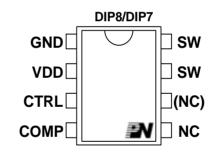


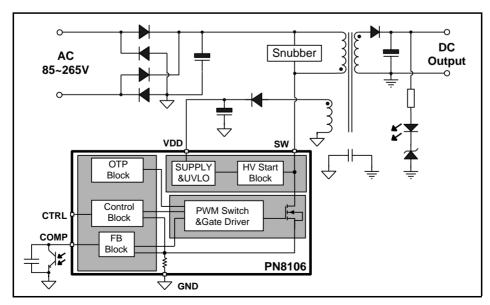
Low Standby-Power Off-line PWM converters

General Description

The PN8106 consists of an integrated Pulse Width Modulator (PWM) controller and power MOSFET, specifically designed for a high performance off-line converter with minimal external components. PN8106 offers complete protection coverage with automatic self-recovery feature including Cycle-by-Cycle current limiting (OCP), over voltage (OVP) and overload protection (OLP), over temperature protection (OTP) and soft-start. Burst mode operation and device very low consumption helps to meet the standby energy saving regulations. Excellent EMI performance is achieved with frequency modulation. The device consists of the high voltage start-up circuit. The device provides an advanced platform well suited for low standby-power and cost-effective flyback converters.


Features

- Internal 730 V avalanche-rugged power MOSFET
- Operating Frequency(60kHz)
- Frequency modulation for low EMI
- Burst-mode Operation
- No-load consumption power < 40 mW @220VAC
- Built-in Soft Start
- Internal HV Start-up Circuit
- Open frame output power >18W @230VAC
- Excellent Protection Coverage:
 - ♦ Over Temperature Protection (OTP)
 - ♦ Adjustable and accurate Over Voltage Protection (OVP)
 - ♦ Adjustable Pulse-by-Pulse Over Current Protection (OCP)
 - ♦ Over Load Protection (OLP)
 - ♦ Auto- recovery protection Mode


Applications

- Switch AC/DC Adaptor and Battery Charger
- Auxiliary Power for White Goods, PC, Audio
- LCD /PDP TV Power
- LED Drivers

Pin Assignments

Typical Application Schematic

Pin Definitions

Table 1. Pin Definitions

Pin Number	Pin Name	Pin Function Description	
1	GND	Ground.	
2	VDD	Positive Supply voltage Input	
3	CTRL	Control pin of adjustable Pulse-by-Pulse Current Limiting and output voltage monitoring.	
4	COMP	Voltage feedback. By connecting a opto-coupler to close the control loop and achieve the regulation.	
5	NC	No connection	
7 8	SW	HV MOSFET Drain pin. The Drain pin is connected to th primary lead of the transformer.	

Note: NC Pin can not be connected

Typical power

Table 2. Typical power

Part number		Adapter ⁽¹⁾	Open frame ⁽²⁾
PN8106	230 V _{AC}	16W	18 / 23W
	85-265 V _{AC}	10W	12 / 17W

Note:

- 1. Typical continuous power in a non-ventilated enclosed adapter measured at 55 ${\rm C}$ ambient temperature.
- 2. Maximum practical continuous power in an open-frame design at 55 ${\rm C}$ and 25 ${\rm C}$ ambient.

Absolute Maximum Ratings

Supply voltage Pin VDD.	0.3~20V
High-Voltage Pin, SW.	730V
Pin CTRL, COMP	0.3~5.5V
Operating Junction Temperature.	-40~140°C
Storage Temperature Range.	55~150℃
Lead Temperature.	250℃
Package Thermal Resistance (DIP-8).	100℃/W
Power Dissipation (DIP-8, at Ambient Temperature = 85 °C)	1W
ESD voltage Protection (HBM)	4.0kV
Pulse drain current.	3.0A

Electrical Characteristics

 $(T_J=25 \text{ C}, V_{DD}=14 \text{ V}; \text{ unless otherwise specified})$

Table 3. Power section

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
VBVDSS	Break-down voltage	ISW = 250uA, VCOMP = GND, $T_J = 25$ °C	730	750		V
Ioff	Off-state drain current	Vsw = 600 V, $Vcomp = GND$			100	uA
Prog()	Drain-source on state	ISW = 0.4A, VCOMP = 3V, VLUV = GND,TJ = 25° C		6	7	Ω
RDS(on)	resistance	ISW = 0.4A, VCOMP = 3V, TJ = 125°C		12	14	Ω
Coss	Effective output capacitance	Vsw = 0~640 V		22		pF

