets this as an input low and the receiver outputs will remain in the high state.

switching characteristics, V_{DD} = 12 V, V_{SS} = –12 V, V_{CC} = 5 V \pm 10%, T_A = 25°C


	PARAMETER	T	EST CONDITIO	MIN	TYP	MAX	UNIT	
^t PLH	Propagation delay time, low- to high-level output	C _L = 50 pF,	$R_L = 5 k\Omega$,	See Figure 6		3	4	μs
^t PHL	Propagation delay time, high- to low-level output	C _L = 50 pF,	$R_L = 5 k\Omega$,	See Figure 6		3	4	μs
^t TLH	Transition time, low- to high-level output	C _L = 50 pF,	$R_L = 5 k\Omega$,	See Figure 6		300	450	ns
t⊤HL	Transition time, high- to low-level output	C _L = 50 pF,	$R_L = 5 k\Omega$,	See Figure 6		100	300	ns
^t w(N)	Duration of longest pulse rejected as noise‡	C _L = 50 pF,	$R_L = 5 k\Omega$		1		4	μs

[‡] The receiver ignores any positive- or negative-going pulse that is less than the minimum value of t_{w(N)} and accepts any positive- or negative-going pulse greater than the maximum of $t_{W(N)}$.

SLLS151D - DECEMBER 1988 - REVISED APRIL 2003

PARAMETER MEASUREMENT INFORMATION



TEST CIRCUIT

Vss =

-

VOLTAGE WAVEFORMS

Figure 3. Driver Test Circuit and Voltage Waveforms

tTHL →

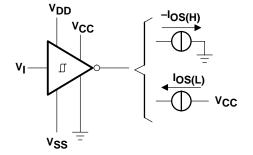
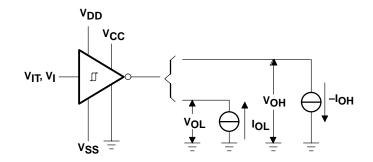
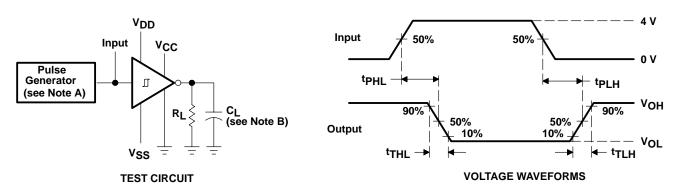
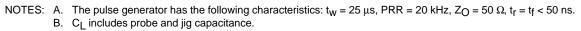



Figure 4. Receiver Test Circuit (IOSH, IOSL)

3 V

0 V


VOH


VOL

– ^tTLH

SLLS151D - DECEMBER 1988 - REVISED APRIL 2003

Figure 6. Receiver Test Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN65C1154N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	SN65C1154N	Samples
SN65C1154NE4	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	SN65C1154N	Samples
SN75C1154DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75C1154	Samples
SN75C1154DWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75C1154	Samples
SN75C1154DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75C1154	Samples
SN75C1154N	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75C1154N	Samples
SN75C1154NE4	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75C1154N	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

www.ti.com

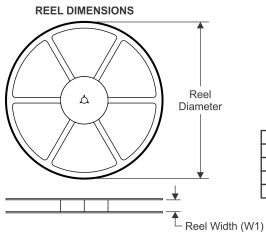
PACKAGE OPTION ADDENDUM

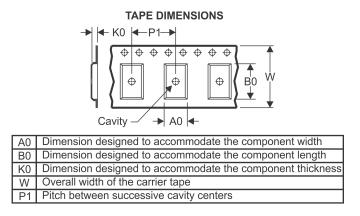
17-Mar-2017

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

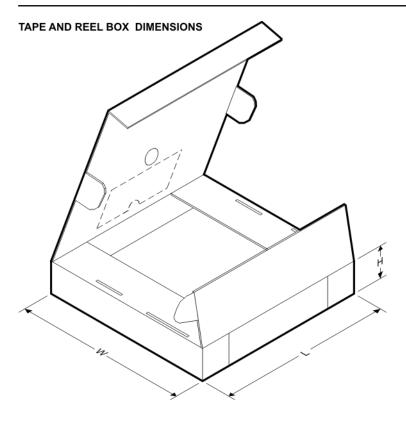

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


1	All dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	SN75C1154DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