Table 4. Supply section

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT		
VOLTAGE								
Vsw_start	Drain-source start voltage		60	80	100	V		
Inn au	Start up charging current	$V_{SW} = 100 \text{ V}, V_{COMP} =$ $GND, V_{DD} = 4 \text{ V}$		-3		mA		
Idd_ch		Vsw = 100 V, $Vcomp =$ GND, $Vdd = 4 V$ after fault.		-0.6		mA		
Vdd	Operating voltage range	After turn-on	8.5		18	V		
VDDclamp	VDD clamp voltage	IDD = 20 mA	20			V		
VDDon	VDD start up threshold		12	13	14	V		
VDDoff	VDD under voltage shutdown threshold	VSW = 120 V, VCOMP = GND	7	8	9	V		
Vdd(restart)	VDD restart voltage threshold	Vsw = 120 V, Vcomp = GND	4	4.5	5	V		
SUPPLY CURRE	NT SECTION							
IDD0	Operating supply current, not switching	VCOMP = GND, FSW = 0 kHz, VLUV = GND, VDD = 10 V			0.9	mA		
Idd1	Operating supply current, switching	Vsw = 120 V, Fsw = 62 kHz			1.7	mA		
Idd_fault	Operating supply current, with protection tripping			280	350	uA		
Idd_off	Operating supply current with VDD < VDD_OFF	VDD = 7 V		240	300	uA		

Table 5. Controller section ($T_J = 25 \text{ C}$, $V_{DD} = 14 \text{ V}$; unless otherwise specified)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
COMP pin	•					
VCOMP_olp	Over load shut down threshold		4.5	4.8	5.2	V
VCOMP_lin	Linear dynamics upper limit		3.1	3.4	3.6	V
VCOMP_bm	Burst mode threshold	Voltage falling		0.45		V
VCOMP_bm_hys	Burst mode hysteresis	Voltage rising		50		mV
Icorp	Feedback sourced current	$V_{COMP} = 0.3 V$	-150	-200	-280	uA
ICOMP	Feedback sourced current	3.3 V < VCOMP < 4.8 V		-3		uA
CTRL pin						
V _{CTRL_1}	Low level clamp voltage	ICTRL = -100 uA		0.5		V
CURRENT LIMI	Т					
	Max drain current limitation	VCOMP = 4 V,				
I_{Dlim}		ICTRL = $-10 \mu A$	0.72	0.8	0.88	A
		TJ = 25 ℃				
tss	Soft-start time			8.5		ms
TON_MIN	Minimum turn ON time			450		ns
td	Propagation delay			150		ns
$t_{ m LEB}$	Leading edge blanking			300		ns
ID_BM	Peak drain current during burst mode	VCOMP = 0.6 V	160		180	mA
OSCILLATOR SI	ECTION					
Fosc	Switching Frequency	VDD = operating voltage range, VCOMP = 1 V	54	60	66	kHz
FD	Frequency Variation			±5		kHz
FM	Modulation frequency			250		Hz
Dмах	Maximum duty cycle		70		80	%
OVER VOLTAGE	E PROTECTION (OVP)					
V_{OVP}	Over voltage protection threshold		2.7	3	3.3	V
TSTROBE	Over voltage protection strobe time			2.2		us
THERMAL SECT	ΓΙΟΝ		•			
Tsd	Thermal shutdown temperature		140	160		\mathcal{C}
Тнүгт	Thermal shutdown hysteresis			30		С

Typical circuit

Figure 1. Flyback application (basic)

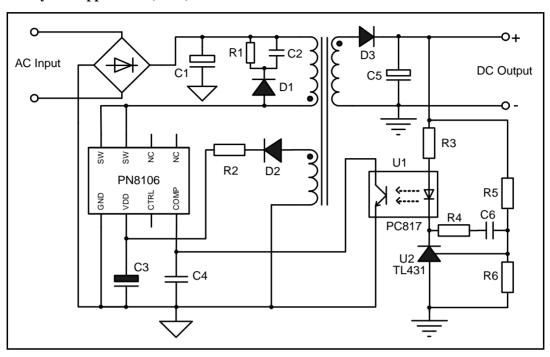
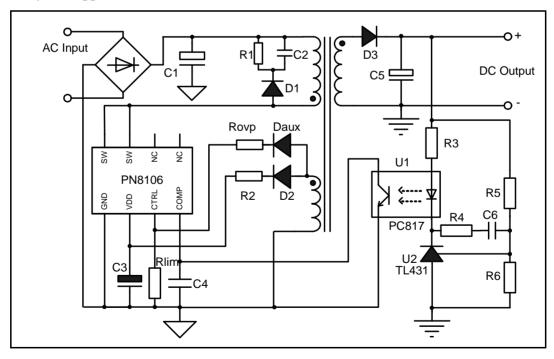



Figure 2. Flyback application

Operation Description

1. Startup

At start up, the internal high-voltage current source supplies the internal bias and charges the external VDD capacitor. When VDD reaches 13V, the device starts switching and the internal high-voltage current source stops charging the capacitor. The device is in normal operation provided VDD does not drop below 8V. After start up, the bias is supplied from the auxiliary transformer winding.

When high voltage current source is turned on, the charge current of the VDD capacitance is 3mA. If a fault happen, the circuit enter auto- recovery mode and IDD charge current is turned to 0.6mA.

2. Soft-start up

In the process of start up, the current of drain increases to maximum limitation step by step. As a result, it can reduce the stress of secondary diode greatly and is propity to prevent the transformer turning into the saturation states. Typically, the duration of soft-start is 8.5ms.

3. Gate driver

The internal power MOSFET in PN8106 is driven by a dedicated gate driver for power switch control. Too weak the gate driver strength results in higher conduction and switch loss of MOSFET while too strong gate drive results in worse EMI.

A good tradeoff is achieved through the built-in totem pole gate design with proper output strength and dead time. The good EMI system design and low idle loss is easier to achieve with this dedicated control scheme.

4. Oscillator

The switching frequency of PN8106 is internally fixed at 60 kHz. No external frequency setting components are required for PCB design.

The frequency modulation is implemented in PN8106. So that, it minimizes the conduction band EMI and therefore eases the system design because the tone energy could be spread out.

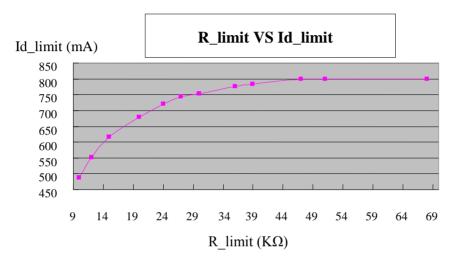
5. Feed-back

The PN8106 is a current mode controlled device. The feedback voltage is compared with an internally generated saw-tooth waveform. This controls the duty cycle directly.

6. Over load protection (OLP)

Overload is defined as the load current exceeding a pre-set level due to an accident event as a fault. In this case, the protection circuit should be activated to protect the SMPS. If VCOMP exceeds 3.4V, the feedback input diode is blocked and the 3uA current source starts to charge CCOMP slowly up. In this case, VCOMP increases until it reaches 4.8V, when the switching operation is terminated. The delay time from the overload detection to the device shutdown required to charge CCOMP from 3.4V to 4.8V with a 3uA current source.

7. Burst-mode operation


PN8106 enters burst-mode operation in order to minimize the power dissipation in standby mode. As the load decreases, the feedback voltage decreases. When the voltage on COMP pin falls below 0.45V typ, VCOMPbm, the device enters

burst mode and power MOSFET stops switching. It can be switched on again once the voltage on COMP pin exceeds 50mV over VCOMPbm. The switching frequency control also eliminates the audio noise at any loading condition.

8. Adjustable current limit of over current protection (OCP)

Cycle-by-Cycle current limiting is offered in PN8106 current mode converter. The switch current is detected by a sense resistor into the sense pin. The current limiting comparator is disabled and cannot turn off the power MOSFET during the blanking time. PN8106 have a maximum current limit. And also, the system designers could regulate this parameter through changing the Rlim value. see *Figure 3*.

Figure 3. Current limit vs Rlim.

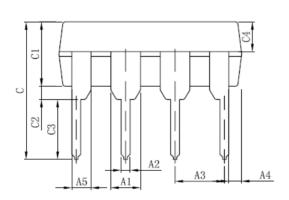
9. Over voltage protection(OVP)

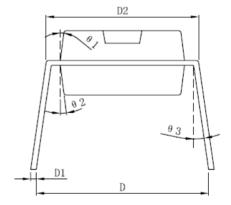
OVP function is achieved by CTRL pin which connects with the auxiliary transformer through the divided resistance in order to control and monitor the output voltage. While CTRL pin voltage is detected during the MOSFET off-time, if the detected voltage exceeds 3V for sequential four cycles, then OVP out signal turn into '1", over voltage protection enable. As a result, the device shut down and system enters auto- recovery mode operation.

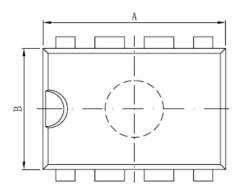
10. About CTRL pin Table6. CTRL pin configurations

Function	Optional	Rlim	Rovp	Daux
Adjustable current limit	Yes	see Figure 3	No	No
OVP	Yes	=68ΚΩ	Yes	Yes
Adjustable current limit+ OVP	No	/	/	/

11. Over temperature protection (OTP)


The power MOSFET and control chip are integrated, making it easier for control chip to detect the temperature of MOSFET. If the temperature exceeds about 160°C , OTP fault is activated.


Package Dimensions (DIP8/DIP7)


Table 7. DIP8 mechanical data

Size	Min(mm)	Max(mm)	Size	Min(mm)	Max(mm)	
symbol			symbol			
A	9.30	9.50	C2	0.50		
A1	1.5	524	C3	3.3		
A2	0.39	0.53	C4	1.57TYP		
A3	2.54		D	8.2 8.8		
A4	0.66	TYP	D1	0.2 0.35		
A5	0.99TYP		D2	7.62 7.87		
В	6.3	6.5	Θ1	8 TYP		
С	7	2	Θ2	8 TYP		
C1	3.3	3.5	Θ3	5 TYP		

Figure 4. Package dimensions