3-Jan-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75C1154DWR	SOIC	DW	20	2000	367.0	367.0	45.0

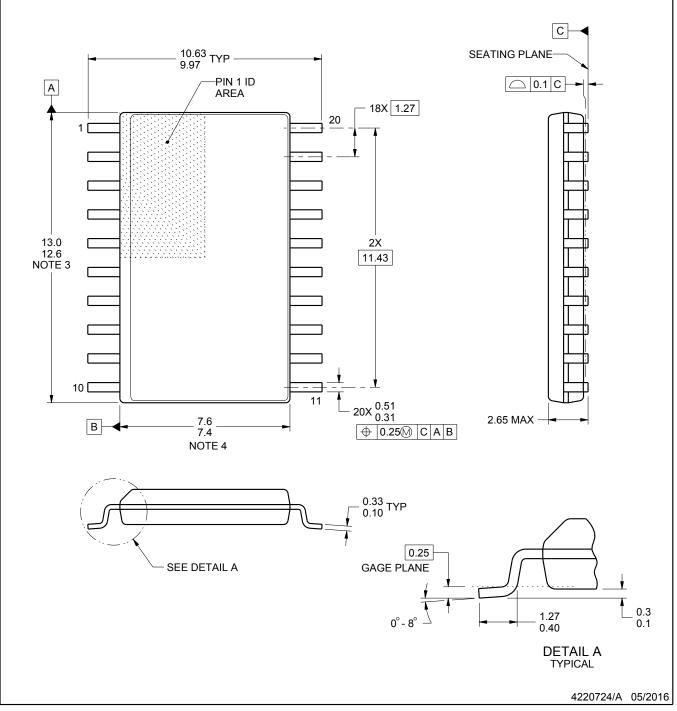
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


DW0020A

PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

DW0020A

EXAMPLE BOARD LAYOUT

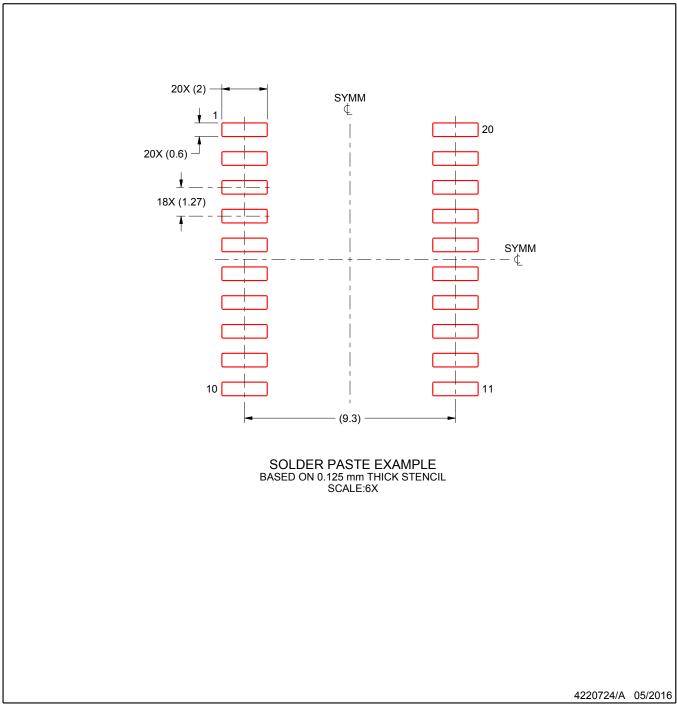
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0020A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated