

ARM[®]-based 32-bit Cortex[®]-M4 MCU+FPU with 256 to 4032 KB Flash, sLib, 2 QSPI, SDRAM, 2 OTGFS, EMAC, DVP, 18 timers, 3 ADCs, 23 communication interfaces

Features

- Core: ARM[®] 32-bit Cortex[®]-M4 CPU with FPU
 - 288 MHz maximum frequency, with a memory protection unit (MPU), single-cycle multiplication and hardware division
 - Floating point unit (FPU)
 - DSP instructions

Memories

- 256 to 4032 KBytes of internal Flash memory
- sLib: configurable part of main Flash set as a library area with code executable but secured, non-readable
- Default 384 KBytes of SRAM, configurable up to maximum 512 KBytes
- External memory controller (XMC) with 16bit data bus. Supports CF card, SRAM, PSRAM, NOR, NAND, and SDRAM memories
- XMC as LCD parallel interface, compatible with 8080/6800 modes

Power control (PWC)

- 2.6 to 3.6 V supply
- Power on reset (POR), low voltage reset (LVR), and power voltage monitoring (PVM)
- Low power modes: Sleep, Deepsleep, and Standby modes
- V_{BAT} supply for LEXT, ERTC, and twenty 32-bit battery powered registers (BPR)

Clock and reset management (CRM)

- 4 to 25 MHz crystal (HEXT)
- 48 MHz internal factory-trimmed clock (HICK), accuracy 1 % at $T_A = 25$ °C and 2.5 % at $T_A = -40$ to +105 °C, with automatic clock calibration (ACC)
- PLL flexible multiplication and division factor
- 32 kHz crystal (LEXT)
- 40 kHz internal clock (LICK)
- Analog
 - 3 x 12-bit 5.33 MSPS A/D converters, up to 24 input channels, 12/10/8/6-bit configurable resolution, hardware oversampling up to equivalent 16-bit resolution
 - Temperature sensor (V_{TS}), internal reference voltage (V_{INTRV}), VBAT monitor (V_{BAT}/4)
 - 2 x 12-bit D/A converters

■ DMA

- Two general DMA and one enhanced EDMA controllers
- Total 22 channels

Up to 116 fast GPIOs

- All mappable on 16 external interrupts (EXINT)
- Almost all 5 V-tolerant

■ Up to 18 timers (TMR)

- Up to 13 x 16-bit + 2 x 32-bit timers, each with 4 IC/OC/PWM or pulse counter
- 2 x watchdog timers (general WDT and windowed WWDT)
- SysTick timer: a 24-bit downcounter
- ERTC: enhanced RTC with auto-wakeup, alarms, subsecond accuracy, and hardware calendar; supports calibration

Up to 23 communication interfaces

- Up to 3 x I²C interfaces, support SMBus/PMBus
- Up to 4 x USARTs + 4 x UARTs, support ISO7816 interface, LIN, IrDA capability, modem control, and RS485 driver enable; support TX/RX swap
- Up to 4 x SPIs (36 Mbit/s), all with I²S interface multiplexed, I²S2/I²S3 support fullduplex
- Up to 2 x CAN interface (2.0B Active)
- Up to 2 x OTG full speed interface supporting crystal-less when device mode
- Up to 2 x SDIO interfaces
- Infrared transmitter (IRTMR)
- 10/100M Ethernet MAC (EMAC) with dedicated DMA and SRAM (4 KBytes): IEEE1588 hardware support, MII/RMII available
- 8~14-bit digital video parallel (DVP) interface
- CRC calculation unit
- 96-bit unique ID (UID)
- Debug mode
 - Serial wire debug (SWD) and JTAG interfaces
- Operating temperatures: -40 to +105 °C

Packages

- LQFP144 20 x 20 mm
- LQFP100 14 x 14 mm
- LQFP64 10 x 10 mm
- LQFP48 7 x 7 mm
- QFN48 6 x 6 mm

Table 1. AT32F435 device summary

Internal Flash	Part number
4032 KBytes	AT32F435ZMT7, AT32F435VMT7, AT32F435RMT7, AT32F435CMT7, AT32F435CMU7
1024 KBytes	AT32F435ZGT7, AT32F435VGT7, AT32F435RGT7, AT32F435CGT7, AT32F435CGU7
256 KBytes	AT32F435ZCT7, AT32F435VCT7, AT32F435RCT7, AT32F435CCT7, AT32F435CCU7

Table 2. AT32F437 device summary

Internal Flash	Part number
4032 KBytes	AT32F437ZMT7,AT32F437VMT7, AT32F437RMT7
1024 KBytes	AT32F437ZGT7,AT32F437VGT7, AT32F437RGT7
256 KBytes	AT32F437ZCT7, AT32F437VCT7, AT32F437RCT7

Contents

Des	criptions	11
Fun	ctionality overview	16
2.1	ARM [®] Cortex [®] -M4 with FPU	16
2.2	Memory	17
	2.2.1 Internal Flash memory	17
	2.2.2 Memory protection unit (MPU)	17
	2.2.3 Embedded SRAM	17
	2.2.4 External memory controller (XMC)	17
	2.2.5 Quad serial peripheral interface (QSPI)	17
2.3	Interrupts	18
	2.3.1 Nested vectored interrupt controller (NVIC)	18
	2.3.2 External interrupts (EXINT)	18
2.4	Power control (PWC)	18
	2.4.1 Power supply schemes	18
	2.4.2 Reset and power voltage monitoring (POR / LVR / PVM)	18
	2.4.3 Voltage regulator (LDO)	18
	2.4.4 Low-power modes	19
2.5	Boot modes	19
2.6	Clocks	20
2.7	General-purpose inputs / outputs (GPIO)	20
2.8	Direct Memory Access Controller (DMA)	21
2.9	Timers (TMR)	21
	2.9.1 Advanced timers (TMR1, TMR8, and TMR20)	22
	2.9.2 General-purpose timers (TMR2~5 and TMR9~14)	22
	2.9.3 Basic timers (TMR6 and TMR7)	23
	2.9.4 SysTick timer	23
2.10	Watchdog (WDT)	23
2.11	Window watchdog (WWDT)	23
2.12	Enhanced real-time clock (ERTC) and battery powered registers (BPR)	24
2 13	Communication interfaces	24
2.10	2 13 1 Serial peripheral interface (SPI) / Inter-integrated sound interface (I ² S)	24 21

<u>Y7=171;</u>

AT32F435/437 Series Datasheet

	2.13.3 Inter-integrated-circuit interface (I ² C)
	2.13.4 Secure digital input / output interface (SDIO)
	2.13.5 Controller area network (CAN)
	2.13.6 Universal serial bus On-The-Go full-speed (OTGFS)
	2.13.7 Infrared transmitter (IRTMR)
	2.13.8 Ethernet MAC interface (EMAC)
2.14	Digital video parrellel interface (DVP)
2.15	Cyclic redundancy check (CRC) calculation unit
2.16	Analog-to-digital converter (ADC)
	2.16.1 Temperature sensor (V _{TS})
	2.16.2 Internal reference voltage (VINTRV)
	2.16.3 V_{BAT} monitor $\left(V_{BAT}/4\right)$
2.17	Digital-to-analog converter (DAC)
2.18	Serial wire (SWD) / JTAG debug port
Pin 1 Mem Elec	functional definitions ory mapping trical characteristics
Pin 1 Merr Elec	functional definitions
Pin 1 Merr Elec 5.1	functional definitions
Pin 1 Merr Elec 5.1	functional definitions nory mapping trical characteristics Test conditions 5.1.1 Minimum and maximum values
Pin 1 Merr Elec 5.1	Functional definitions nory mapping trical characteristics Test conditions 5.1.1 Minimum and maximum values 5.1.2 Typical values
Pin 1 Merr Elec 5.1	functional definitions nory mapping trical characteristics Test conditions 5.1.1 Minimum and maximum values 5.1.2 Typical values 5.1.3 Typical curves
Pin 1 Merr Elec 5.1	functional definitions nory mapping trical characteristics Test conditions 5.1.1 Minimum and maximum values 5.1.2 Typical values 5.1.3 Typical curves 5.1.4 Power supply scheme
Pin 1 Merr Elec 5.1 5.2	functional definitions nory mapping trical characteristics Test conditions 5.1.1 Minimum and maximum values 5.1.2 Typical values 5.1.3 Typical curves 5.1.4 Power supply scheme Absolute maximum values
Pin 1 Merr Elec 5.1	functional definitions nory mapping
Pin 1 Merr Elec 5.1 5.2	functional definitions nory mapping trical characteristics Test conditions. 5.1.1 Minimum and maximum values 5.1.2 Typical values. 5.1.3 Typical curves. 5.1.4 Power supply scheme Absolute maximum values. 5.2.1 Ratings 5.2.2 Electrical sensitivity.
Pin 1 Merr Elec 5.1 5.2 5.3	functional definitions nory mapping trical characteristics Test conditions 5.1.1 Minimum and maximum values 5.1.2 Typical values 5.1.3 Typical curves 5.1.4 Power supply scheme Absolute maximum values 5.2.1 Ratings 5.2.2 Electrical sensitivity
Pin 1 Merr Elec 5.1 5.2	functional definitions nory mapping trical characteristics Test conditions 5.1.1 Minimum and maximum values 5.1.2 Typical values 5.1.3 Typical curves 5.1.4 Power supply scheme Absolute maximum values 5.2.1 Ratings 5.2.2 Electrical sensitivity Specification 5.3.1 General operating conditions
Pin 1 Merr Elec 5.1 5.2	functional definitions nory mapping trical characteristics Test conditions 5.1.1 Minimum and maximum values 5.1.2 Typical values 5.1.3 Typical curves 5.1.4 Power supply scheme Absolute maximum values 5.2.1 Ratings 5.2.2 Electrical sensitivity Specification 5.3.1 General operating conditions 5.3.2 Operating conditions at power-up / power-down
Pin 1 Merr Elec 5.1 5.2	Functional definitions hory mapping trical characteristics Test conditions 5.1.1 Minimum and maximum values 5.1.2 Typical values 5.1.3 Typical curves 5.1.4 Power supply scheme Absolute maximum values 5.2.1 Ratings 5.2.2 Electrical sensitivity Specification 5.3.1 General operating conditions 5.3.2 Operating conditions at power-up / power-down 5.3.3 Embedded reset and power control block characteristics

<u>, 12157</u>

AT32F435/437 Series Datasheet

		5.3.6	External clock source characteristics	61
		5.3.7	Internal clock source characteristics	65
		5.3.8	PLL characteristics	66
		5.3.9	Wakeup time from low-power mode	66
		5.3.10	EMC characteristics	67
		5.3.11	GPIO port characteristics	68
		5.3.12	NRST pin characteristics	70
		5.3.13	XMC (SDRAM included) characteristics	70
		5.3.14	TMR timer characteristics	90
		5.3.15	SPI / I ² S characteristics	90
		5.3.16	QSPI characteristics	94
		5.3.17	I ² C characteristics	94
		5.3.18	SDIO characteristics	95
		5.3.19	OTGFS characteristics	96
		5.3.20	EMAC characteristics	97
		5.3.21	DVP characteristics	99
		5.3.22	12-bit ADC characteristics	100
		5.3.23	Internal reference voltage (VINTRV) characteristics	103
		5.3.24	Temperature sensor (V_{TS}) characteristics	103
		5.3.25	V_{BAT} voltage monitor characteristics	104
		5.3.26	12-bit DAC specifications	105
6	Pac	kage ir	nformation	106
	6.1	LQFP	144 package information	106
	6.2	LQFP	100 package information	108
	6.3	LQFP	64 package information	110
	6.4	LQFP	48 package information	112
	6.5	QFN4	8 package information	114
	6.6	Device	e marking	115
	6.7	Therm	nal characteristics	116
7	Part	numb	ering	117
8	Doc	ument	revision history	118

List of Tables

Table 1. AT32F435 device summary	2
Table 2. AT32F437 device summary	2
Table 3. AT32F435 features and peripheral counts	12
Table 4. AT32F437 features and peripheral counts	14
Table 5. Bootloader supporting part numbers and pin configurations	20
Table 6. Timer feature comparison	21
Table 7. USART/UART feature comparison	25
Table 8. AT32F435/437 series pin definitions	34
Table 9. XMC pin definition	42
Table 10. Voltage characteristics	47
Table 11. Current characteristics	47
Table 12. Thermal characteristics	47
Table 13. ESD values	48
Table 14. Latch-up values	48
Table 15. General operating conditions	49
Table 16. Operating voltage and ambient temperature of accessing ERTC registers	49
Table 17. Operating conditions at power-up/power-down	50
Table 18. Embedded reset and power management block characteristics	50
Table 19. Internal Flash memory characteristics	51
Table 20. Internal Flash memory endurance and data retention	51
Table 21. Typical current consumption in Run mode	53
Table 22. Typical current consumption in Sleep mode	54
Table 23. Maximum current consumption in Run mode	55
Table 24. Maximum current consumption in Sleep mode	56
Table 25. Typical and maximum current consumptions in Deepsleep and Standby modes	57
Table 26. Typical and maximum current consumptions on V_{BAT}	58
Table 27. Peripheral current consumption	59
Table 28. HEXT 4-25 MHz crystal characteristics ⁽¹⁾⁽²⁾	61
Table 29. HEXT external source characteristics	62
Table 30. LEXT 32.768 kHz crystal characteristics ⁽¹⁾⁽²⁾	63
Table 31. LEXT external source characteristics	64
Table 32. HICK clock characteristics	65
Table 33. LICK clock characteristics	65
Table 34. PLL characteristics	66

<u>, 17[57]</u>

AT32F435/437 Series Datasheet

Table 35. Low-power mode wakeup time	66
Table 36. EMS characteristics	67
Table 37. GPIO static characteristics	68
Table 38. Output voltage characteristics	69
Table 39. Input AC characteristics	69
Table 40. NRST pin characteristics	70
Table 41. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings	71
Table 42. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings	72
Table 43. Asynchronous multiplexed PSRAM/NOR read timings	73
Table 44. Asynchronous multiplexed PSRAM/NOR write timings	74
Table 45. Synchronous non-multiplexed PSRAM/NOR read timings	76
Table 46. Synchronous non-multiplexed PSRAM write timings	77
Table 47. Synchronous multiplexed PSRAM/NOR read timings	78
Table 48. Synchronous multiplexed PSRAM write timings	79
Table 49. NAND Flash read and write timings	
Table 50. PC Card/CF read and write timings	
Table 51. SDRAM read timings	
Table 52. SDRAM write timings	
Table 53. TMR characteristics	90
Table 54. SPI characteristics	90
Table 55. I ² S characteristics	92
Table 56. SD/MMC characteristics	95
Table 57. OTGFS startup time	96
Table 58. OTGFS DC electrical characteristics	96
Table 59. OTGFS electrical characteristics	96
Table 60. EMAC DC electrical characteristics	97
Table 61. Dynamic characteristics: EMAC signals for SMI	97
Table 62. Dynamic characteristics: EMAC signals for RMII	97
Table 63. Dynamic characteristics: EMAC signals for MII	98
Table 64. ADC characteristics	100
Table 65. R _{AIN} max for f _{ADC} = 80 MHz	101
Table 66. ADC accuracy ⁽¹⁾	101
Table 67. Internal reference voltage characteristics	103
Table 68. Temperature sensor characteristics	103
Table 69. VBAT voltage monitor characteristics	104

Table 70. DAC characteristics	. 105
Table 71. LQFP144 – 20 x 20 mm 144 pin low-profile quad flat package mechanical data	. 107
Table 72. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package mechanical data	. 109
Table 73. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data	111
Table 74. LQFP48 – 7 x 7 mm 48 pin low-profile quad flat package mechanical data	. 113
Table 75. QFN48 – 6 x 6 mm 48 pin quad flat no-leads package mechanical data	. 115
Table 76. Package thermal characteristics	. 116
Table 77. AT32F435/437 series part numbering	. 117
Table 78. Document revision history	. 118

List of figures

Figure 1. AT32F435/437 block diagram	16
Figure 2. AT32F435/437 LQFP144 pinout	30
Figure 3. AT32F435/437 LQFP100 pinout	31
Figure 4. AT32F435/437 LQFP64 pinout	32
Figure 5. AT32F435/437 LQFP48 pinout	33
Figure 6. AT32F435/437 QFN48 pinout	33
Figure 7. Memory map	45
Figure 8. Power supply scheme	46
Figure 9. Power on reset and low voltage reset waveform	51
Figure 10. Typical current consumption in Deepsleep mode with regulator in run mode and	
output 1.2 V vs. temperature at different V_{DD}	57
Figure 11. Typical current consumption in Deepsleep mode with regulator in low-power	
mode and output 1.0 V vs. temperature at different V_{DD}	57
Figure 12. Typical current consumption in Standby mode vs. temperature at different V_{DD}	58
Figure 13. Typical current consumption on V_{BAT} with LEXT and ERTC ON vs. temperature	
at different V _{BAT}	58
Figure 14. HEXT typical application with an 8 MHz crystal	61
Figure 15. HEXT external source AC timing diagram	62
Figure 16. LEXT typical application with a 32.768 kHz crystal	63
Figure 17. LEXT external source AC timing diagram	64
Figure 18. HICK clock frequency accuracy vs. temperature	65
Figure 19. Recommended NRST pin protection	70
Figure 20. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	71
Figure 21. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	72
Figure 22. Asynchronous multiplexed PSRAM/NOR read waveforms	73
Figure 23. Asynchronous multiplexed PSRAM/NOR write waveforms	74
Figure 24. Synchronous non-multiplexed PSRAM/NOR read timings	76
Figure 25. Synchronous non-multiplexed PSRAM write timings	77
Figure 26. Synchronous multiplexed PSRAM/NOR read timings	78
Figure 27. Synchronous multiplexed PSRAM write timings	79
Figure 28. NAND controller read waveforms	81
Figure 29. NAND controller write waveforms	81
Figure 30. NAND controller common memory read waveforms	81
Figure 31. NAND controller for common memory write waveforms	82

AT32F435/437 Series Datasheet

1 **Descriptions**

The AT32F435/437 is based on the high-performance ARM[®] Cortex[®]-M4 32-bit RISC core running up to 288 MHz. The Cortex[®]-M4 core features a Floating point unit (FPU) single precision which supports all ARM single-precision data processing instructions and data type. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The AT32F435/437 incorporates high-speed embedded memories (up to 4032 KBytes of internal Flash memory and configurable maximum 512 KBytes of SRAM), enhanced GPIOs and peripherals connected to two APB buses. Any block of the embedded Flash memory can be protected by the "sLib", functioning as a security area with code-executable only. In addition, the AT32F435/437 includes high-level memory extension: one external memory controller (XMC) (SDRAM interfaced included) and two quad-SPI interface (QSPI).

The AT32F435/437 offers three 12-bit ADCs, two 12-bit DACs, 13 general-purpose 16-bit timers (three PWM advanced timers for motor control included), two general-purpose 32-bit timers, and one low-power ERTC. It supports standard and advanced communication interfaces: up to three I²Cs, four SPIs (all multiplexed as I²Ss), two SDIOs, four USARTs plus four UARTs, one infrared transmitter, two OTGFS interfaces, two CANs, one digital video parallel (DVP) interface, and an Ethernet MAC (EMAC) interface.

The AT32F435/437 operates in the -40 to +105 °C temperature range, from a 2.6 to 3.6 V power supply. A comprehensive set of power-saving mode meets the requirements of low-power application.

The AT32F435/437 offers devices in different package types. Depending on the different packages, the pin-to-pin is completely compatible among devices, and also the software and functionality. Only different sets of peripherals are included.

		AT3	2F435×	xU7	AT32F435xxT7											
	Part Number	СС	CG	СМ	СС	CG	СМ	RC	RG	RM	VC	VG	VM	ZC	ZG	ZM
F	Frequency (MHz)								288							
(1)(2)	ZW (KBytes)	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256
-lash	NZW (KBytes)	0	768	3776	0	768	3776	0	768	3776	0	768	3776	0	768	3776
Int. F	Total (KBytes)	256	1024	4032	256	1024	4032	256	1024	4032	256	1024	4032	256	1024	4032
S	SRAM ⁽²⁾ (KBytes)					384	by defa	ault, co	nfigura	ble ma	ximum	512				
	XMC		-			-			1 ⁽³⁾			1 ⁽⁴⁾⁽⁵⁾			1	
	SDRAM		-			-			-			1 ⁽⁴⁾			1	
	QSPI		2			2			2			2			2	
	Advanced		3			3			3			3			3	
	32-bit general-		2			2			2			2			2	
	16-bit general- purpose	8				8			8			8		8		
ners	Basic		2			2		2			2			2		
Ë	SysTick	1			1			1			1			1		
	WDT	1			1			1			1			1		
	WWDT		1		1			1			1			1		
ERTC			1			1			1			1			1	
ဖွ l ² C		3			3			3			3			3		
erfac	SPI/I ² S		4/4 (2 full-duplex)			4/4 (2 full-duplex)			4/4 (2 full-duplex)			4/4 (2 full-duplex)			4/4 (2 full-duplex)	
ר int∈	USART + UART	3 + 4 ⁽⁶⁾			3 + 4 ⁽⁶⁾			4 + 4		4 + 4			4 + 4			
atio	SDIO	SDIO 1 ⁽⁷⁾			1 ⁽⁷⁾			2			2			2		
Junic	OTGFS		2		2			2			2			2		
omn	CAN		2			2		2				2		2		
С	IRTMR		1			1			1			1			1	
ð	12-bit ADC								3							
nalc	numbers/channels		10			10			16			16			24	
A	12-bit DAC numbers								2							
	DVP ⁽⁸⁾		1		1			1			1			1		
	GPIO		39			39		53			84				116	
	Operating temperatures							-40	to +10	5 °C						
Packages		6	QFN48 5 x 6 mr	n	L 7	_QFP48 ′x 7 mr	8 m	L 10	_QFP64 x 10 m	4 ոm	LQFP100 14 x 14 mm			L 20	LQFP144 20 x 20 mm	

- (1) ZW = zero wait-state, up to SYSCLK 288 MHz NZW = non-zero wait-state
- (2) The internal Flash and SRAM sizes are configurable with User's System Data, configurable in every 64-KByte step. Take the total internal flash size 256-KByte device as an example, on which the Flash/SRAM can be configured into three options below:
 - ZW: 256 KBytes, NZW: 0 KBytes, SRAM: 384 KBytes; (default setting before shipping form the factory)
 - ZW: 192 KBytes, NZW: 64 KBytes, SRAM: 448 KBytes;
 - ZW: 128 KBytes, NZW: 128 KBytes, SRAM: 512 KBytes.

Take the total internal flash size 1024-KByte device as an example, on which the Flash/SRAM can be configured into seven options below:

- ZW: 512 KBytes, NZW: 512 KBytes, SRAM: 128 KBytes;

- ZW: 256 KBytes, NZW: 768 KBytes, SRAM: 384 KBytes; (default setting before shipping form the factory)

- ZW: 128 KBytes, NZW: 896 KBytes, SRAM: 512 KBytes.

Take the total internal flash size 4032-KByte device as an example, on which the Flash/SRAM can be configured into seven options below:

- ZW: 512 KBytes, NZW: 3520 KBytes, SRAM: 128 KBytes;
- ZW: 256 KBytes, NZW: 3776 KBytes, SRAM: 384 KBytes; (default setting before shipping form the factory)
- ZW: 128 KBytes, NZW: 3904 KBytes, SRAM: 512 KBytes.
- (3) For LQFP64 package, XMC only supports the LCD panel with 8-bit mode.
- (4) For the LQFP100 package, XMC supports to directly connect a multiplexed NOR/PSRAM memory, a 16- or 8-bit NAND Flash memory, and the SDRAM. The interrupt line cannot be used since Port G is not available in this package.
- (5) For the LQFP100 package, XMC supports a non-multiplexed NOR/PSRAM memory via the external latch circuit. Please refer to the application note AN0068.
- (6) For LQFP48 and QFN48 packages, UART8 is not available and USART6 is used as UART for no CK pinout.
- (7) For LQFP48 and QFN48 packages, either SDIO1 or SDIO2 can be used. The SDIO2 only supports maximum 4-bit (D0~D3) mode.
- (8) Only LQFP144 package supports maximum 14-bit mode; LQPF48 and QFN48 packages support only 8-bit mode; LQFP100 and LQFP64 packages support maximum 12-bit mode.

		AT32F437xxT7									
	Part Number	RC	RG	RM	VC	VG	VM	ZC	ZG	ZM	
Frequency (MHz)						288					
(1)(2)	ZW (KBytes)	256	256	256	256	256	256	256	256	256	
lash	NZW (KBytes)	0	768	3776	0	768	3776	0	768	3776	
Int. F	Total (KBytes)	256	1024	4032	256	1024	4032	256	1024	4032	
	SRAM ⁽²⁾ (KBytes)			384	(default), m	aximum 51	2 (configur	able)			
	XMC		1 ⁽³⁾			1 ⁽⁴⁾⁽⁵⁾			1		
	SDRAM		-			1 ⁽⁴⁾			1		
	QSPI		2			2			2		
	Advanced		3			3			3		
	32-bit general- purpose		2			2			2		
	16-bit general- purpose		8			8			8		
ners	Basic		2			2			2		
Tin	SysTick		1			1		1			
	WDT		1			1		1			
	WWDT		1			1		1			
	ERTC		1			1		1			
	l ² C		3		3			3			
aces	SPI/I ² S	4/4	(2 full-dup	lex)	4/4 (2 full-duplex)			4/4	(2 full-dupl	ex)	
Iterfa	USART + UART		4 + 4			4 + 4			4 + 4		
ion ir	SDIO		2		2			2			
nicati	OTGFS		2			2		2			
Inmu	CAN		2			2		2			
Con	EMAC		1			1		1			
	IRTMR		1			1			1		
бc	12-bit ADC				1	3		1			
Analo	numbers/channels		16			16			24		
1	12-bit DAC numbers				1	2					
	DVP ⁽⁶⁾		1		1			1			
	GPIO		53			84			116		
Ор	erating temperatures				-4	0 to +105 °	С				
	Packages	LQFP64 10 x 10 mm				LQFP100 14 x 14 mm	1	LQFP144 20 x 20 mm			

Table 4. AT32F437 features and peripheral counts

- (1) ZW = zero wait-state, up to SYSCLK 288 MHz NZW = non-zero wait-state
- (2) The internal Flash and SRAM sizes are configurable with User's System Data, configurable in every 64-KByte step. Take the total internal flash size 256-KByte device as an example, on which the Flash/SRAM can be configured into three options below:
 - ZW: 256 KBytes, NZW: 0 KBytes, SRAM: 384 KBytes; (default setting before shipping form the factory)
 - ZW: 192 KBytes, NZW: 64 KBytes, SRAM: 448 KBytes;
 - ZW: 128 KBytes, NZW: 128 KBytes, SRAM: 512 KBytes.

Take the total internal flash size 1024-KByte device as an example, on which the Flash/SRAM can be configured into seven options below:

- ZW: 512 KBytes, NZW: 512 KBytes, SRAM: 128 KBytes;

- ZW: 256 KBytes, NZW: 768 KBytes, SRAM: 384 KBytes; (default setting before shipping form the factory)

- ZW: 128 KBytes, NZW: 896 KBytes, SRAM: 512 KBytes.

Take the total internal flash size 4032-KByte device as an example, on which the Flash/SRAM can be configured into seven options below:

- ZW: 512 KBytes, NZW: 3520 KBytes, SRAM: 128 KBytes;
- ZW: 256 KBytes, NZW: 3776 KBytes, SRAM: 384 KBytes; (default setting before shipping form the factory)

- ZW: 128 KBytes, NZW: 3904 KBytes, SRAM: 512 KBytes.

- (3) For LQFP64 package, XMC only supports the LCD panel with 8-bit mode.
- (4) For the LQFP100 package, XMC supports to directly connect a multiplexed NOR/PSRAM memory, a 16- or 8-bit NAND Flash memory, and the SDRAM. The interrupt line cannot be used since Port G is not available in this package.
- (5) For the LQFP100 package, XMC supports a non-multiplexed NOR/PSRAM memory via the external latch circuit. Please refer to the application note AN0068.
- (6) Only LQFP144 package supports maximum 14-bit mode; LQFP100 and LQFP64 packages support maximum 12-bit mode.

2 Functionality overview

2.1 ARM[®] Cortex[®]-M4 with FPU

The ARM Cortex[®]-M4 processor is the latest generation of ARM processors for embedded systems. It is a 32-bit RISC processor features exceptional code efficiency, outstanding computational performance and advanced response to interrupts. The processor supports a set of DSP instructions which enable efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up floating point calculation while avoiding saturation. *Figure 1* shows the general block diagram of the AT32F435/437.

Figure 1. AT32F435/437 block diagram

2.2 Memory

2.2.1 Internal Flash memory

Up to 4032 KBytes of embedded Flash is available for storing programs and data. User can configure any part of the embedded Flash memory protected by the sLib, functioning as a security area with code-executable only but non-readable. "sLib" is a mechanism that protects the intelligence of solution venders and facilitates the second-level development by customers.

There is another 18-KByte boot code area in which the bootloader is stored.

A User's System Data block is included, which is used as configuration of the hardware behaviors such as read/erase/write protection and watchdog self-enable. User's System Data allows to set erase/write and read protection individually, with the latter supporting low-level and high-level protection.

2.2.2 Memory protection unit (MPU)

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area consists of up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The MPU is especially suited to the applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system).

2.2.3 Embedded SRAM

384 KBytes of embedded SRAM by default and configurable maximum 512 KBytes, accessed (read/write) at CPU clock speed with 0 wait states.

2.2.4 External memory controller (XMC)

The XMC is embedded in the AT32F435/437. It has four Chip Select outputs supporting the following modes: CF card, SRAM, PSRAM, NOR flash, NAND flash, and SDRAM.

Main features:

- 8- or 16-bit data bus width
- Read FIFO for SDRAM controller
- Write FIFO

The XMC can be configured to interface with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes.

2.2.5 Quad serial peripheral interface (QSPI)

The AT32F435/437 embed two quad serial peripheral interface (QSPI). This is a dedicated communication interface which connects single, dual, or quad data lines of SPI flash memory or SPI RAM. It can work in indirect mode (fully accessed by control registers), status polling mode, or memory mapping mode with up to 256 MBytes mapping of the external SPI flash or RAM. QSPI can be accessed by bytes, half-words, or words, supporting execution-in-place (XIP) operation and fully programmable command and frame format.

2.3 Interrupts

2.3.1 Nested vectored interrupt controller (NVIC)

The AT32F435/437 embed a nested vectored interrupt controller that is able to manage 16 priority levels and handle maskable interrupt channels plus the 16 interrupt lines of the Cortex[®]-M4 with FPU. This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.2 External interrupts (EXINT)

The external interrupt (EXINT), which is connected directly with NVIC, consists of 22 edge detector lines used to generate interrupt requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The external interrupt lines connects up to 16 GPIOs.

2.4 Power control (PWC)

2.4.1 Power supply schemes

- V_{DD} = 2.6~3.6 V: used as an external power supply for GPIOs and the internal block such as regulator (LDO) provided externally through V_{DD} pins.
- V_{DDA} = 2.6~3.6 V: used as an external analog power supply for ADC and DAC. V_{DDA} and V_{SSA} must be the same voltage potential as V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.62~3.6 V: V_{BAT} pin can supply V_{BAT} domain from the external battery or super capacity, or from V_{DD} without the external battery or super capacity. V_{BAT} (through power switch) supplies for ERTC, external crystal 32 kHz (LEXT), and battery powered registers (BPR) when V_{DD} is not present.

2.4.2 Reset and power voltage monitoring (POR / LVR / PVM)

The device has an integrated power-on reset (POR)/low voltage reset (PDR) circuitry. It is always active, and allows proper operation starting from/down to 2.6 V. The device remains in reset mode when V_{DD} goes below a specified threshold (V_{LVR}) without the need for an external reset circuit.

The device embeds a power voltage monitor (PVM) that monitors the V_{DD} power supply and compares it to the V_{PVM} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVM} threshold and/or when V_{DD} rises above the V_{PVM} threshold. The PVM is enabled by software.

2.4.3 Voltage regulator (LDO)

The LDO has three operating modes: normal, low-power, and power down.

- Normal mode is used in Run/Sleep mode and in the Deepsleep mode;
- Low-power mode can be used in the Deepsleep mode;
- Power down mode is used in Standby mode: The regulator output is in high impedance and the kernel circuitry is powered down but the contents of the registers and SRAM are lost.

This LDO operates always in its normal mode after reset.

The LDO has the ability to adjust its output voltage. Besides 1.2V by default, it supports 1.3/1.1/1.0 V adjusted by software so as to enable flexibility between performance and power consumption. Note that different LDO voltages have limitation about the maximum frequency of the AHB clock. Please check *Table 15* and follow steps specified in the AT32F435/437 reference manual to switch LDO voltage and set the system clock.

2.4.4 Low-power modes

The AT32F435/437 supports three low-power modes:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Deepsleep mode

Deepsleep mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the LDO power domain are stopped, disabling the PLL, the HICK clock, and the HEXT crystal. The voltage regulator can also be put in normal or low-power mode, with output voltage being adjustable.

The device can be woken up from Deepsleep mode by any of the EXINT line. The EXINT line source can be one of the 16 external lines, the PVM output, an ERTC alarm/wakeup/tamper/time stamp event, and the OTGFS or the Ethernet MAC wakeup.

• Standby mode

The Standby mode is used to acquire the lowest power consumption. The internal voltage regulator is switched off so that the entire LDO power domain is powered off. The PLL, the HICK clock and the HEXT crystal are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the BPR domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), a WDT reset, a rising edge on the WKUP pin, or an ERTC alarm/wakeup/tamper/time stamp occurs.

Note: The ERTC and the corresponding clock sources are not stopped by entering Deepsleep or Standby mode. WDT depends on the User's System Data setting.

2.5 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from user Flash. For the AT32F435/437xG, user has an option to boot from any of two memory banks. By default, boot from Flash memory bank 1 is selected. User can choose to boot from Flash memory bank 2 by setting a bit in the User's System Data area;
- Boot from boot code area;
- Boot from embedded SRAM.

The bootloader is stored in boot code area. It is used to reprogram the Flash memory through USART1, USART2, USART3, OTGFS1, or OTGFS2. *Table 5* provides the supporting interfaces of the Bootloader regarding AT32F435/437 part numbers and pin configurations.

Interface	Part number	Pin
	All part numbers	PA9: USART1_TX
USARTI	Air part numbers	PA10: USART1_RX
	AT32F435ZxT7,AT32F435VxT7	PD5: USART2_TX
	AT32F437ZxT7,AT32F437VxT7	PD6: USART2_RX
USAR12	Other part numbers	PA2: USART2_TX
	Other part humbers	PA3: USART2_RX
LISART3	AT32F435ZxT7 , AT32F435VxT7 , AT32F435RxT7	PC10: USART3_TX PC11: USART3_RX
	Other part numbers	PB10: USART3_TX PB11: USART3 RX
OTGFS1	All part numbers	PA11: OTGFS1_D- PA12: OTGFS1_D+
OTGFS2	All part numbers	PB14 : OTGFS2_D- PB15 : OTGFS2_D+

Table 5. Bootloader supporting part numbers and pin configurations

2.6 Clocks

The internal 48 MHz clock (HICK) through a divided-by-6 divider (8 MHz) is selected as the default CPU clock after any reset. An external 4 to 25 MHz clock (HEXT) can be selected, in which case it is monitored for failure. If a failure is detected, HEXT will be switched off and the system automatically switches back to the internal HICK. A software interrupt is generated. Similarly, the system take the same action once HEXT fails when it is used as the source of PLL.

Several prescalers are used for the configuration of the AHB and the APB (APB1 and APB2) frequency. The maximum frequency of the AHB domain is 288 MHz. The maximum allowed frequency of the APB domains is 144 MHz.

The AT32F435/437 embeds an automatic clock calibration (ACC) block, which calibrates the internal 48 MHz HICK clock, assuring the most precise accuracy of the HICK in the full range of the operating temperatures.

2.7 General-purpose inputs / outputs (GPIO)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain with or without pull-up or pull-down), as input (floating with or without pull-up or pull-down), or as multiple function. Most of the GPIO pins are shared with digital or analog multiple functions. All GPIOs are high current-capable.

The GPIO's configuration can be locked, if needed, in order to avoid false writing to the GPIO's registers by following a specific sequence.

AT32F435/437 have two general-purpose DMAs (DMA1 and DMA2) plus one enhanced EDMA, 22 channels in total. They are able to manage memory-to-memory, peripheral-to-memory, and memory-to-peripheral transfers. They also have dedicated FIFOs for APB/AHB peripherals and support burst transmission, which provides the maximum bandwidth for peripherals.

The three DMA controllers support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. Besides, EDMA controller has double buffers, which allows the automatic use and switch between two memory buffers without the need for special code intervention.

Each channel is connected to dedicated hardware DMA/EDMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA/EDMA can be used with the main peripherals: SPI and I²S, I²C, USART, advanced, general-purpose, and basic timers TMRx, DAC, SDIO, ADC, DVP and QSPI.

2.9 Timers (TMR)

The AT32F435/437 devices include up to 3 advanced timers, up to 10 general-purpose timers, 2 basic timers and a SysTick timer.

The table below compares the features of the advanced, general-purpose, and basic timers.

Туре	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced	TMR1 TMR8 TMR20	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	3
	TMR2 TMR5	32-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
Conorol	TMR3 TMR4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
purpose	TMR9 TMR12	16-bit	Up	Any integer between 1 and 65536	No	2	No
	TMR10 TMR11 TMR13 TMR14	16-bit	Up	Any integer between 1 and 65536	No	1	No
Basic	TMR6 TMR7	16-bit	Up	Any integer between 1 and 65536	Yes	No	No

Table 6. Timer feature comparison

2.9.1 Advanced timers (TMR1, TMR8, and TMR20)

The three advanced timers (TMR1, TMR8, and TMR20) can each be seen a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. Each of these timers can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- One-cycle mode output

If configured as a standard 16-bit timer, it has the same features as the TMRx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0 to 100%).

In debug mode, the advanced timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.

Many features are shared with those of the general-purpose TMR which have the same architecture. The advanced timer can therefore work together with the TMR timers via the link feature for synchronization or event chaining.

2.9.2 General-purpose timers (TMR2~5 and TMR9~14)

There are 10 synchronizable general-purpose timers embedded in the AT32F435/437.

• TMR2, TMR3, TMR4, and TMR5

The AT32F435/437 has 4 full- featured general-purpose timers: TMR2, TMR3, TMR4, and TMR5. The TMR2 and TMR5 timers are based on a 32-bit auto-reload up/down counter and a 16-bit prescaler. The TMR3 and TMR4 timers are based on a 16- bit auto-reload up/down counter and a 16-bit prescaler. They can offer four independent channels on the largest packages. Each channel can be used for input capture/output compare, PWM or one-cycle mode outputs.

These general-purpose timers can work together, or with the other general-purpose timers and the advanced timers via the link feature for synchronization or event chaining. In debug mode, their counter can be frozen. Any of these general-purpose timers can be used to generate PWM outputs. Each timer has individual DMA request.

These timers are capable of handling incremental quadrature encoder signals and the digital outputs coming from 1 to 3 hall-effect sensors.

• TMR9 and TMR12

TMR9 and TMR12 are based on a 16-bit auto-reload upcounter, a 16-bit prescaler, and two independent channels for input capture/output compare, PWM, or one-cycle mode output. They can be synchronized with the TMR2, TMR3, TMR4, and TMR5 full-featured general-purpose timers. They can also be used as simple time bases.

• TMR10, TMR11, TMR13, and TMR14

These timers are based on a 16-bit auto-reload upcounter, a 16-bit prescaler, and one independent channels for input capture/output compare, PWM, or one-cycle mode output. They can be synchronized with the TMR2, TMR3, TMR4, and TMR5 full-featured general-purpose timers. They can also be used as simple time bases.

2.9.3 Basic timers (TMR6 and TMR7)

These two timers are mainly used for DAC trigger generation. Each of them can also be used as a generic 16-bit time base.

2.9.4 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. Its features include:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

2.10 Watchdog (WDT)

The watchdog consists of a 12-bit downcounter and 8-bit prescaler. It is clocked by an independent internal LICK clock. As it operates independently from the main clock, it can operate in Deepsleep and Standby modes. It can be used either as a watchdog to reset the device when an error occurs, or as a free running timer for application timeout management. It is self-enabling or not configurable through the User's System Data. The counter can be frozen in debug mode.

2.11 Window watchdog (WWDT)

The window watchdog embeds a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when an error occurs. It is clocked by the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.12 Enhanced real-time clock (ERTC) and battery powered registers (BPR)

The battery powered domain includes:

- Enhanced real-time clock (ERTC)
- Twenty 32-bit battery powered registers

The enhanced real-time clock (ERTC) is an independent BCD timer/counter. It supports the following features:

- Calendar with second, minute, hour (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- The sub-seconds value is also available in binary format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Programmable alarms and periodic wakeup from Deep-sleep or Standby mode
- To compensate quartz crystal inaccuracy, ERTC can be calibrated via a 512 Hz external output

Two alarm registers are used to generate an alarm at a specific time whereas the calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.

A 20-bit prescaler is used as a time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

The battery powered registers (BPR) are 32-bit registers used to store 80 bytes of user application data. Battery powered registers are not reset by a system, or when the device wakes up from the Standby mode.

ERTC and BPR are powered through a power switch. When V_{DD} exists, the switch selects V_{DD} as power supply, or VBAT is used as supply source.

2.13 Communication interfaces

2.13.1 Serial peripheral interface (SPI) / Inter-integrated sound interface (I²S)

There are up to four SPIs able to communicate at up to 36 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler generates eight master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD card/MMC/SDHC modes. All SPIs can be served by the DMA controller.

Four standard I²S interfaces (multiplexed with SPI) are available, which can be operated in master or slave mode in half-duplex mode and I²S2 and I²S3 also in full duplex mode. These interfaces can be configured to operate with 16/24/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When I²S configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I²Ss can use the DMA controller.

2.13.2 Universal synchronous / asynchronous receiver transmitters (USART)

The AT32F435/437 embeds four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3, and USART6) and four universal asynchronous receiver transmitters (UART4, UART5, UART7, and UART8).

These eight interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode, and have LIN Master/Slave capability. These eight interfaces are able to communicate at a speeds of up to 9 Mbit/s.

USART1, USART2, USART3, and USART6 provide hardware management of the CTS and RTS signals. They also provide Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

USART/UART name	USART1	USART2	USART3	UART4	UART5	USART6	UART7	UART8
Hardware flow control for modem	Yes	Yes	Yes	-	-	Yes	-	-
Continuous communication using DMA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Multiprocessor communication	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Synchronous mode	Yes	Yes	Yes	-	-	Yes	-	-
Smartcard mode	Yes	Yes	Yes	-	-	Yes	-	-
Single-wire half-duplex communication	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
IrDA SIR ENDEC block	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LIN mode	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
TX/RX swap	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
RS-485 driver enable	Yes	Yes	Yes	-	-	Yes	-	-

 Table 7. USART/UART feature comparison

2.13.3 Inter-integrated-circuit interface (I²C)

Up to 3 I²C bus interfaces can operate in multi-master and slave modes. They support standard mode (max. 100 kHz), fast mode (max. 400 kHz), and fast mode plus (max. 1 MHz). Several GPIOs provide ultra-high sink current 20 mA.

They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is included.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.13.4 Secure digital input / output interface (SDIO)

Two SD/SDIO/MMC host interfaces are available, supporting MultiMediaCard System Specification Version 4.2 in three different data bus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with SD Memory Card Specifications

Version 2.0.

The two different data bus modes supported in the SDIO Card Specification Version 2.are: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a series of MMC4.1 or previous.

Apart from SD/SDIO/MMC/eMMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

2.13.5 Controller area network (CAN)

Two CANs are compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOs with 3 stages, and 28 scalable filter banks. Each also has dedicated 368 Bytes of SRAM, which is not shared with the other CAN or any other peripherals.

2.13.6 Universal serial bus On-The-Go full-speed (OTGFS)

The AT32F435/437 embed two OTG full-speed (12 Mb/s) device/host peripheral. The OTGFS peripheral is compliant with the USB 2.0 specification and with the OTG 1.3 specification. It has software-configurable endpoint setting and supports suspend/resume. The OTGFS controller requires a dedicated 48 MHz clock that is generated by a PLL; as a device peripheral, the HSI 48 MHz clock source can be used as the OTGFS clock directly.

Each OTGFS has the major features such as:

- 1280 KBytes of SRAM used exclusively by the endpoints (not shared with the other OTGFS or any other peripherals)
- 8 IN + 8 OUT endpoints (endpoint 0 included, device mode)
- 16 channels (host mode)
- The SOF output can be used to synchronize the external audio DAC clock in isochronous mode
- In accordance with the USB 2.0 Specification, the supported transfer speeds are:
 - In Host mode: full-speed and low speed
 - In Device mode: full-speed

2.13.7 Infrared transmitter (IRTMR)

The AT32F435/437 device provides an infrared transmitter solution. The solution is based on the internal connection between TMR10, USART1, or USART2 with TMR11. TMR11 is used to provide the carrier frequency, and TMR10, USART1, or USART2 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13.

To generate infrared remote control signals, TMR10 channel 1 and TMR11 channel 1 must be correctly configured to generate the correct waveform. All standard IR pulse modulation modes can be obtained by programming two timer output compare channels.

2.13.8 Ethernet MAC interface (EMAC)

This peripheral is available only on AT32F437.

The AT32F437 devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for Ethernet LAN communications through an industry-standard media-independent interface (MII) or a reduced media-independent interface (RMII). The AT32F437 requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the AT32F437 MAC port using as many as 17 signals (MII) or 9 signals (RMII) and can be clocked by means of the 25 MHz (MII) or 50 MHz (RMII) output from the AT32F437.

The EMAC has the following features:

- Supports 10 and 100 Mbit/s rates
- Dedicated DMA controller enabling high-speed transfers between the dedicated SRAM and the descriptors
- Supports tagged MAC frame (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmitted and received frames. The transmit FIFO and the receive FIFO are both 2 KBytes, that is, 4 KBytes in total
- Supports hardware PTP (precision time protocol) in line with IEEE 1588 with the timestamp comparator connected to the TMR2 trigger input
- Interrupt trigger when system time becomes greater than the target time

2.14 Digital video parallel interface (DVP)

AT32F435/437 embed a digital video parallel interface (DVP), which connects to a digital camera module and receives video data via an 8- to 14-bit parallel interface. The DVP supports a data rate up to 54 MB/s. It has the following features:

- Configurable polarity of the input pixel clock and synchronous signals
- 8-, 10-, 12- or 14-bit communication data width
- Supports 8-bit raster-scan mono or bayer format, YCbCr 4:2:2 raster-scan, RGB 565 rasterscan, or compressed data (such as JPEG)
- Continuous mode or snapshot (one frame) mode
- Automatic image cropping
- Mono-image binarization

2.15 Cyclic redundancy check (CRC) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word using a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity.

2.16 Analog-to-digital converter (ADC)

Three 12-bit analog-to-digital converters (ADC) are embedded into AT32F435/437 devices and feature as follows:

- Configurable 12-bit, 10-bit, 8-bit, 6-bit resolution with auto calibration.
- 5.33 MSPS maximum conversion rate in 12-bit resolution, the reduction of resolution shortens the conversion period.
- Share up to 24 external channels.
- Three internal dedicated channels: internal temperature sensor (V_{TS}), internal reference voltage (V_{INTRV}), and V_{BAT} monitor (V_{BAT}/4).
- Individual sampling time setting for each channel.
- 2 to 256 times over-sampling, equivalent maximum 16-bit resolution.
- Conversion can be triggered by:
 - Software.
 - Hardware (internal or GPIO input events) with polarity configurability.
- Converting modes:
 - Single mode or sequential mode.
 - In sequential mode, each trigger performs conversions on a selected group of channels.
 - Repeated mode converts selected channels continuously.
 - Separated mode.
- Simultaneous or shift sample and hold under one- or two-slave mode.
- A voltage monitor feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
- All ADCs can be served by the DMA controller.

2.16.1 Temperature sensor (V_{TS})

The temperature sensor generates a voltage V_{TS} that varies linearly with temperature. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The offset of this line varies from chip to chip due to process variation. The internal temperature sensor is more suited to applications that detect temperature variations instead of absolute temperatures. If accurate temperature readings are needed, an external temperature sensor part should be used.

2.16.2 Internal reference voltage (VINTRV)

The internal reference voltage (V_{INTRV}) provides a stable voltage source for ADC. The V_{INTRV} is internally connected to the ADC1_IN17 input channel.

2.16.3 V_{BAT} monitor ($V_{BAT}/4$)

This embedded hardware uses internal ADC1_IN18 channel to measure V_{BAT} voltage. As the V_{BAT} voltage may be higher than V_{REF+} or V_{DDA} to be outside the ADC input range, the V_{BAT} is internally connected to a divided-by-4 bridge. The converted value is 1/4 of the V_{BAT} voltage.

2.17 Digital-to-analog converter (DAC)

The two 12-bit buffered DACs can be used to convert two digital signals into two analog voltage signal outputs.

This DAC has the following features:

- Two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- Left- or right-aligned data in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each DAC
- External triggers for conversion
- Input voltage reference V_{REF+}

Several DAC trigger inputs are used in the AT32F435/437. DAC outputs are triggered through the timer update outputs that are also connected to different DMA channels.

2.18 Serial wire (SWD) / JTAG debug port

The ARM SWJ-DP Interface is embedded, and it is a combined serial wire and JTAG and debug port that enables either a serial wire debug or a JTAG probe to be connected to the target for programming and debug operation. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK.

3 Pin functional definitions

Figure 2. AT32F435/437 LQFP144 pinout Participanti and a second seco PE2 □ 1 . 108 🛛 V_{DD} PE3 d 2 107 U V_{SS} PE4 3 106 D PH2 PE5 4 105 D PA13 PE6 5 104 D PA12 V_{BAT} □ PC13 □ 6 103 D PA11 7 102 PA10 PC14 🗆 8 101 🗅 PA9 PC15 🗆 9 100 PA8 PF0 10 99 🗅 PC9 PF1 [11] 98 | PC8 PF2 12 97 D PC7 PF3 13 96 🗆 PC6 PF4 □14 95 🗘 V_{DD} PF5 115 94 🗅 V_{SS} V_{SS} □ 16 V_{DD} □ 17 PF6 □ 18 93 🗆 PG8 92 D PG7 91 🗅 PG6 LQFP144 PF7 □ 19 PF8 □ 20 90 D PG5 89 🗆 PG4 PF9 21 88 🗆 PG3 PF10 22 87 🗅 PG2 PH0 23 86 D PD15 PH1 □24 85 🗆 PD14 NRST 25 84 VDD PC0 □26 83 🗘 V_{SS} PC1 27 82 D PD13 PC2 28 81 D PD12 PC3 29 80 D PD11 NC 🗆 30 79 DPD10 V_{SSA}/V_{REF-} 31 78 D PD9 V_{REF+} □32 77 D PD8 V_{DDA} □33 76 D PB15 PA0 □ 34 75 D PB14 PA1 35 74 D PB13 PA2 36 73 PB12 $\begin{array}{c} {\sf PA3} \\ {\sf PA3} \\ {\sf SS} \\ {\sf$

Figure 5. AT32F435/437 LQFP48 pinout

Figure 6. AT32F435/437 QFN48 pinout

The table below is the pin definition of the AT32F435/437. "-" represents there is no such pinout on the related packages. Unless descriptions in () under pin name, the function during reset and after reset is the same as the actual pin name. Unless notes presented, all GPIOs are set as input floating during reset and after reset. Pin multi-functions are selected through GPIOx_MUXx registers and the additional functions are directly selected and enabled via registers of peripherals.

	Pin number		r			(3)			
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Type ⁽¹⁾	GPIO level	IOMUX functions ⁽³⁾	Additional functions	
-	-	1	1	PE2	I/O	FT	TMR3_EXT / SPI4_SCK / I2S4_CK / TMR20_CH1 / QSPI1_IO2 / XMC_SDNCAS / EMAC_MII_TXD3 / XMC_A23	-	
-	-	2	2	PE3	I/O	FT	TMR3_CH1 / TMR20_CH2 / XMC_A19 / DVP_D9	-	
-	-	3	3	PE4	I/O	FT	CLKOUT1 / TMR3_CH2 / SPI4_CS / I2S4_WS / TMR20_CH1C / XMC_A20 / DVP_D4	-	
-	-	4	4	PE5	I/O	FT	TMR3_CH3 / TMR9_CH1 / SPI4_MISO / TMR20_CH2C / XMC_A21 / DVP_D6	-	
-	-	5	5	PE6	I/O	FT	TMR3_CH4 / TMR9_CH2 / SPI4_MOSI / I2S4_SD / TMR20_CH3C / XMC_SDNRAS / XMC_A22 / DVP_D7	-	
1	1	6	6	Vbat	S	-	Battery power supp	ly	
2	2	7	7	PC13 ⁽⁴⁾⁽⁵⁾	I/O	FT	-	ERTC_AF1 / WKUP2	
3	3	8	8	PC14 / LEXT_IN (PC14) ⁽⁴⁾⁽⁵⁾	I/O	тс	-	LEXT_IN	
4	4	9	9	PC15 / LEXT_OUT (PC15) ⁽⁴⁾⁽⁵⁾	I/O	тс	-	LEXT_OUT	
-	-	-	10	PF0	I/O	FT	I2C2_SDA / XMC_A0		
-	ŀ	-	11	PF1	I/O	FT	I2C2_SCL / XMC_A1		
-	-	-	12	PF2	I/O	FT	TMR20_CH3 / I2C2_SMBA / XMC_A2		
-	-	-	13	PF3	I/O	FTa	TMR20_CH4 / XMC_A3	ADC3_IN9	
-	-	-	14	PF4	I/O	FTa	TMR20_CH1C / XMC_A4	ADC3_IN14	
-	-	-	15	PF5	I/O	FTa	TMR20_CH2C / XMC_A5	ADC3_IN15	
-	-	10	16	Vss	S	-	Digital ground		
-	-	11	17	Vdd	S	-	Digital power supp	ly	
-	-	-	18	PF6	I/O	FTa	TMR10_CH1 / TMR20_CH4 / UART7_RX / QSPI1_IO3 / XMC_NIORD	ADC3_IN4	
-	-	-	19	PF7	I/O	FTa	TMR11_CH1 / TMR20_BRK / UART7_TX / QSPI1_IO2 / XMC_NREG	ADC3_IN5	
-	-	-	20	PF8	I/O	FTa	TMR13_CH1 / QSPI1_IO0 / XMC_NIOWR	ADC3_IN6	
-	-	-	21	PF9	I/O	FTa	TMR14_CH1 / TMR20_BRK / QSPI1_IO1 / XMC_CD	ADC3_IN7	
-	-	-	22	PF10	I/O	FTa	TMR1_EXT / TMR5_CH4 / QSPI1_SCK / XMC_INTR / DVP_D11	ADC3_IN8	

Table 8. AT32F435/437 series pin definitions

AT32F435/437 Series Datasheet

	Pin number		ſ			(2)				
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Type ⁽¹⁾	GPIO level	IOMUX functions ⁽³⁾	Additional functions		
5	5	12	23	PH0 / HEXT_IN (PH0)	I/O	тс	I2C1_SDA	HEXT_IN		
6	6	13	24	PH1 / HEXT_OUT (PH1)	I/O	тс	I2C1_SCL	HEXT_OUT		
7	7	14	25	NRST	I/O	R	Device reset input / internal reset o	output (active low)		
-	8	15	26	PC0	I/O	FTa	I2C3_SCL / UART7_TX / SDIO2_D0 / XMC_SDNWE	ADC123_IN10 ⁽⁶⁾		
-	9	16	27	PC1	I/O	FTa	I2C3_SDA / SPI3_MOSI / I2S3_SD / SPI2_MOSI / I2S2_SD / UART7_RX SDIO2_D1 / EMAC_MDC	ADC123_IN11 ⁽⁶⁾		
-	10	17	28	PC2	I/O	FTa	TMR20_CH2 / SPI2_MISO / I2S2_SDEXT / UART8_TX / SDIO2_D2 / EMAC_MII_TXD2 / XMC_SDCS0 / XMC_NWE	ADC123_IN12 ⁽⁶⁾		
-	11	18	29	PC3	I/O	FTa	SPI2_MOSI / I2S2_SD / UART8_RX / QSPI2_IO1 / SDIO2_D3 / EMAC_MII_TX_CLK / XMC_SDCKE0 / XMC_A0	ADC123_IN13 ⁽⁶⁾		
-	-	19	30				Not connected			
8	12	20	31	V _{SSA} / V _{REF-}	S	-	Analog ground / negative reference voltage			
-	-	21	32	V _{REF+}	s	-	Positive reference voltage			
-	-	22	33	Vdda	S	-	Analog power supply			
9	13	-	-	Vdda / Vref+	S	-	Analog power supply / positive reference voltage			
10	14	23	34	PA0	I/O	FTa	TMR2_CH1 / TMR2_EXT / TMR5_CH1 / TMR8_EXT / I2C2_SCL / USART2_CTS / UART4_TX / EMAC_MII_CRS	ADC123_IN0 ⁽⁶⁾ / ERTC_AF2 / WKUP1		
11	15	24	35	PA1	I/O	Fta	TMR2_CH2 / TMR5_CH2 / I2C2_SDA / SPI4_MOSI / I2S4_SD / USART2_RTS_DE / UART4_RX / QSPI1_IO3 / EMAC_MII_RX_CLK / EMAC_RMII_REF_CLK	ADC123_IN1 ⁽⁶⁾		
12	16	25	36	PA2	I/O	Fta	TMR2_CH3 / TMR5_CH3 / TMR9_CH1 / USART2_TX / SDIO2_CK / EMAC_MDIO / XMC_D4	ADC123_IN2		
13	17	26	37	PA3	I/O	Fta	TMR2_CH4 / TMR5_CH4 / TMR9_CH2 / I2S2_MCK / USART2_RX / QSPI2_IO3 / SDIO2_CMD / EMAC_MII_COL / XMC_D5	ADC123_IN3		
-	18	27	38	Vss	S	-	Digital ground			
-	19	28	39	V _{DD}	S	-	Digital power supp	ly		
14	20	29	40	PA4	I/O	Fta	SPI1_CS / I2S1_WS / SPI3_CS / I2S3_WS / USART2_CK / USART6_TX / SDIO2_D4 / SDIO2_D0 / OTGFS2_SOF / DVP_HSYNC / XMC_D6			
15	21	30	41	PA5	I/O	Fta	TMR2_CH1 / TMR2_EXT / TMR8_CH1C / SPI1_SCK / I2S1_CK / USART6_RX / QSPI2_IO2 / SDIO2_D5 / SDIO2_D1 / XMC_D7	ADC12_IN5 / DAC2_OUT		

AT32F435/437 Series Datasheet

	Pin number		r			(2)		
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Type ⁽¹⁾	GPIO level	IOMUX functions ⁽³⁾	Additional functions
16	22	31	42	PA6	I/O	Fta	TMR1_BRK / TMR3_CH1 / TMR8_BRK / SPI1_MISO / I2S2_MCK / USART3_CTS / TMR13_CH1 / QSPI1_IO0 / SDIO2_D2 / SDIO1_CMD / DVP_PCLK / SDIO2_D6	ADC12_IN6
17	23	32	43	PA7	I/O	Fta	TMR1_CH1C / TMR3_CH2 / TMR8_CH1C / SPI1_MOSI / I2S1_SD / TMR14_CH1 / QSPI1_IO1 / EMAC_MII_RX_DV / EMAC_RMII_CRS_DV / XMC_SDNWE / SDIO2_D3 / SDIO2_D7	ADC12_IN7
-	24	33	44	PC4	I/O	Fta	TMR9_CH1 / I2S1_MCK / USART3_TX / QSPI1_IO2 / EMAC_MII_RXD0 / EMAC_RMII_RXD0 / XMC_SDCS0 / SDIO2_CK / XMC_NE4	ADC12_IN14
-	25	34	45	PC5	I/O	Fta	TMR9_CH2 / I2C1_SMBA / USART3_RX / QSPI1_IO3 / EMAC_MII_RXD1 / EMAC_RMII_RXD1 / XMC_SDCKE0 / SDIO2_CMD / XMC_NOE	ADC12_IN15
18	26	35	46	PB0	I/O	Fta	TMR1_CH2C / TMR3_CH3 / TMR8_CH2C / I2S1_MCK / USART2_RX / SPI3_MOSI / I2S3_SD / USART3_CK / QSPI2_IO0 / QSPI1_IO0 / EMAC_MII_RXD2 / SDIO1_D1	ADC12_IN8
19	27	36	47	PB1	I/O	Fta	TMR1_CH3C / TMR3_CH4 / TMR8_CH3C / SPI2_SCK / I2S2_CK / USART3_RTS_DE / QSPI1_SCK / QSPI2_SCK / EMAC_MII_RXD3 / SDIO1_D2	ADC12_IN9
20	28	37	48	PB2 / BOOT1 (PB2)	I/O	FT	TMR2_CH4 / TMR20_CH1 / I2C3_SMBA / SPI3_MOSI / I2S3_SD / QSPI1_SCK / SDIO1_CK	-
-	-	-	49	PF11	I/O	FT	TMR20_EXT / TMR8_EXT / XMC_SDNRAS / DVP_D12	-
-	-	-	50	PF12	I/O	FT	TMR20_CH1 / TMR8_BRK / XMC_A6	-
-	-	-	51	Vss	S	-	Digital ground	
-	-	-	52	V _{DD}	S	-	Digital power supp	ly
-	-	-	53	PF13	I/O	FT	TMR20_CH2 / I2C3_SMBA / XMC_A7	-
-	-	-	54	PF14	I/O	FTf	TMR20_CH3 / I2C3_SCL / XMC_A8	-
-	-	-	55	PF15	I/O	FTf	TMR20_CH4 / I2C3_SDA / XMC_A9	-
-	-	-	56	PG0	I/O	FT	TMR20_CH1C / SPI1_MISO / CAN1_RX / XMC_A10	-
-	-	-	57	PG1	I/O	FT	TMR20_CH2C / SPI1_MOSI / I2S1_SD / CAN1_TX / XMC_A11	-
-	-	38	58	PE7	I/O	FT	TMR1_EXT / UART7_RX / QSPI2_IO0 / XMC_D4	
-	-	39	59	PE8	I/O	FT	TMR1_CH1C / UART4_TX / UART7_TX / QSPI2_IO1 / XMC_D5	-

	Pin nu	umber	•			(2)		
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Type ⁽¹⁾	GPIO level	IOMUX functions ⁽³⁾	Additional functions
-	-	40	60	PE9	I/O	FT	TMR1_CH1 / UART4_RX / QSPI2_IO2 / XMC_D6	-
-	-	-	61	V _{SS}	S	-	Digital ground	
-	-	-	62	Vdd	S	-	Digital power supp	ly
-	-	41	63	PE10	I/O	FT	TMR1_CH2C / UART5_TX / QSPI2_IO3 / XMC_D7	-
-	-	42	64	PE11	I/O	FT	TMR1_CH2 / SPI4_CS / I2S4_WS / UART5_RX / XMC_D8	-
-	-	43	65	PE12	I/O	FT	TMR1_CH3C / SPI1_CS / I2S1_WS / SPI4_SCK / I2S4_CK / XMC_D9	-
-	-	44	66	PE13	I/O	FT	TMR1_CH3 / SPI1_SCK / I2S1_CK / SPI4_MISO / XMC_D10	-
-	-	45	67	PE14	I/O	FT	TMR1_CH4 / SPI1_MISO / SPI4_MOSI / I2S4_SD / XMC_D11	-
-	-	46	68	PE15	I/O	FT	TMR1_BRK / SPI1_MOSI / I2S1_SD / XMC_D12	-
21	29	47	69	PB10	I/O	FTf	TMR2_CH3 / I2C2_SCL / SPI2_SCK / I2S2_CK / I2S3_MCK / USART3_TX / QSPI1_CS / QSPI1_IO1 / EMAC_MII_RX_ER / SDIO1_D7 / XMC_NOE	_
22	30	48	70	PB11	I/O	FT	TMR2_CH4 / TMR5_CH4 / I2C2_SDA / USART3_RX / QSPI1_IO0 / EMAC_MII_TX_EN / EMAC_RMII_TX_EN	-
23	31	49	71	PH3	I/O	FT	TMR5_CH2 / I2C2_SDA / UART4_TX / QSPI1_IO1	-
24	32	50	72	V _{DD}	S	-	Digital power supp	ly
25	33	51	73	PB12	I/O	FT	TMR1_BRK / TMR5_CH1 / I2C2_SMBA / SPI2_CS / I2S2_WS / SPI4_CS / I2S4_WS / SPI3_SCK / I2S3_CK / USART3_CK / CAN2_RX / EMAC_MII_TXD0 / EMAC_RMII_TXD0 / OTGFS2_ID / XMC_D13	-
26	34	52	74	PB13	I/O	FT	TMR1_CH1C / I2C3_SMBA / SPI2_SCK / I2S2_CK / SPI4_SCK / I2S4_CK / I2C3_SCL / USART3_CTS / CAN2_TX / EMAC_MII_TXD1 / EMAC_RMII_TXD1 / OTGFS2_VBUS	-
27	35	53	75	PB14	I/O	тс	TMR1_CH2C / TMR8_CH2C / I2C3_SDA / SPI2_MISO / I2S2_SDEXT / USART3_RTS_DE / TMR12_CH1 / OTGFS2_D- / SDIO1_D6 / XMC_D0	-
28	36	54	76	PB15	I/O	тс	ERTC_REFIN / TMR1_CH3C / TMR8_CH3C / I2C3_SCL / SPI2_MOSI / I2S2_SD / TMR12_CH2 / OTGFS2_D+ / SDI01_CK	-
-	-	55	77	PD8	I/O	FT	USART3_TX / EMAC_MII_RX_DV / EMAC_RMII_CRS_DV / XMC_D13	-
-	-	56	78	PD9	I/O	FT	USART3_RX / EMAC_MII_RXD0 / MAC_RMII_RXD0 / XMC_D14	-

	Pin nu	umbei				(2)	8	
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Type ⁽¹⁾	GPIO level	IOMUX functions ⁽³⁾	Additional functions
-	-	57	79	PD10	I/O	FT	USART3_CK / EMAC_MII_RXD1 / EMAC_RMII_RXD1 / XMC_D15	-
-	-	58	80	PD11	I/O	FT	I2C2_SMBA / USART3_CTS / QSPI1 _IO0 / XMC_A14 / XMC_SDBA0 / EMAC_MII_RXD2 / XMC_A16_CLE	-
-	-	59	81	PD12	I/O	FTf	TMR4_CH1/ I2C2_SCL / USART3_RTS_DE / QSPI1 _IO1 / XMC_A15 / XMC_SDBA1 / EMAC_MII_RXD3 / XMC_A17_ALE	-
-	-	60	82	PD13	I/O	FTf	TMR4_CH2/ I2C2_SDA / UART8_TX / QSPI1_IO3 / XMC_SDCLK / XMC_A18	-
-	-	-	83	Vss	S	-	Digital ground	
-	-	-	84	Vdd	S	-	Digital power supp	ly
-	-	61	85	PD14	I/O	FTf	TMR4_CH3 / I2C3_SCL / UART8_RX / XMC_D0	-
-	-	62	86	PD15	I/O	FTf	TMR4_CH4 / I2C3_SDA / XMC_D1	-
-	-	-	87	PG2	I/O	FT	TMR20_CH3C / XMC_A12	-
-	-	-	88	PG3	I/O	FT	TMR20_BRK / XMC_A13	-
-	-	-	89	PG4	I/O	FT	XMC_A14 / XMC_SDBA0	-
-	-	-	90	PG5	I/O	FT	TMR20_EXT / XMC_A15 / XMC_SDBA1	-
-	-	-	91	PG6	I/O	FT	QSPI1_CS / XMC_INT2 / DVP_D12	-
-	-	-	92	PG7	I/O	FT	USART6_CK / XMC_INT3 / DVP_D13	-
-	-	-	93	PG8	I/O	FT	QSPI2_CS / USART6_RTS_DE / EMAC_PPS_OUT / XMC_SDCLK	-
-	-	-	94	Vss	S	-	Digital ground	
-	-	-	95	Vdd	S	-	Digital power supp	ly
-	37	63	96	PC6	I/O	FT	TMR3_CH1 / TMR8_CH1 / I2C1_SCL / I2S2_MCK / USART6_TX / XMC_A0 / SDIO1_D6 / DVP_D0 / XMC_D1	-
-	38	64	97	PC7	I/O	FT	TMR3_CH2 / TMR8_CH2 / I2C1_SDA / SPI2_SCK / I2S2_CK / I2S3_MCK / USART6_RX / XMC_A1 / SDIO1_D7 / DVP_D1	-
-	39	65	98	PC8	I/O	FT	TMR3_CH3 / TMR8_CH3 / I2S4_MCK / TMR20_CH3 / UART8_TX / USART6_CK / QSPI1_IO2 / XMC_A2 / SDIO1_D0 / DVP_D2	-
-	40	66	99	PC9	I/O	FT	CLKOUT2 / TMR3_CH4 / TMR8_CH4 / I2C3_SDA / UART8_RX / QSPI1_IO0 / XMC_A3 / OTGFS2_OE / SDIO1_D1 / DVP_D3	-
29	41	67	100	PA8	I/O	FT	CLKOUT1 / TMR1_CH1 / I2C3_SCL / USART1_CK / USART2_TX / OTGFS1_SOF / SDIO1_D1 / XMC_A4	-

l	Pin nu	umbei	r			2		
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Type ⁽¹⁾	GPIO level	IOMUX functions ⁽³⁾	Additional functions
30	42	68	101	PA9	I/O	FT	TMR1_CH2 / I2C3_SMBA / SPI2_SCK / I2S2_CK / USART1_TX / I2C1_SCL / OTGFS1_VBUS / SDIO1_D2 / DVP_D0	-
31	43	69	102	PA10	I/O	FT	TMR1_CH3 / SPI2_MOSI / I2S2_SD / I2S4_MCK / USART1_RX / I2C1_SDA / OTGFS1_ID / DVP_D1	-
32	44	70	103	PA11	I/O	TC	TMR1_CH4 / I2C2_SCL / SPI2_CS / I2S2_WS / SPI4_MISO / USART1_CTS / USART6_TX / CAN1_RX / OTGFS1_D- / DVP_D2	_
33	45	71	104	PA12	I/O	тс	TMR1_EXT / I2C2_SDA / SPI2_MISO / USART1_RTS_DE / USART6_RX / CAN1_TX / OTGFS1_D+ / DVP_D3	-
34	46	72	105	PA13 (JTMS / SWDIO)	I/O	FT	JTMS / SWDIO / IR_OUT / SPI3_MISO / OTGFS1_OE	-
35	47	73	106	PH2	I/O	FT	TMR5_CH1/ I2C2_SCL / UART4_RX / QSPI1_IO0	-
-	-	74	107	Vss	S	-	Digital ground	
36	48	75	108	V _{DD}	S	-	Digital power supply	
37	49	76	109	PA14 (JTCK / SWCLK)	I/O	FT	JTCK / SWCLK / SPI3_MOSI / I2S3_SD / USART2_TX	-
38	50	77	110	PA15 (JTDI)	I/O	FT	JTDI / TMR2_CH1 / TMR2_EXT / SPI1_CS / I2S1_WS / SPI3_CS / I2S3_WS / USART1_TX / USART2_RX / QSPI2_IO1 / QSPI1_IO2 / XMC_NE2 / XMC_NCE3	-
-	51	78	111	PC10	I/O	FT	TMR5_CH2 / SPI3_SCK / I2S3_CK / USART3_TX / UART4_TX / QSPI1 _IO1 / SDIO1_D2 / DVP_D8	-
-	52	79	112	PC11	I/O	FT	TMR5_CH3 / I2S3_SDEXT / SPI3_MISO / USART3_RX / UART4_RX / QSPI1_CS / SDIO1_D3 / DVP_D4 / XMC_D2	-
-	53	80	113	PC12	I/O	FT	TMR11_CH1 / I2C2_SDA / SPI3_MOSI / I2S3_SD / USART3_CK / UART5_TX / SDIO1_CK / DVP_D9 / XMC_D3	-
-	-	81	114	PD0	I/O	FT	SPI4_MISO/ SPI3_MOSI / 12S3_SD / SPI2_CS / 12S2_WS / CAN1_RX / XMC_A5 / XMC_D2	-
-	-	82	115	PD1	I/O	FT	SPI2_SCK / I2S2_CK / SPI2_CS / I2S2_WS / CAN1_TX / XMC_A6 / XMC_D3	-
-	54	83	116	PD2	I/O	FT	TMR3_EXT / USART3_RTS_DE / UART5_RX / XMC_A7 / SDIO1_CMD / DVP_D11 / XMC_NWE	-
-	-	84	117	PD3	I/O	FT	SPI2_SCK / I2S2_CK / SPI2_MISO / USART2_CTS / QSPI1_SCK / XMC_A8 / XMC_CLK / DVP_D5	-

	Pin nı	umbei	•			(2)		
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Type ⁽¹⁾	GPIO level	IOMUX functions ⁽³⁾	Additional functions
-	-	85	118	PD4	I/O	FT	SPI2_MOSI / I2S2_SD / USART2_RTS_DE / XMC_A9 / XMC_NOE	-
-	-	86	119	PD5	I/O	FT	USART2_TX / XMC_A10 / XMC_NWE	-
-	-	-	120	Vss	S	-	Digital ground	
-	-	-	121	Vdd	S	-	Digital power supp	ly
-	-	87	122	PD6	I/O	FT	SPI3_MOSI / I2S3_SD / USART2_RX / XMC_A11 / XMC_NWAIT / DVP_D10	-
-	-	88	123	PD7	I/O	FT	USART2_CK / XMC_A12 / XMC_NE1 / XMC_NCE2	-
-	-	-	124	PG9	I/O	FT	USART6_RX / QSPI1_IO2 / XMC_NE2 / XMC_NCE3 / DVP_VSYNC	-
-	-	-	125	PG10	I/O	FT	QSPI2_IO2 / XMC_NE3 / XMC_NCE4_1 / DVP_D2	-
-	-	-	126	PG11	I/O	FT	QSPI2_IO3 / SPI4_SCK / I2S4_CK / CAN2_RX / EMAC_MII_TX_EN / EMAC_RMII_TX_EN / XMC_NCE4_2 / DVP_D3	-
-	-	-	127	PG12	I/O	FT	QSPI2_IO1 / SPI4_MISO / USART6_RTS_DE / CAN2_TX / XMC_NE4	-
-	-	-	128	PG13	I/O	FT	QSPI2_SCK / SPI4_MOSI / I2S4_SD / USART6_CTS / EMAC_MII_TXD0 / EMAC_RMII_TXD0 / XMC_A24	-
-	-	-	129	PG14	I/O	FT	QSPI2_IO0 / SPI4_CS / I2S4_WS / USART6_TX / QSPI1_IO3 / EMAC_MII_TXD1 / EMAC_RMII_TXD1 / XMC_A25	-
-	-	-	130	Vss	S	-	Digital ground	
-	-	-	131	Vdd	S	-	Digital power supp	ly
-	-	-	132	PG15	I/O	FT	USART6_CTS / XMC_SDNCAS / DVP_D13	-
39	55	89	133	PB3 (JTDO)	I/O	FTf	JTDO / TMR2_CH2 / I2C2_SDA / SPI1_SCK / I2S1_CK / SPI3_SCK / I2S3_CK / USART1_RX / UART7_RX / I2C2_SDA / QSPI1_IO3 / DVP_D4 / SWO	-
40	56	90	134	PB4 (NJTRST)	I/O	FT	JNTRST / TMR3_CH1 / I2C3_SDA / SPI1_MISO / SPI3_MISO / I2S3_SDEXT / UART7_TX / I2C3_SDA / SDIO1_D0 / DVP_D5	-
41	57	91	135	PB5	I/O	FT	TMR3_CH2/ I2C1_SMBA / SPI1_MOSI / I2S1_SD / SPI3_MOSI / I2S3_SD / USART1_CK / UART5_RX / CAN2_RX / EMAC_PPS_OUT / XMC_SDCKE1 / DVP_D10 / SDIO1_D3	-
42	58	92	136	PB6	I/O	FT	TMR4_CH1/I2C1_SCL / I2S1_MCK / SPI4_CS / I2S4_WS / USART1_TX / UART5_TX / CAN2_TX / QSPI1_CS / XMC_SDCS1 / DVP_D5 / SDIO1_D0	-

	Pin nu	ımber	r			(3)	3		
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Type ⁽¹⁾	GPIO level	IOMUX functions ⁽³⁾	Additional functions	
43	59	93	137	PB7	I/O	FT	TMR4_CH2 / TMR8_BRK / I2C1_SDA / SPI4_SCK / I2S4_CK / USART1_RX / QSPI2_IO1 / XMC_NADV / DVP_VSYNC / SDIO1_D0	-	
44	60	94	138	BOOT0	-	В	-	-	
45	61	95	139	PB8	I/O	FT	TMR2_CH1 / TMR2_EXT / TMR4_CH3 / TMR10_CH1 / I2C1_SCL / SPI4_MISO / UART5_RX / CAN1_RX / QSPI2_CS / EMAC_MII_TXD3 / SDIO1_D4 / DVP_D6	-	
46	62	96	140	PB9	I/O	FTf	IR_OUT / TMR2_CH2 / TMR4_CH4 / TMR11_CH1 / I2C1_SDA / SPI2_CS/I2S2_WS / SPI4_MOSI / I2S4_SD / I2C2_SDA / UART5_TX / CAN1_TX / QSPI1_CS / SDIO1_D5 / DVP_D7	-	
-	-	97	141	PE0	I/O	FT	TMR4_EXT / TMR20_EXT / UART8_RX / XMC_LB / XMC_SDDQML / DVP_D2	-	
-	-	98	142	PE1	I/O	FT	TMR1_CH2C / TMR20_CH4 / UART8_TX / XMC_UB / XMC_SDDQMH / DVP_D3	-	
47	63	99	143	Vss	S	-	Digital ground		
48	64	100	144	V _{DD}	S	-	Digital power supp	ly	
-/49	-	-	-	EPAD	S	-	Digital ground		

(1) I = input, O = output, S = supply.

(2) TC = standard 3.3 V GPIO, FT = general 5 V-tolerant GPIO, FTa = 5 V-tolerant GPIO with analog functionalities, FTf = 5 V-tolerant GPIO with 20 mA sink current capability, R = bidirectional reset pin with embedded weak pull-up resistor, B = dedicated BOOT0 pin with embedded weak pull-down resistor. Among them, FTa pin has 5 V-tolerant characteristics when configured as input floating, input pull-up, or input pull-down mode. However, it cannot be 5 V-tolerant when configured as analog mode. Meanwhile, its input level should not higher than V_{DD} + 0.3 V.

- (3) Function availability depends on the chosen device. Every GPIO can function as EVENTOUT.
- PC13, PC14, and PC15 are supplied through the power switch. Since the switch only drives a limited amount of current (3 mA), the use of these three GPIOs as output mode is limited not to be used as a current source (e.g. to drive an LED).
- (5) Main function after the first battery powered domain power-up. Later on, it depends on the contents of the battery powered registers even after reset (because these registers are not reset by the main reset). For details on how to manage these GPIOs, refer to the battery powered domain and register description sections in the AT32F435/437 reference manual.
- (6) PA0, PA1, PC0, PC1, PC2, and PC3 are ADC fast channels; others are slow channels.

Pin name		00 111/000 1	XMC				LOFP100	LOEP64
	CF card	M/NOR	Multiplexed PSRAM/NOR	NAND16位	SDR	AM ⁽¹⁾		291104
PF0	A0	A0	-	-	-	A0	-	-
PF1	A1	A1	-	-	-	A1	-	-
PF2	A2	A2	-	-	-	A2	-	-
PF3	A3	A3	-	-	-	A3	-	-
PF4	A4	A4	-	-	-	A4	-	-
PF5	A5	A5	-	-	-	A5	-	-
PF12	A6	A6	-	-	-	A6	-	-
PF13	A7	A7	-	-	-	A7	-	-
PF14	A8	A8	-	-	-	A8	-	-
PF15	A9	A9	-	-	-	A9	-	-
PG0	A10	A10	-	-	-	A10	-	-
PG1	-	A11	-	-	-	A11	-	-
PG2	-	A12	-	-	-	A12	-	-
PG3	-	A13	-	-		-	-	-
PG4	-	A14	-	-	-	SDBA0	-	-
PG5	-	A15	-	-	-	SDBA1	-	-
PD11	-	A14 / A16	A14 / A16	- / CLE	SDBA0	-	Yes	-
PD12	-	A15 / A17	A15 / A17	- / ALE	SDBA1	-	Yes	-
PD13	-	A18	A18	-	SDCLK	-	Yes	-
PE3	-	A19	A19	-		-	Yes	-
PE4	-	A20	A20	-		-	Yes	-
PE5	-	A21	A21	-		-	Yes	-
PE6	-	A22	A22	-	SDN	RAS	Yes	-
PE2	-	A23	A23	-	SDN	CAS	Yes	-
PG13	-	A24	A24	-		-	-	-
PG14	-	A25	A25	-		-	-	-
PC3	-	A0	-	-		-	Yes	Yes
PC6	A0 / D1	A0 / D1	- / AD1	- / D1	A0	-	Yes	Yes
PC7	A1	A1	-	-	A1	-	Yes	Yes
PC8	A2	A2	-	-	A2	-	Yes	Yes
PC9	A3	A3	-	-	A3	-	Yes	Yes
PA8	A4	A4	-	-	A4	-	Yes	Yes
PD0	A5 / D2	A5 / D2	- / AD2	- / D2	A5	D2	Yes	-
PD1	A6 / D3	A6 / D3	- / AD3	- / D3	A6	D3	Yes	-
PD2	A7 / NEW	A7 / NEW	NEW	NEW	A7	-	Yes	Yes
PD3	A8 / -	A8 / CLK	- / CLK	-	A8	-	Yes	-
PD4	A9 / NOE	A9 / NOE	- / NOE	- / NOE	A9	-	Yes	-

Table 9. XMC pin definition

<u>475</u>371÷

AT32F435/437 Series Datasheet

			ХМС						
Pin name	CF card	SRAM/PSRA M/NOR	Multiplexed PSRAM/NOR	NAND16位	SDR	AM ⁽¹⁾	LQFP100	LQFP64	
PD5	A10 / NEW	A10 / NEW	- / NEW	- / NEW	A10	-	Yes	-	
PD6	- / NWAIT	A11 / NWAIT	- / NWAIT	- / NWAIT	A11	-	Yes	-	
PD7	-	A12 / NE1	- / NE1	- / NCE2	A12	-	Yes	-	
PD14	D0	D0	AD0	D0	D	0	Yes	-	
PD15	D1	D1	AD1	D1	D	1	Yes	-	
PE7	D4	D4	AD4	D4	D	4	Yes	-	
PE8	D5	D5	AD5	D5	D	5	Yes	-	
PE9	D6	D6	AD6	D6	D	6	Yes	-	
PE10	D7	D7	AD7	D7	D	7	Yes	-	
PE11	D8	D8	AD8	D8	D	8	Yes	-	
PE12	D9	D9	AD9	D9	D	9	Yes	-	
PE13	D10	D10	AD10	D10	D	10	Yes	-	
PE14	D11	D11	AD11	D11	D	11	Yes	-	
PE15	D12	D12	AD12	D12	D	12	Yes	-	
PD8	D13	D13	AD13	D13	D	13	Yes	-	
PD9	D14	D14	AD14	D14	D	14	Yes	-	
PD10	D15	D15	AD15	D15	D	15	Yes	-	
PB14	D0	D0	AD0	D0	-		Yes	Yes	
PC6	D1	D1	AD1	D1	-		Yes	Yes	
PC11	D2	D2	AD2	D2	D2	Yes	Yes	有	
PC12	D3	D3	AD3	D3	D3	Yes	Yes	有	
PA2	D4	D4	AD4	D4		-	Yes	Yes	
PA3	D5	D5	AD5	D5		-	Yes	Yes	
PA4	D6	D6	AD6	D6		-	Yes	Yes	
PA5	D7	D7	AD7	D7		-	Yes	Yes	
PB12	D13	D13	AD13	D13		-	Yes	Yes	
PD7	-	NE1	NE1	NCE2		-	Yes	-	
PG9	-	NE2	NE2	NCE3		-	-	-	
PA15	-	NE2	NE2	NCE3		-	Yes	Yes	
PG10	NCE4_1	NE3	NE3	-		-	-	-	
PG11	NCE4_2	-	-	-		-	-	-	
PG12	-	NE4	NE4	-		-	-	-	
PC4	-	NE4	NE4	-	SDO	CS0	Yes	Yes	
PB7	-	-	NADV	-		-	Yes	Yes	
PB10	NOE	NOE	NOE	NOE			Yes	Yes	
PC5	NOE	NOE	NOE	NOE	SDC	KE0	Yes	Yes	
PC2	NEW	NEW	NEW	NEW	SDO	CS0	Yes	Yes	
PF6	NIORD	-	-	-		-	-	-	

AT32F435/437 Series Datasheet

			ХМС					
Pin name	CF card	SRAM/PSRA M/NOR	Multiplexed PSRAM/NOR	NAND16位	SDR	AM ⁽¹⁾	LQFP100	LQFP64
PF7	NREG	-	-	-		-	-	-
PF8	NIOWR	-	-	-		-	-	-
PF9	CD	-	-	-		-	-	-
PF10	INTR	-	-	-		-	-	-
PG6	-	-	-	INT2		-	-	-
PG7	-	-	-	INT3		-	-	-
PE0	-	LB	LB	-	SDDQML		Yes	-
PE1	-	UB	UB	-	SDDQMH		Yes	-
PG8	-	-	-	-	-	SDCLK	-	-
PC0	-	-	-	-	SDN	IWE	Yes	-
PF11	-	-	-	-	SDN	RAS	-	-
PG15	-	-	-	-	SDN	CAS	-	-
PA7	-	-	-	-	SDN	IWE	Yes	Yes
PB5	-	-	-	-	SDC	KE1	Yes	-
PB6	-	-	-	-	SD	CS1	Yes	-

(1) The address, block address, data and clock lines of SDRAM are suggested to use these two set of pin combinations. Once mixed, it can still work normally but with a limited performance.

4 Memory mapping

0xFFFF_FFFF Cortex-M4 internal peripherals 0x5FFF_FFF Reserved 0x5005_0400 0xE000 0000 0x5005_03FF 0x5000_0000 0x4FFF_FFF Peripherals 2 0xDFFF_FFF Reserved XMC (SDRAM)⁽¹⁾ 0x4300_0000 0x42FF_FFF Bit-band alias of 0xC000_0000 peripherals 1 0x4200_0000 0x41FF_FFFF **0xBFFF FFFF** Reserved QSPI2⁽¹⁾ 0x4008_0000 0x4007_FFFF 0xB000_0000 Peripherals 1 0xAFFF_FFFF 0x4000_0000 XMC (PC card) 0xA800_0000 0x3FFF_FFF 0xA7FF_FFFF Reserved Reserved 0x22C0_0000 0x22BF_FFFF 0xA000_3000 0xA000_2FFF Bit-band alias of SRAM **QSPI** registers 0xA000_1000 0x2200_0000 0xA000_0FFF XMC registers 0x21FF_FFF 0x2003_8000 0x2003_7FFF Reserved 0xA000_0000 0x9FFF_FFF SRAM2 0x2001_0000 0x2000_FFFF 0x2000_0000 QSPI1 SRAM1 0x9000_0000 0x8FFF_FFFF 0x1FFF_FFFF XMC (NAND)⁽¹⁾ Reserved 0x1FFF_D000 0x1FFF_CFFF 0x7000_0000 User's System Data 0x1FFF_C000 0x6FFF_FFF XMC (PSRAM / 0x1FFF^{BFFF} SRAM / NOR)(1) Reserved 0x6000_0000 0x1FFF_4000 0x5FFF_FFFF 0x1FFF_3FFF Boot code area Peripherals 0x1FFF_0000 0x1FFE_FFFF 0x4000_0000 0x3FFF_FFF Reserved SRAM 0x1001_0000 0x1000_FFFF 0x1000_0000 0x0FFF_FFFF 0x2000_0000 SRAM1 mapping 0x1FFF_FFFF Reserved Code 0x083F_0000 0x082E_FFFF 0x0000_0000 Internal Flash memory Bank 2 0x0820_0000 0x081F_FFFF Internal Flash memory Bank 1 0x0800_0000 0x07FF_FFFF Reserved 0x003F_0000 0x002E_FFFF Aliased to Flash, SRAM, or boot code area depending on BOOT pins 0x0000_0000

Figure 7. Memory map

(1) The logic addresses of several blocks can be swapped through software configuration. Code can be executed from 0x6000_0000 through 0x9FFF_FFF. Please refer to the reference manual of AT32F435/437 series.

5 Electrical characteristics

5.1 Test conditions

5.1.1 Minimum and maximum values

The minimum and maximum values are obtained in the worst conditions. Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

5.1.2 Typical values

Typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V.

5.1.3 Typical curves

All typical curves are provided only as design guidelines and are not tested.

5.1.4 Power supply scheme

5.2 Absolute maximum values

5.2.1 Ratings

If stresses were out of the absolute maximum ratings listed in *Table 10*, *Table 11*, and *Table 12*, it may cause permanent damage to the device. These are the maximum stress ratings only that the device could bear, but the functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for an extended period of time may affect device reliability.

Symbol	Ratings	Min	Max	Unit
	External main supply voltage (including $V_{\mbox{\scriptsize DDA}}$ and	0.2	4.0	
V DD- V SS	V _{DD})	-0.3	4.0	
	Input voltage on FT and FTf GPIO			
	Input voltage on FTa GPIO (set as input floating,	V _{SS} -0.3	6.0	V
V _{IN}	input pull-up, or input pull-down mode)			
	Input voltage on TC GPIO		4.0	
	Input voltage on FTa GPIO (set as analog mode)	V _{SS} -0.3	4.0	
ΔV _{DDx}	Variations between different VDD power pins	-	50	m\/
V _{SSx} -V _{SS}	Variations between all the different ground pins	-	50	mv

Table 10. Voltage characteristics

Table 11. Current characteristics

Symbol	Ratings	Мах	Unit
I _{VDD}	Total current into V _{DD} /V _{DDA} power lines (source)	250	
I _{VSS}	Total current out of V _{SS} ground lines (sink)	250	m۸
	Output current sunk by any GPIO and control pin	25	mA
IIO	Output current source by any GPIOs and control pin	-25	

Table 12. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-60 ~ +150	ŝ
TJ	Maximum junction temperature	125	U

5.2.2 Electrical sensitivity

Based on three different tests (HBM, CDM, and LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges are applied to the pins of each sample according to each pin combination. This test conforms to the JS-001-2017/JS-002-2014 standard.

Symbol	Parameter	Conditions	Class	Min ⁽¹⁾	Unit
	Electrostatic discharge voltage	T_A = +25 °C, conforming to	24	+4000	
VESD(HBM)	(human body model) JS-001-2017		3A	±4000	V
Vesd(CDM)	Electrostatic discharge voltage	T_A = +25 °C, conforming to		1000	v
	(charge device model)	JS-002-2018		±1000	

Table	13.	ESD	values
-------	-----	-----	--------

(1) Guaranteed by characterization results, not tested in production.

Static latch-up

Tests compliant with EIA/JESD78E IC latch-up standard are required to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin;
- A current injection is applied to each input, output and configurable GPIO pin.

Table 14. Latch-up values

Symbol	Parameter	Conditions	Level/Class
LU	Static latch-up class	$T_A = +105 \ ^{\circ}C$, conforming to EIA/JESD78E	II level A (±200 mA)

5.3 Specification

5.3.1 General operating conditions

Table 15. General operating conditions

Symbol	Parameter	Condition	ıs	Min	Max	Unit
			LDO 1.3 V	0	288	
		NZW BST disabled	LDO 1.2 V	0	240	
			LDO 1.1 V	0	192	
fuere	Internal ALID clock froguenou		LDO 1.0 V	0	144	N41 I-
IHCLK			LDO 1.3 V	0	192	
		NZW BST anablad	LDO 1.2 V	0	160	
		NZW_BST enabled	LDO 1.1 V	0	136	
			LDO 1.0 V	0	108	
fIr		LDO 1.3 V	0	144		
	Internal APB1/2 clock frequency	LDO 1.2 V		0	120	МНт
IPCLK1/2		LDO 1.1 V	0	96		
		LDO 1.0 V	0	72		
Vdd	Digital operating voltage	-	See Table 16		V	
Vdda	Analog operating voltage	Must be the same poter	V	DD	V	
VBAT	Battery power voltage	-		1.62	3.6	V
		LQFP144	-	402		
		LQFP100	-	316	mW	
PD	Power dissipation: T _A = 105 °C	LQFP64	-	310		
		LQFP48	-	320		
		QFN48	-	625		
TA	Ambient temperature	-		See T	able 16	°C

Table 16. Operating voltage and ambient temperature of accessing ERTC registers

	1 0 0	•	0	0		
Symbol	Parameter	Conditions	Min	Max	Unit	
ERTC not a	accessed					
Vdd	Digital operating voltage	-	2.6	3.6	V	
т.	Ambient temperature	LDO voltage 1.2/1.1/1.0 V-	-40	105	ŝ	
IA	Amplent temperature	LDO voltage 1.3 V-	-40	85		
ERTC accessed						
Note: When LDO = 1.3V and V_{DD} < 3.0 V, ERTC registers are prohibited to be accessed. If ERTC registers is st					s is still	
requi	red to be accessed under V_{DD} <	3.0 V, software should lower LDO voltage	e to 1.2 V c	or below wit	h taking	
care	of the AHB clock not over the rel	lated maximum frequency shown in Table	15. Please	e refer to P	WC and	
CRM	chapters in AT32F435/437 refe	rence manual to properly adjust the LDO	voltage.			
Vaa	Digital operating voltage	LDO 1.2/1.1/1.0 V	2.6	3.6	V	
עם יי		LDO 1.3 V	3.0	3.6	v	
Ŧ		LDO 1.2/1.1/1.0 V	-40	105		

ΤA

Digital operating voltage

LDO 1.3 V

°C

85

-40

5.3.2 Operating conditions at power-up / power-down

Table 17. Operating conditions at power-up/power-down

Symbol	Parameter	Conditions	Min	Max	Unit
4	V_{DD} rise time rate		0	8	ms/V
IVDD	V _{DD} fall time rate	-	Min Max 0 ∞ 20 ∞	µs/V	

5.3.3 Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0] = 001 (rising edge) ⁽¹⁾	2.19	2.28	2.37	V
		PLS[2:0] = 001 (falling edge) ⁽¹⁾	2.09	2.18	2.27	V
		PLS[2:0] = 010 (rising edge) ⁽²⁾	2.28	2.38	2.48	V
		PLS[2:0] = 010 (falling edge) ⁽²⁾	2.18	2.28	2.38	V
		PLS[2:0] = 011 (rising edge) ⁽²⁾	2.38	2.48	2.58	V
		PLS[2:0] = 011 (falling edge) ⁽²⁾	2.28	2.38	2.48	V
	Power voltage monitoring level	PLS[2:0] = 100 (rising edge) ⁽²⁾	2.47	2.58	2.69	V
VPVM	selection	PLS[2:0] = 100 (falling edge) ⁽²⁾	2.37	2.48	2.59	V
		PLS[2:0] = 101 (rising edge) ⁽²⁾	2.57	2.68	2.79	V
		PLS[2:0] = 101 (falling edge) ⁽²⁾	2.47	2.58	2.69	V
		PLS[2:0] = 110 (rising edge) ⁽²⁾	2.66	2.78	2.9	V
		PLS[2:0] = 110 (falling edge) ⁽²⁾	2.56	2.68	2.8	V
		PLS[2:0] = 111 (rising edge)	2.76	2.88	3	V
		PLS[2:0] = 111 (falling edge)	2.66	2.78	2.9	V
VPVMhyst ⁽²⁾	PVM hysteresis	-	-	100	-	mV
VPOR ⁽²⁾	Power on reset threshold	-	2.02	2.2	2.45	V
VLVR ⁽²⁾	Low voltage reset threshold	-	1.84 ⁽³⁾	2.07	2.3	V
VLVRhyst ⁽²⁾	LVR hysteresis	-	-	130	-	mV
	Reset temporization: CPU starts	ZW = 128 KBytes	-	10	-	
TRSTTEMPO ⁽²⁾	execution after V _{DD} keeps	ZW = 256 KBytes	-	15	-	ms
	higher than VPOR for TRSTTEMPO	ZW = 512 KBytes	-	25	-	

Table 18. Embedded reset and power management block characteristics

(1) PLS[2:0] = 001 may be not available for its voltage detector level may be lower than VPOR.

(2) Guaranteed by design, not tested in production.
(3) The product behavior is guaranteed by design down to the minimum V_{LVR} value.

Figure 9. Power on reset and low voltage reset waveform

5.3.4 Memory characteristics

Table 19. Internal Flash memory characteristics

Symbol	Parameter	Conditions	Typ ⁽¹⁾	Max ⁽¹⁾	单位
T _{PROG}	Programming time	-	50	200	μs
t _{SE} Pag		AT32F435/437xC	50	500	
	Page erase time	AT32F435/437xG	50	500	ms
		AT32F435/437xM	45	400	
	Block erase time	AT32F435/437xC	250	2300	
t _{BLE}		AT32F435/437xG	200	2300	ms
		AT32F435/437xM	225	2000	
tвке	Bank erase time	AT32F435/437xC	2.5	5	
		AT32F435/437xG	1.6	20	S
		AT32F435/437xM	7.2	64	

(1) Guaranteed by design, not tested in production.

Table 20. Internal Flash memory endurance and data retention

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Мах	Unit
Nend	Endurance	T _A = -40 ~ 105 °C	100	-	-	kcycles
t RET	Data retention	T _A = 105 °C	10	-	-	years

(1) Guaranteed by design, not tested in production.

5.3.5 Supply current characteristics

The current consumption is subjected to several parameters and factors such as the operating voltage, ambient temperature, GPIO pin loading, device software configuration, operating frequencies, GPIO pin switching rate, and executed binary code. The current consumption is obtained by characterization results, not tested in production.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All GPIO pins are in analog mode.
- Prefetch in ON. (Reminder: This bit must be set before clock setting and bus prescaling.)
- When the peripherals are enabled:
 - $f_{PCLK1} = f_{HCLK}/2$, $f_{PCLK2} = f_{HCLK}/2$, $f_{ADCCLK} = f_{PCLK2}/2$ if $f_{HCLK} > 144$ MHz;
 - − $f_{PCLK1} = f_{HCLK}$, $f_{PCLK2} = f_{HCLK}$, $f_{ADCCLK} = f_{PCLK2}/2$ if $f_{HCLK} ≤ 144$ MHz.
- Code executes in ZW area.
- Unless otherwise specified, the typical values are measured with $V_{DD} = 3.3$ V and $T_A = 25$ °C condition and the maximum values are measured with $V_{DD} = 3.6$ V.

			J					
						Туре		
Symbol	Parameter	Conditions	fнс∟к	LDO voltage	All peripherals enabled	All peripherals enabled except EMAC	All peripherals disabled	Unit
			288 MHz	1.3	231.6	222.7	59.9	
			264 MHz	1.3	213.1	204.9	55.2	
			240 MHz	1.2	178.1	171.3	46.3	
			216 MHz	1.2	160.9	154.7	42.0	
			192 MHz	1.1	130.8	125.8	34.2	
			168 MHz	1.1	115.0	110.5	30.2	
			144 MHz	1.0	97.5	94.1	24.3	
		High speed	120 MHz	1.0	82.1	79.2	20.9	
		external	108 MHz	1.0	74.1	71.5	19.1	
		crystal	72 MHz	1.0	50.1	48.4	13.4	mA
	(HEXT) ⁽¹⁾⁽²⁾	48 MHz	1.0	34.4	33.2	9.86		
			36 MHz	1.0	26.3	25.4	7.91	
			24 MHz	1.0	18.5	17.9	6.23	
			16 MHz	1.0	13.0	12.6	4.83	
			8 MHz	1.0	7.08	6.89	3.19	
			4 MHz	1.0	4.56	4.45	2.61	
		Supply urrent in Run mode	2 MHz	1.0	3.31	3.24	2.33	
	Supply		1 MHz	1.0	2.67	2.62	2.18	
IDD	Current in		288 MHz	1.3	231.3	222.4	59.7	
	Run mode		264 MHz	1.3	212.7	204.5	55.0	
			240 MHz	1.2	177.8	170.9	46.1	
			216 MHz	1.2	160.6	154.4	41.7	
			192 MHz	1.1	130.6	125.6	33.9	
			168 MHz	1.1	114.8	110.3	30.0	
			144 MHz	1.0	97.3	93.9	24.0	
		High speed	120 MHz	1.0	81.9	79.0	20.7	
		internal	108 MHz	1.0	73.9	71.2	18.7	
		clock	72 MHz	1.0	49.9	48.1	13.1	mA
		(HICK) ⁽²⁾	48 MHz	1.0	34.1	32.9	9.54	
			36 MHz	1.0	26.0	25.1	7.57	
			24 MHz	1.0	18.2	17.6	5.88	
			16 MHz	1.0	12.7	12.3	4.48	
			8 MHz	1.0	6.73	6.54	2.84	
			4 MHz	1.0	4.21	4.11	2.25	
			2 MHz	1.0	2.95	2.89	1.97	
		1	1 MHz	1.0	2.32	2.28	1.82	

	Table 21. Typical	current	consumption	in	Run	mode
--	-------------------	---------	-------------	----	-----	------

External clock is 8 MHz.
 PLL is on when f_{HCLK} > 8 MHz.

			71					
						Туре		
Symbol	Parameter	Conditions	fнськ	LDO voltage	All peripherals enabled	All peripherals enabled except EMAC	All peripherals disabled	Unit
			288 MHz	1.3	210.2	201.1	36.4	
			264 MHz	1.3	193.2	185.0	33.7	
			240 MHz	1.2	161.4	154.5	28.3	
			216 MHz	1.2	145.8	139.6	25.8	
			192 MHz	1.1	118.5	113.4	20.9	
			168 MHz	1.1	104.1	99.7	18.6	
			144 MHz	1.0	89.1	85.6	15.1	
		High speed	120 MHz	1.0	75.0	72.1	13.3	
		external	108 MHz	1.0	67.7	65.1	12.2	~ ^
		crystal	72 MHz	1.0	45.9	44.1	8.80	ma
		(HEXT) ⁽¹⁾⁽²⁾	48 MHz	1.0	31.5	30.4	6.84	
			36 MHz	1.0	24.2	23.3	5.65	
			24 MHz	1.0	17.1	16.5	4.75	
			16 MHz	1.0	12.1	11.7	3.86	
			8 MHz	1.0	6.67	6.49	2.73	
			4 MHz	1.0	4.39	4.30	2.41	
	Ormatic		2 MHz	1.0	3.25	3.20	2.25	
	Supply	uppiy urrent in leep mode	1 MHz	1.0	2.68	2.65	2.17	
IDD	Sleep mode		288 MHz	1.3	209.8	200.8	36.1	
	Sleep mode		264 MHz	1.3	192.9	184.6	33.4	
			240 MHz	1.2	161.1	154.2	28.0	
			216 MHz	1.2	145.5	139.3	25.5	
			192 MHz	1.1	118.3	113.2	20.6	
			168 MHz	1.1	103.9	99.5	18.3	
			144 MHz	1.0	88.9	85.4	14.8	
		High speed	120 MHz	1.0	74.8	71.9	13.0	
		internal	108 MHz	1.0	67.5	64.9	11.8	m۸
		clock	72 MHz	1.0	45.6	43.9	8.46	ША
		(HICK) ⁽²⁾	48 MHz	1.0	31.3	30.1	6.50	
			36 MHz	1.0	23.9	23.0	5.31	
			24 MHz	1.0	16.8	16.2	4.40	
			16 MHz	1.0	11.8	11.4	3.51	
			8 MHz	1.0	6.33	6.15	2.38	
			4 MHz	1.0	4.05	3.95	2.06	
			2 MHz	1.0	2.91	2.86	1.90	
			1 MHz	1.0	2.34	2.31	1.82	

Table 22.	Typical curren	t consumption	in	Sleep	mode
	- ypiour ourron	c oonoamption		0.000	

External clock is 8 MHz.
 PLL is on when f_{HCLK} > 8 MHz.

	-			LDO	М	ax	
Symbol	Parameter	Conditions	THCLK	voltage	T _A = 85 °C	T _A = 105 °C	Unit
			288 MHz	1.3	260.2	276.7	
			240 MHz	1.2	196.1	211.1	-
			192 MHz	1.1	144.5	156.6	
			144 MHz	1.0	108.0	117.9	
			120 MHz	1.0	92.6	102.6	
		High speed external	108 MHz	1.0	84.6	94.6	
		crystal (HEXT) ⁽¹⁾ , all	72 MHz	1.0	60.6	70.6	MA
		peripherals enabled	48 MHz	1.0	44.7	55.0	
			36 MHz	1.0	36.6	46.8	
			24 MHz	1.0	28.7	38.7	
			16 MHz	1.0	23.1	33.1	
			8 MHz	1.0	17.1	27.0	
			288 MHz	1.3	252.3	267.7	
			240 MHz	1.2	189.20	204.3	
			192 MHz	1.1	139.4	151.6	mA
		High speed external crystal (HEXT) ⁽¹⁾ , all peripherals enabled except EMAC	144 MHz	1.0	104.6	114.6	
			120 MHz	1.0	89.6	99.8	
	Supply		108 MHz	1.0	82.0	92.1	
IDD	Bun modo		72 MHz	1.0	58.8	68.9	
	Run mode		48 MHz	1.0	43.6	53.8	
			36 MHz	1.0	35.7	45.9	
			24 MHz	1.0	28.1	38.2	
			16 MHz	1.0	22.8	32.7	
			8 MHz	1.0	17.0	26.9	
			288 MHz	1.3	79.1	97.1	
			240 MHz	1.2	61.9	75.8	
			192 MHz	1.1	46.6	58.4	
			144 MHz	1.0	34.3	44.3	
		Ligh anod avtarnal	120 MHz	1.0	30.9	40.9	
			108 MHz	1.0	29.0	39.0	~^^
			72 MHz	1.0	23.3	33.2	ША
		אמושבומים מופמטופט	48 MHz	1.0	19.8	29.7	
			36 MHz	1.0	17.8	27.7	
			24 MHz	1.0	16.1	26.0	
			16 MHz	1.0	14.7	24.6	
			8 MHz	1.0	13.1	22.9	

Table 23. Maximum current consumption in Run mode

(1) External clock is 8 MHz and PLL is on when $f_{HCLK} > 8$ MHz.

				LDO	. м	ax	
Symbol	Parameter	Conditions	f _{HCLK}	voltage	T _A = 85 °C	T _A = 105 °C	Unit
			288 MHz	1.3	232.6	252.0	
			240 MHz	1.2	178.3	192.6	
			192 MHz	1.1	131.5	143.3	
			144 MHz	1.0	99.1	108.7	
			120 MHz	1.0	85.2	94.7	
		High speed external	108 MHz	1.0	77.9	87.4	
		crystal (HEXT) ⁽¹⁾ , all	72 MHz	1.0	56.1	65.5	mA
		peripherals enabled	48 MHz	1.0	41.7	51.0	
			36 MHz	1.0	34.3	43.5	
			24 MHz	1.0	27.2	36.3	
			16 MHz	1.0	22.1	31.2	
			8 MHz	1.0	16.6	25.7	
			288 MHz	1.3	225.6	243.2	
			240 MHz	1.2	171.5	185.9	
			192 MHz	1.1	126.5	138.3	mA
		High speed external crystal (HEXT) ⁽¹⁾ , all peripherals enabled except EMAC	144 MHz	1.0	95.8	105.2	
			120 MHz	1.0	82.3	91.8	
	Supply		108 MHz	1.0	75.4	84.8	
IDD	current in		72 MHz	1.0	54.4	63.8	
	Sleep mode		48 MHz	1.0	40.6	49.8	
			36 MHz	1.0	33.5	42.6	
			24 MHz	1.0	26.7	35.6	
			16 MHz	1.0	21.8	30.7	
			8 MHz	1.0	16.5	25.4	
			288 MHz	1.3	55.2	72.6	
			240 MHz	1.2	43.6	57.0	
			192 MHz	1.1	33.2	44.3	
			144 MHz	1.0	25.0	34.2	
		High apond ovtorpol	120 MHz	1.0	23.2	32.3	
			108 MHz	1.0	22.1	31.2	
			72 MHz	1.0	18.7	27.7	ША
		ראסואריבימים מוסמטופע	48 MHz	1.0	16.7	25.7	
			36 MHz	1.0	15.5	24.5	
			24 MHz	1.0	14.6	23.6	
			16 MHz	1.0	13.7	22.7	
			8 MHz	1.0	12.5	21.5	

Table 24. Maximum current consumption in Sleep mode

(1) External clock is 8 MHz and PLL is on when $f_{HCLK} > 8$ MHz.

			Typ ⁽¹⁾		Max ⁽²⁾		
Symbol	Parameter	Conditions	V _{DD} /V _{BAT} = 2.6 V	V _{DD} /V _{BAT} = 3.3 V	T _A = 85 °C	T _A = 105 °C	Unit
ססן	Supply current in	LDO in normal mode, 1.2 V HICK and HEXT OFF (no WDT)	1.26	1.27	17.1	29.8	
	Deepsleep mode	LDO in low-power mode, 1.0 V HICK and HEXT OFF (no WDT)	0.75	0.76	11.1	20.0	ΜA
	Supply current in	LEXT and ERTC OFF	9.15	10.92	16.1	20.3	
	Standby mode	LEXT and ERTC ON	10.63	13.51	18.3	22.6	μΑ

Table 25. Typical and maximum current consumptions in Deepsleep and Standby modes

(1) Typical values are measured at $T_A = 25 \text{ °C}$.

(2) Guaranteed by characterization results, not tested in production.

Figure 10. Typical current consumption in Deepsleep mode with regulator in run mode and output 1.2 V vs. temperature at different V_{DD}

Figure 11. Typical current consumption in Deepsleep mode with regulator in low-power mode and output 1.0 V vs. temperature at different V_{DD}

Figure 12. Typical current consumption in Standby mode vs. temperature at different V_{DD}

Table 26. Typical and maximum current consumptions on VBAT

				Typ ⁽¹⁾		Ма	x ⁽²⁾	
Symbol	Parameter	Conditions	V _{BAT} = 1.612 V	V _{BAT} = 2.6 V	V _{BAT} = 3.3 V	T _A = 85 °C	T _A = 105 °C	Unit
I _{DD_VBAT}	Supply current of V _{BAT}	LEXT and ERTC ON, V _{DD} < V _{LVR}	1.04	1.49	1.89	2.59	3.10	μA

(1) Typical values are measured at $T_A = 25$ °C.

(2) Guaranteed by characterization results, not tested in production.

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- All GPIO pins are in analog mode.
- The given value is calculated by measuring the current consumption difference between "all peripherals clocked OFF" and "only one peripheral clocked ON".

_			T	ур		
Peri	ipheral	LDO = 1.3 V	LDO = 1.2 V	LDO = 1.1 V	LDO = 1.0 V	Unit
	DMA1	14.67	13.39	12.21	11.08	
	DMA2	14.85	13.56	12.36	11.22	
	EDMA	68.04	62.02	56.48	51.21	
	GPIOA	2.68	2.46	2.24	2.04	
	GPIOB	2.66	2.44	2.21	2.02	
	GPIOC	2.65	2.42	2.22	2.02	
	GPIOD	2.58	2.38	2.17	1.98	
	GPIOE	2.67	2.46	2.23	2.04	
	GPIOF	2.58	2.37	2.16	1.97	
	GPIOG	2.64	2.42	2.20	2.02	
	GPIOH	2.59	2.39	2.18	1.99	
	XMC	43.05	39.29	35.81	32.47	
AHB	QSPI1	49.85	45.54	41.53	37.69	
	QSPI2	50.05	45.66	41.59	37.72	
	CRC	1.74	1.60	1.46	1.34	
	SDIO1	20.30	18.51	16.86	15.28	
	SDIO2	20.56	18.76	17.12	15.54	
	OTGFS1	58.65	53.58	48.87	44.36	μΑνινιπΖ
	OTGFS2	59.09	53.96	49.17	44.62	
	DVP	8.12	7.42	6.76	6.15	
	EMAC					
	EMAC_TX	22.69	20.04			
	EMAC_RX	32.08	29.84	27.21	24.09	
	EMAC_PTP					
	TMR2	12.43	11.33	10.32	9.37	
	TMR3	9.11	8.30	7.57	6.86	
	TMR4	9.29	8.47	7.71	7.00	
	TMR5	12.17	11.12	10.13	9.20	
	TMR6	1.71	1.58	1.44	1.31	
APDI	TMR7	1.59	1.47	1.34	1.22	
	TMR12	5.54	5.07	4.63	4.22	
	TMR13	3.59	3.31	3.01	2.74	
	TMR14	3.71	3.42	3.12	2.85	
	WWDT	0.79	0.73	0.67	0.61	

Table 27. Peripheral current consumption

Peripheral					1114	
Peri	pneral	LDO = 1.3 V	LDO = 1.2 V	LDO = 1.1 V	LDO = 1.0 V	Unit
	SPI2/I ² S2	10.21	9.34	8.52	7.73	
	SPI3/I ² S3	7.80	7.16	6.53	5.95	
	USART2	3.14	2.87	2.62	2.38	
	USART3	3.09	2.83	2.58	2.35	
	UART4	3.04	2.78	2.53	2.31	
	UART5	2.96	2.72	2.47	2.25	
	I ² C1	7.28	6.66	6.07	5.52	
APB1	l ² C2	7.31	6.69	6.09	5.54	
	I ² C3	7.25	6.64	6.06	5.51	
	CAN1	4.92	4.51	4.11	3.75	
	CAN2	4.56	4.18	3.81	3.48	
	PWC	0.55	0.54	0.48	0.46	
	DAC	2.72	2.50	2.28	2.08	
	UART7	3.06	2.80	2.56	2.33	
	UART8	3.07	2.80	2.56	2.33	
	TMR1	13.26	12.11	11.04	10.02	μανινιτε
	TMR8	13.44	12.28	11.21	10.17	
	USART1	3.24	2.97	2.71	2.47	
	USART6	3.44	3.15	2.87	2.62	
	ADC1	15.11	13.80	12.56	11.40	
	ADC2	15.02	13.70	12.49	11.34	
	ADC3	14.95	13.65	12.44	11.30	
APB2	SPI1/I ² S1	5.70	5.22	4.77	4.33	
	SPI4/I ² S4	3.67	3.36	3.07	2.80	
	SCFG	0.95	0.88	0.80	0.74	
	TMR9	5.89	5.40	4.93	4.48	
	TMR10	3.72	3.41	3.12	2.84	
	TMR11	3.97	3.63	3.31	3.02	
	TMR20	12.88	11.74	10.69	9.70	
	ACC	1.12	1.02	0.93	0.86	

;;

5.3.6 External clock source characteristics

High-speed external clock generated from a crystal / ceramic resonator

The high-speed external (HEXT) clock can be supplied with a 4 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
fhext_in	Oscillator frequency	-	4	8	25	MHz
t _{SU(HEXT)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

(1) Oscillator characteristics given by the crystal/ceramic resonator manufacturer.

(2) Guaranteed by characterization results, not tested in production.

(3) t_{SU(HEXT)} is the startup time measured from the moment HEXT is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and select to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Figure 14. HEXT typical application with an 8 MHz crystal

High-speed external clock generated from an external source

The characteristics given in the table below result from tests performed using a high-speed external clock source.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fHEXT_ext	User external clock source frequency ⁽¹⁾		1	8	25	MHz
VHEXTH	HEXT_IN input pin high level voltage		0.7V _{DD}	-	Vdd	V
VHEXTL	HEXT_IN input pin low level voltage		Vss	-	0.3V _{DD}	V
t _{w(HEXT)}	HEXT IN high or low time ⁽¹⁾	-	5			
t _{w(HEXT)}			5	-	-	nc
tr(HEXT)	HEXT IN rise or fall time ⁽¹⁾		_	_	20	115
t _{f(HEXT)}			-	-	20	
Cin(HEXT)	HEXT_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy(HEXT)	Duty cycle	-	45	-	55	%
١L	HEXT_IN Input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$	-	-	±1	μA

Table 29. HEXT external source characteristics

(1) Guaranteed by design, not tested in production.

Figure 15. HEXT external source AC timing diagram

Low-speed external clock generated from a crystal / ceramic resonator

The low-speed external (LEXT) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
tsu(LEXT)	Startup time	V _{DD} is stabilized	-	200	-	ms

Table 30. LEX	T 32.768 kHz	crystal char	acteristics ⁽¹⁾⁽²⁾
---------------	--------------	--------------	-------------------------------

(1) Oscillator characteristics given by the crystal/ceramic resonator manufacturer.

(2) Guaranteed by characterization results, not tested in production.

For C_{L1} and C_{L2}, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to meet the requirements of the crystal or resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} .

Load capacitance C_L is based on the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

Figure 16. LEXT typical application with a 32.768 kHz crystal

Note:

No external resistor is required between LEXT_IN and LEXT_OUT and it is also prohibited to add it.

Low-speed external clock generated from an external source

The characteristics given in the table below come from tests performed using a low-speed external clock source.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fLEXT_ext	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
VLEXTH	LEXT_IN input pin high level voltage		0.7V _{DD}	-	Vdd	V
VLEXTL	LEXT_IN input pin low level voltage		Vss	-	0.3V _{DD}	V
tw(LEXT)	LEXT IN high or low time ⁽¹⁾	-	450			
tw(LEXT)			430	_	-	ns
tr(LEXT)	LEXT IN rise or fall time ⁽¹⁾		_	_	50	115
t _{f(LEXT)}			-	-	50	
Cin(LEXT)	LEXT_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy(LEXT)	Duty cycle	-	30	-	70	%
١L	LEXT_IN input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$	-	-	±1	μA

Table 31. LEXT external source characteristics

(1) Guaranteed by design, not tested in production.

Figure 17. LEXT external source AC timing diagram

5.3.7 Internal clock source characteristics

High-speed internal clock (HICK)

Symbol	Parameter	Co	nditions	Min	Тур	Max	Unit
fнicк	Frequency	-		-	48	-	MHz
DuCy(HICK)	Duty cycle		-	45	-	55	%
АССніск		User-trimmed with the RCC CTRL register		-	-	1 ⁽¹⁾	%
	Accuracy of the HICK oscillator	ACC-trimmed		-	-	0.25 ⁽¹⁾	
		Factory- calibrated ⁽²⁾	T _A = -40 ~ 105 °C	-2.5		2.5	%
			T _A = -40 ~ 85 °C	-2.5	-	2	
			T _A = 0 ~ 70 °C	-1.5	-	1.5	
			T _A = 25 °C	-1	0.5	1	
tsu(ніск) ⁽²⁾	HICK oscillator startup time	-		-	-	10	μs
IDD(HICK) ⁽²⁾	HICK oscillator power consumption		-	-	355	455	μA

Table 32. HICK clock characteristics

(1) Guaranteed by design, not tested in production.

(2) Guaranteed by characterization results, not tested in production.

Figure 18. HICK clock frequency accuracy vs. temperature

Low-speed internal clock (LICK)

Table 33. LICK	clock	charact	eristics
----------------	-------	---------	----------

	IVIIII	тур	wax	Unit
fLICK ⁽¹⁾ Frequency -	30	40	60	kHz

(1) Guaranteed by characterization results, not tested in production.

5.3.8 PLL characteristics

Table 34. PLL characteristics

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
for a state	PLL input clock (2)	2	8	16	MHz
TPLL_IN	PLL input clock duty cycle	40	-	60	%
f pll_out	PLL multiplier output clock	16	-	288	MHz
t LOCK	PLL lock time	-	-	200	μs
Jitter	Cycle-to-cycle jitter	-	-	300	ps

(1) Guaranteed by characterization results, not tested in production.

(2) Take care of using the appropriate multiplier factors to ensure that PLL input clock values are compatible with the range defined by f_{PLL_OUT}.

5.3.9 Wakeup time from low-power mode

The wakeup times given in the table below is measured on a wakeup phase with the HICK. The clock source used to wake up the device depends from the current operating mode:

- Sleep mode: the clock source is the clock that was configured before entering Sleep mode.
- Deepsleep or Standby mode: the clock source is the HICK.

Symbol	Parameter	Conditions	Тур	Unit	
twusleep	Wakeup from Sleep mode	-	1.8	μs	
twudeepsleep	Wekeup from Deepeleen mede	LDO in normal mode	330		
	Wakeup nom Deepsieep mode	LDO in low-power mode	360	μs	
twustdby		ZW = 128 KBytes	5		
	Wakeup from Standby mode	ZW = 256 KBytes	10	ms	
		ZW = 512 KBytes	20		

Table 35. Low-power mode wakeup time

5.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

• **EFT:** A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a coupling/decoupling network, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

Symb	Parameter	Conditions	Level/Class
Veft	Fast transient voltage burst limits to be applied through coupling/decoupling network conforms to IEC 61000-4-4 on V_{DD} and V_{SS} pins to induce a functional disturbance, V_{DD} and V_{SS} input has one 47 µF capacitor and each V_{DD} and V_{SS} pin pair 0.1 µF	V _{DD} = 3.3 V, LQFP144, T _A = +25 °C, f _{HCLK} = 288 MHz, LDO = 1.3 V, NZW_BST = 0, conforms to IEC 61000-4-4 V _{DD} = 3.3 V, LQFP144, T _A = +25 °C, f _{HCLK} = 160 MHz, LDO = 1.2 V, NZW_BST = 1, conforms to IEC 61000-4-4	4A (±4kV)

Table 36. EMS characteristics

EMC characterization and optimization are performed at component level with a typical application environment. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

5.3.11 GPIO port characteristics

General input/output characteristics

All GPIOs are CMOS and TTL compliant.

Symb	Parameter	Conditions	Min	Тур	Max	Unit
VIL	GPIO input low level voltage	-	-0.3	-	0.28 * V _{DD} + 0.1	V
	TC GPIO input high level voltage	-			$V_{} \pm 0.2$	
	FTa GPIO input high level voltage	Analog mode		-	VDD+0.3	
VIII	FT and FTf GPIO input high level		0.31 * V _{DD}			V
VIN	voltage	-	+ 0.8		55	v
	ETa GPIO input high level voltage	Input floating, input pull-up,		-	0.0	
		or input pull-down mode				
Vhuo	Schmitt trigger voltage	_	200	-	-	mV
v nys	hysteresis ⁽¹⁾	-	5% Vdd	-	-	-
		$V_{SS} \leq V_{IN} \leq V_{DD}$		_	+1	
lu	Input lookago current ⁽²⁾	TC GPIOs	-		±1	
likg		Vss ≤ Vin ≤ 5.5V			±1	μΑ
		FT, FTf and FTa GPIO	-	-	ΞI	
Rpu	Weak pull-up equivalent resistor	VIN = VSS	60	70	100	kΩ
Rpd	Weak pull-down equivalent resistor ⁽³⁾	VIN = VDD	60	70	100	kΩ
Сю	GPIO pin capacitance	-	-	9	-	pF

Table 37. GPIO static characteristics

(1) Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.

(2) Leakage could be higher than max if negative current is injected on adjacent pins.

(3) The pull-down resistor of BOOT0 exists permanently.

All GPIOs are CMOS and TTL compliant (no software configuration required). Their characteristics take into account the strict CMOS-technology or TTL parameters.

Output driving current

In the user application, the number of GPIO pins which can drive current must be controlled to respect the absolute maximum rating defined in *Section 5.2.1*:

- The sum of the currents sourced by all GPIOs on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD} (see *Table 11*).
- The sum of the currents sunk by all GPIOs on V_{SS}, plus the maximum Run consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating I_{VSS} (see *Table 11*).

Output voltage levels

All GPIOs are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
Maximum	sourcing/sinking strength				
Vol	Output low level voltage	CMOS standard lu = 15 mA	-	0.4	V
Vон	Output high level voltage		V _{DD} -0.4	-	v
V _{OL}	Output low level voltage	TTL standard la = 6 mA	-	0.4	V
V _{OH}	Output high level voltage	TTL standard, 110 – 6 mA	2.4	-	v
Large sou	rcing/sinking strength				
Vol	Output low level voltage		-	0.4	N
V _{он}	Output high level voltage	$-$ CMOS standard, $I_0 = 6$ mA	V _{DD} -0.4	-	
Vol	Output low level voltage	TTL standard L 0 mA	-	0.4	
Vон	Output high level voltage	$-$ 1 I L standard, $I_{10} = 3 \text{ mA}$	2.4	-	v
Vol ⁽¹⁾	Output low level voltage	L 00 A	-	1.3	
$V_{OH}^{(1)}$	Output high level voltage	$-1_{10} = 20 \text{ mA}$	V _{DD} -1.3	-	
Normal so	ourcing/sinking strength				
Vol	Output low level voltage		-	0.4	
Vон	Output high level voltage	- CMOS standard, $I_{10} = 4 \text{ mA}$	V _{DD} -0.4	-	
Vol	Output low level voltage	TTU I I I I O A	-	0.4	
Vон	Output high level voltage	$-$ 1 1 L standard, $I_{10} = 2 \text{ mA}$	2.4	-	- V
Vol ⁽¹⁾	Output low level voltage	L 40 A	-	1.3	
VoH ⁽¹⁾	Output high level voltage	$-1_{10} = 10 \text{ mA}$	V _{DD} -1.3	-	V
Ultra high	sinking strength ⁽²⁾		I	1	
Vol	Output low level voltage	I _{IO} = 20 mA	-	0.4	V
		•			

Table 3	38.	Output	voltage	characte	ristics

Guaranteed by characterization results.
 When GPIO ultra high sinking strength is enabled, its V_{OH} is the same as that of maximum sourcing strength.

Input AC characteristics

The definition and values of input AC characteristics are given as follows.

Table 39. Input AC characteristics

Symbol	Parameter	Min	Мах	Unit
t EXINTpw	Pulse width of external signals detected by EXINT controller	10	-	ns

5.3.12 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see the table below).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
VIL(NRST) ⁽¹⁾	NRST input low level voltage	-	-0.5	-	0.8	V
VIH(NRST) ⁽¹⁾	NRST input high level voltage	-	2	-	V _{DD} + 0.3	v
Vhys(NRST)	NRST Schmitt trigger voltage hysteresis	-	-	500	-	mV
Rpu	Weak pull-up equivalent resistor	VIN = VSS	30	40	50	kΩ
VF(NRST) ⁽¹⁾	NRST input filtered puLEXT	-	-	-	33.3	μs
Vnf(nrst) ⁽¹⁾	NRST input not filtered puLEXT	-	66.7	-	-	μs

Table 4	40.	NRST	pin	chara	cteris	tics

(1) Guaranteed by design.

Figure 19. Recommended NRST pin protection

- (1) The reset network protects the device against parasitic resets.
- (2) The user must ensure that the level on the NRST pin can go below the V_{IL} (NRST) max level specified in *Table 40*. Otherwise the reset will not be performed by the device.

5.3.13 XMC (SDRAM included) characteristics

Asynchronous waveforms and timings of SRAM/PSRAM/NOR

The results given in these tables are obtained with the following XMC configuration:

- AddressSetupTime = 0
- AddressHoldTime = 1
- DataSetupTime = 1

Symbol	Parameter	Min	Max	Unit
tw(NE)	XMC_NE low time	5tнськ - 1.5	5tнськ + 2	ns
tv(NOE_NE)	XMC_NE low to XMC_NOE low	0.5	1.5	ns
tw(NOE)	XMC_NOE low time	5tнськ - 1.5	5tнськ + 1.5	ns
th(NE_NOE)	XMC_NOE high to XMC_NE high hold time	-1.5	-	ns
tv(A_NE)	XMC_NE low to XMC_A valid	-	7	ns
th(A_NOE)	Address hold time after XMC_NOE high	2.5	-	ns
th(UBLB_NOE)	XMC_UB/LB hold time after XMC_NOE high	2.5	-	ns
tv(UBLB_NE)	XMC_NE low to XMC_UB/LB valid	-	0	ns
tsu(Data_NE)	Data to XMC_NE high setup time	2tнськ + 25	-	ns
tsu(Data_NOE)	Data to XMC_NOE high setup time	2tнськ + 25	-	ns
th(Data_NE)	Data hold time after XMC_NE high	0	-	ns
th(Data_NOE)	Data hold time after XMC_NOE high	0	-	ns
tv(NADV_NE)	XMC_NE low to XMC_NADV low	-	5	ns
tw(NADV)	XMC_NADV low time	-	tнськ + 1.5	ns

Table 41. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings

(1) Only available in mode 2/B, C, and D. XMC_NADV is not used in mode 1.

Symbol	Parameter	Min	Max	Unit
Cymbol	i aramotor		Шах	onic
tw(NE)	XMC_NE low time	3tнськ - 1	3tнськ + 2	ns
tv(NWE_NE)	XMC_NE low to XMC_NWE low	tнськ - 0.5	tнськ + 1.5	ns
tw(NWE)	XMC_NWE low time	tнськ - 0.5	tнськ + 1.5	ns
th(NE_NWE)	XMC_NWE high to XMC_NE high hold time	thclk	-	ns
tv(A_NE)	XMC_NE low to XMC_A valid	-	7.5	ns
th(A_NWE)	Address hold time after XMC_NWE high	tнськ + 2	-	ns
th(UBLB_NWE)	XMC_UB/LB hold time after XMC_NWE high	tнськ - 0.5	-	ns
tv(UBLB_NE)	XMC_NE low to XMC_UB/LB valid	-	1.5	ns
tv(Data_NE)	XMC_NE low to data valid	-	tнськ + 7	ns
th(Data_NWE)	Data hold time after XMC_NWE high	thclk + 3	-	ns
tv(NADV_NE)	XMC_NE low to XMC_NADV low	-	5.5	ns
tw(NADV)	XMC_NADV low time	-	tнськ + 1.5	ns

Table 42. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings

(1) Only available in mode 2/B, C, and D. XMC_NADV is not used in mode 1.
Symbol	/mbol Parameter		Max	Unit
t _{w(NE)}	XMC_NE low time	7t _{HCLK} - 2	7t _{HCLK} + 2	ns
$t_{v(NOE_NE)}$	XMC_NE low to XMC_NOE low	3t _{HCLK} - 0.5	3t _{HCLK} + 1.5	ns
t _{w(NOE)}	XMC_NOE low time	4t _{HCLK} - 1	4t _{HCLK} + 2	ns
$t_{h(NE_NOE)}$	XMC_NOE high to XMC_NE high hold time	-1	-	ns
t _{v(A_NE)}	XMC_NE low to XMC_A valid	-	0	ns
$t_{v(NADV_NE)}$	XMC_NE low to XMC_NADV low	3	5	ns
t _{w(NADV)}	NADV) XMC_NADV low time		t _{HCLK} + 1.5	ns
t _{h(AD_NADV)}	XMC_AD (address) valid hold time after XMC_NADV high	t _{HCLK} + 3	-	ns
t _{h(A_NOE)}	Address hold time after XMC_NOE high	t _{HCLK} + 3	-	ns
$t_{h(UBLB_NOE)}$	XMC_UB/LB hold time after XMC_NOE high	0	-	ns
$t_{v(UBLB_NE)}$	XMC_NE low to XMC_UB/LB valid	-	0	ns
t _{su(Data_NE)}	Data to XMC_NE high setup time	2t _{HCLK} + 24	-	ns
t _{su(Data_NOE)}	Data to XMC_NOE high setup time	2t _{HCLK} + 25	-	ns
t _{h(Data_NE)}	Data hold time after XMC_NE high	0	-	ns
t _{h(Data_NOE)}	Data hold time after XMC_NOE high	0	-	ns

 Table 43. Asynchronous multiplexed PSRAM/NOR read timings

Symbol	Parameter	Min	Max	Unit
tw(NE)	XMC_NE low time	5tнськ - 1	5t _{нськ} + 2	ns
tv(NWE_NE)	XMC_NE low to XMC_NWE low	2t _{HCLK}	2t _{нськ} + 1	ns
tw(NWE)	XMC_NWE low time	2t _{HCLK} - 1	2t _{HCLK} + 2	ns
th(NE_NWE)	XMC_NWE high to XMC_NE high hold time	t _{HCLK} - 1	-	ns
tv(A_NE)	XMC_NE low to XMC_A valid	-	7	ns
tv(NADV_NE)	XMC_NE low to XMC_NADV low 3 5		5	ns
tw(NADV)	XMC_NADV low time t _{HCLK} - 1 t _{HCL}		t _{HCLK} + 1	ns
th(AD_NADV)	XMC_AD (address) valid hold time after XMC_NADV	t _{нськ} - 3	-	ns
	high			
th(A_NWE)	Address hold time after XMC_NWE high	4t _{HCLK} + 2.5	-	ns
$t_{h(UBLB_NWE)}$	XMC_UB/LB hold time after XMC_NWE high	t _{нськ} - 1.5	-	ns
tv(UBLB_NE)	XMC_NE low to XMC_UB/LB valid	-	1.6	ns
tv(Data_NADV)	XMC_NADV high to Data valid	-	t _{нськ} + 1.5	ns
th(Data_NWE)	Data hold time after XMC_NWE high	tнськ - 5	-	ns

Table 44. Asynchronous multiplexed PSRAM/NOR write timings

Synchronous waveforms and timings of PSRAM/NOR

The results given in these tables are obtained with the following XMC configuration:

- BurstAccessMode = XMC_BurstAccessMode_Enable;
- MemoryType = XMC_MemoryType_CRAM;
- WriteBurst = XMC_WriteBurst_Enable;
- CLKPrescale = 1; (Note: CLKPrescale is CLKPSC bit in XMC_BK1TMGx register. Refer to the AT32F435/437 reference manual.)
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM (Note: DataLatency is DATLAT bit in XMC_BK1TMGx register. Refer to the AT32F435/437 reference manual.)

Symbol	Parameter	Min	Max	Unit
tw(CLK)	XMC_CLK period	20	-	ns
td(CLKL-NEL)	XMC_CLK low to XMC_NE low	-	1.5	ns
td(CLKL-NEH)	XMC_CLK low to XMC_NE high	t _{HCLK} + 2	-	ns
td(CLKL-NADVL)	XMC_CLK low to XMC_NADV low	-	4	ns
td(CLKL-NADVH)	XMC_CLK low to XMC_NADV high	5	-	ns
td(CLKL-AV)	XMC_CLK low to XMC_A valid	-	0	ns
td(CLKL-AIV)	XMC_CLK low to XMC_A invalid	t _{HCLK} + 4	-	ns
td(CLKH-NOEL)	XMC_CLK high to XMC_NOE low	-	t _{нськ} + 1.5	ns
td(CLKL-NOEH)	XMC_CLK low to XMC_NOE high	t _{нськ} + 1.5	-	ns
tsu(DV-CLKH)	XMC_D valid data before XMC_CLK high	6.5	-	ns
th(CLKH-DV)	XMC_D valid data after XMC_CLK high	7	-	ns
tsu(NWAITV-CLKH)	XMC_NWAIT valid before XMC_CLK high	7	-	ns
th(CLKH-NWAITV)	XMC_NWAIT valid after XMC_CLK high	2	-	ns

Table 45. Synchronous non-multiplexed PSRAM/NOR read timings

Symbol	Parameter	Min	Max	Unit
tw(CLK)	XMC_CLK period	20	-	ns
td(CLKL-NEL)	XMC_CLK low to XMC_NE low	-	2	ns
td(CLKL-NEH)	XMC_CLK low to XMC_NE high	t _{HCLK} + 2	-	ns
td(CLKL-NADVL)	XMC_CLK low to XMC_NADV low	-	4	ns
td(CLKL-NADVH)	XMC_CLK low to XMC_NADV high	5	-	ns
td(CLKL-AV)	XMC_CLK low to XMC_A valid	-	0	ns
td(CLKL-AIV)	XMC_CLK low to XMC_A invalid	t _{HCLK} + 2	-	ns
td(CLKL-NWEL)	XMC_CLK low to XMC_NWE low	-	1	ns
td(CLKL-NWEH)	XMC_CLK low to XMC_NWE high	t _{HCLK} + 1	-	ns
td(CLKL-Data)	XMC_D after XMC_CLK low	-	6	ns
td(CLKL-UBLBH)	XMC_CLK low to XMC_UB/LB high	t _{нськ} + 1.5	-	ns
tsu(NWAITV-CLKH)	XMC_NWAIT valid before XMC_CLK high	7	-	ns
$t_{h(CLKH-NWAITV)}$	XMC_NWAIT valid after XMC_CLK high	2	-	ns

Table 46. Synchronous non-multiplexed PSRAM write timings

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	XMC_CLK period	20	-	ns
t _{d(CLKL-NEL)}	XMC_CLK low to XMC_NE low	-	1.5	ns
t _{d(CLKH-NEH)}	XMC_CLK low to XMC_NE high	t _{HCLK} + 2	-	ns
t _{d(CLKL-NADVL)}	XMC_CLK low to XMC_NADV low	-	4	ns
t _{d(CLKL-NADVH)}	XMC_CLK low to XMC_NADV high	5	-	ns
t _{d(CLKL-AV)}	XMC_CLK low to XMC_A valid	-	0	ns
t _{d(CLKL-AIV)}	XMC_CLK low to XMC_A invalid	t _{HCLK} + 2	-	ns
$t_{d(CLKH-NOEL)}$	XMC_CLK high to XMC_NOE low		t _{HCLK} + 1	ns
t _{d(CLKL-NOEH)}	XMC_CLK low to XMC_NOE high	t _{HCLK} + 0.5	-	ns
t _{d(CLKL-ADV)}	XMC_CLK low to XMC_AD valid	-	12	ns
t _{d(CLKL-ADIV)}	XMC_CLK low to XMC_AD invalid	0	-	ns
t _{su(ADV-CLKH)}	XMC_AD valid data before XMC_CLK high	6	-	ns
t _{h(CLKH-ADV)}	XMC_AD valid data after XMC_CLK high	t _{нськ} - 10	-	ns
$t_{su(NWAITV-CLKH)}$	XMC_NWAIT valid before XMC_CLK high	8	-	ns
$t_{h(CLKH-NWAITV)}$	XMC_NWAIT valid after XMC_CLK high	6	-	ns

Table 47. Synchronous multiplexed PSRAM/NOR read timings

Symbol	Parameter	Min	Мах	Unit	
tw(CLK)	XMC_CLK period	20	-	ns	
td(CLKL-NEL)	XMC_CLK low to XMC_NE low	-	2	ns	
td(CLKH-NEH)	XMC_CLK low to XMC_NE high	t _{HCLK} + 2	-	ns	
td(CLKL-NADVL)	XMC_CLK low to XMC_NADV low	-	4	ns	
td(CLKL-NADVH)	XMC_CLK low to XMC_NADV high	5	-	ns	
td(CLKL-AV)	XMC_CLK low to XMC_A valid	-	0	ns	
td(CLKH-AIV)	XMC_CLK low to XMC_A invalid	t _{HCLK} + 2	-	ns	
td(CLKL-NWEL)	XMC_CLK low to XMC_NWE low	-	1	ns	
td(CLKL-NWEH)	XMC_CLK low to XMC_NWE high	t _{нськ} + 1	-	ns	
td(CLKL-ADV)	XMC_CLK low to XMC_AD valid	-	12	ns	
td(CLKL-ADIV)	XMC_CLK low to XMC_AD invalid	3	-	ns	
td(CLKL-Data)	XMC_AD after XMC_CLK low	-	6	ns	
td(CLKL-UBLBH)	XMC_CLK low to XMC_UB/LB high	t _{HCLK} + 1	-	ns	
$t_{ m su(NWAITV-CLKH)}$	XMC_NWAIT valid before XMC_CLK high	7	-	ns	
$t_{h(CLKH-NWAITV)}$	XMC_NWAIT valid after XMC_CLK high	2	-	ns	

Table 48. Synchronous multiplexed PSRAM write timings

Figure 27. Synchronous multiplexed PSRAM write timings

NAND controller waveforms and timings

The results given in the table below are obtained with the following XMC configuration:

- COM.XMC_SetupTime = 0x01; (Note: STP in XMC_BKxTMGMEM)
- COM.XMC_WaitSetupTime = 0x03; (Note: OP in XMC_BKxTMGMEM)
- COM.XMC_HoldSetupTime = 0x02; (Note: HLD in XMC_BKxTMGMEM)
- COM.XMC_HiZSetupTime = 0x01; (Note: WRSTP in XMC_BKxTMGMEM)
- ATT.XMC_SetupTime = 0x01; (Note: STP in XMC_BKxTMGATT)
- ATT.XMC_WaitSetupTime = 0x03; (Note: OP in XMC_BKxTMGATT)
- ATT.XMC_HoldSetupTime = 0x02; (Note: HLD in XMC_BKxTMGATT)
- ATT.XMC_HiZSetupTime = 0x01; (Note: WRSTP in XMC_BKxTMGATT)
- Bank = XMC_Bank_NAND;
- MemoryDataWidth = XMC_MemoryDataWidth_16b; (Note: Memory data width = 16 bits)
- ECC = XMC_ECC_Enable; (Note: enable ECC calculation)
- ECCPageSize = XMC_ECCPageSize_512Bytes; (Note: ECC page size = 512 Bytes)
- DLYCRSetupTime = 0; (Note: DLYCR in XMC_BKxCTRL)
- DLYARSetupTime = 0; (Note: DLYAR in XMC_BKxCTRL)

Symbol	Parameter Min		Max	Unit
tw(NOE)	XMC_NWE low width	4T _{HCLK} - 1.5	4T _{HCLK} + 1.5	ns
tsu(D-NOE)	XMC_D valid data before XMC_NOE high	25	-	ns
th(NOE-D)	XMC_D valid data after XMC_NOE high	14	-	ns
td(ALE-NOE)	XMC_ALE valid before XMC_NOE low	-	3T _{HCLK} + 2	ns
th(NOE-ALE)	XMC_NOE high to XMC_ALE invalid	3T _{HCLK} + 4.5	-	ns
tw(NWE)	XMC_NWE low width	4T _{HCLK} - 1	4Т _{НСLК} + 2.5	ns
tv(NWE-D)	XMC_NWE low to XMC_D valid	-	0	ns
th(NWE-D)	XMC_NWE high to XMC_D invalid	10Т _{НСLК} + 4	-	ns
td(D-NWE)	XMC_D valid before XMC_NWE high	6T _{HCLK} + 12	-	ns
td(ALE-NWE)	XMC_ALE valid before XMC_NWE low	-	3T _{HCLK} + 1.5	ns
th(NWE-ALE)	XMC_NWE high to XMC_ALE invalid	3T _{HCLK} + 4.5	-	ns

Table 49. NAND Flash read and write timings

Figure 28. NAND controller read waveforms

Figure 31. NAND controller for common memory write waveforms

PC Card/Compact Flash controller timings and waveforms

The results given in the table below are obtained with the following XMC configuration:

- COM.XMC_SetupTime = 0x04; (Note: STP in XMC_BKxTMGMEM, x = 2...4)
- COM.XMC_WaitSetupTime = 0x07; (Note: OP in XMC_BKxTMGMEM, x = 2...4)
- COM.XMC_HoldSetupTime = 0x04; (Note: HLD in XMC_BKxTMGMEM, x = 2...4)
- COM.XMC_HiZSetupTime = 0x00; (Note: WRSTP in XMC_BKxTMGMEM, x = 2...4)
- ATT.XMC_SetupTime = 0x04; (Note: STP in XMC_BKxTMGATT, x = 2...4)
- ATT.XMC_WaitSetupTime = 0x07; (Note: OP in XMC_BKxTMGATT, x = 2...4)
- ATT.XMC_HoldSetupTime = 0x04; (Note: HLD in XMC_BKxTMGATT, x = 2...4)
- ATT.XMC_HiZSetupTime = 0x00; (Note: WRSTP in XMC_BKxTMGATT, x = 2...4)
- IO.XMC_SetupTime = 0x04; (Note: STP in XMC_BKxTMGIO, x = 4)
- IO.XMC_WaitSetupTime = 0x07; (Note: OP in XMC_BKxTMGIO, x = 4)
- IO.XMC_HoldSetupTime = 0x04; (Note: HLD in XMC_BKxTMGIO, x = 4)
- IO.XMC_HiZSetupTime = 0x00; (Note: WRSTP in XMC_BKxTMGIO, x = 4)
- DLYCRSetupTime = 0; (Note: DLYCR in XMC_BKxCTRL)
- DLYARSetupTime = 0; (Note: DLYAR in XMC_BKxCTRL)

Note: Refer to the AT32F435/437 reference manual about the description of registers above (XMC_BKXTMGMEMx, XMC_BKxTMGATT, XMC_BKxTMGIO, and XMC_BKxCTRL).

Symbol Parameter		Min	Max	Unit	
tv(NCEx-A)	XMC_NCEx low to XMC_Ax valid	-	0	ns	
th(NCEx-AI)	XMC_NCEx high to XMC_Ax invalid	0	-	ns	
$t_{d(NREG-NCEx)}$	XMC_NCEx low to XMC_NREG valid	-	2	ns	
th(NCEx-NREG)	XMC_NCEx high to XMC_NREG invalid	t _{нськ} + 4	-	ns	
td(NCEx-NWE)	XMC_NCEx low to XMC_NWE low	-	5t _{HCLK} + 1	ns	
td(NCEx-NOE)	XMC_NCEx low to XMC_NOE low	-	5t _{HCLK} + 1	ns	
tw(NOE)	XMC_NOE low width	8tнськ - 0.5	8t _{HCLK} + 1	ns	
td(NOE-NCEx)	XMC_NOE high to XMC_NCEx high	5t _{нськ} – 0.5	-	ns	
tsu(D-NOE)	XMC_Dx valid data before XMC_NOE high	32	-		
th(NOE-D)	XMC_Dx valid data after XMC_NOE high	t _{HCLK}	-		
tw(NWE)	XMC_NWE low width	8t _{нськ} - 1	8thclk - 1 8thclk + 4		
td(NWE-NCEx)	XMC_NWE high to XMC_NCEx high	5t _{HCLK} + 1.5	-	ns	
td(NCEx-NWE)	XMC_NCEx low to XMC_NWE low	-	5t _{HCLK} + 1	ns	
t _v (NWE-D)	XMC_NWE low to XMC_Dx valid	-	0	ns	
t h(NWE-D)	XMC_NWE high to XMC_Dx invalid	11tнськ	-	ns	
td(D-NWE)	XMC_Dx valid before XMC_NWE high	13t _{HCLK} + 2.5	-	ns	
tw(NIOWR)	XMC_NIOWR low width	8t _{HCLK}	-	ns	
tv(NIOWR-D)	XMC_NIOWR low to XMC_Dx valid	-	5t _{нськ} - 4	ns	
th(NIOWR-D)	XMC_NIOWR high to XMC_Dx invalid	11tнськ	clk -		
td(NCEx-NIOWR)	XMC_NCEx low to XMC_NIOWR valid			ns	
th(NCEx-NIOWR)	XMC_NCEx high to XMC_NIOWR invalid	5t _{HCLK} - 7	-	ns	
td(NIORD-NCEx)	XMC_NCEx low to XMC_NIORD valid	-	5t _{HCLK} + 1	ns	
th(NCEx-NIORD)	XMC_NCEx high to XMC_NIORD invalid	5t _{HCLK} - 0.5 -		ns	
tw(NIORD)	XMC_NIORD low width	8thclk -		ns	
tsu(D-NIORD)	XMC_Dx valid before XMC_NIORD high	28	-	ns	
td(NIORD-D)	XMC_Dx valid after XMC_NIORD high	3	-	ns	

Table 50. PC Card/CF read and write timings

Figure 32. PC Card/CompactFlash controller waveforms for common memory read access

(1) XMC_NCE4_2 remains high (inactive during 8-bit access).

Figure 33. PC Card/CompactFlash controller waveforms for common memory write access

Figure 34. PC Card/CompactFlash controller waveforms for attribute memory read access

(1) Only data bits 0...7 are read (bits 8...15 are disregarded).

(1) Only data bits 0...7 are driven (bits 8...15 remains HiZ).

Figure 36. PC Card/CompactFlash controller waveforms for I/O space read access

Figure 37. PC Card/CompactFlash controller waveforms for I/O space write access

SDRAM controller timing and waveforms

Table 51. SDRAM read timings

Symbol	Symbol Parameter		Max	Unit
1/tw(SDCLK)	SDCLK frequency	-	100	MHz
tsu(SDCLKH_Data)	Input data setup time	2	-	ns
th(SDCLKH_Data)	Input data hold time	0	-	ns
$t_{d(SDCLKL_Add)}$	Address valid time	-	1.5	ns
td(SDCLKL_SDCS)	SDCS valid time	-	0.5	ns
$t_{h(SDCLKL_SDCS)}$	SDCS hold time	0	-	ns
td(SDCLKL_SDNRAS)	SDNDAS/SDNCAS valid time		0.5	n 0
$t_{d(SDCLKL_SDNCAS)}$		-	0.5	115
th(SDCLKL_SDNRAS)	SDNPAS/SDNCAS hold time	0		nc
$t_{h(SDCLKL_SDNCAS)}$		0	-	115

Figure 38. SDRAM read waveforms

Symbol	Parameter	Min	Max	Unit
1/tw(SDCLK)	SDCLK frequency	-	100	MHz
td(SDCLKL_Data)	Output data valid time	-	2.5	ns
th(SDCLKL_Data)	Output data hold time	3.5	-	ns
td(SDCLKL_Add)	Address valid time	-	1.5	ns
td(SDCLKL_SDNWE)	SDNWE valid time	-	1	ns
th(SDCLKL_SDNWE) SDNWE hold time		0	-	ns
td(SDCLKL_SDCS) SDCS valid time		-	0.5	ns
th(SDCLKL_SDCS)	SDCS hold time	0	-	ns
td(SDCLKL_SDNRAS)	SDNRAS valid time	-	2	ns
th(SDCLKL_SDNRAS)	SDNRAS hold time	0	-	ns
td(SDCLKL_SDNCAS)	SDNCAS valid time	-	0.5	ns
th(SDCLKL_SDNCAS)	SDNCAS hold time	0	-	ns
td(SDCLKL_DQM)	DQM valid time	-	0.5	ns
th(SDCLKL_DQM)	DQM hold time	0	-	

Table 52. SDRAM write timings

Figure 39. SDRAM write waveforms

5.3.14 TMR timer characteristics

The parameters given in the table below are guaranteed by design.

Table 53. TMR characteristics

Symbol	Parameter	Conditions	Min	Мах	Unit
t (THD)	Timor recolution time	-	1	-	t tmrxclk
Lres(TMR)		f _{TMRxCLK} = 288 MHz	3.47	-	ns
feve	Timer external clock frequency on		0	ft ND. OLK/2	
IEXI	CH1 to CH4	-	0	TTMKXCLK/Z	IVIHZ

5.3.15 SPI / I²S characteristics

The parameters are listed in *Table 54* for SPI and in *Table 55* for I²S.

Т	ole 54. SPI characteristics

Symbol	Parameter	Conditions	Min	Max	Unit	
feor		Master mode	- 36			
$(1/t_{1})^{(1)}$	SPI clock frequency ⁽²⁾⁽³⁾	Slave receive mode	-	36	MHz	
(TIC(SCK))		Slave transmit mode	-	32		
t _{su(CS)} ⁽¹⁾	CS setup time	Slave mode	4t _{PCLK}	-	ns	
t _{h(CS)} ⁽¹⁾	CS hold time	Slave mode	2t _{PCLK}	-	ns	
t _{w(SCKH)} ⁽¹⁾	COK bisk and low fires	Master mode, f _{PCLK} = 100 MHz,	45	05		
t _{w(SCKL)} ⁽¹⁾	SCK high and low time	prescaler = 4	15	25	ns	
t _{su(MI)} ⁽¹⁾	Dete innut esture times	Master mode	5	-		
t _{su(SI)} ⁽¹⁾	Data input setup time	Slave mode	5	-	ns	
t _{h(MI)} ⁽¹⁾		Master mode	5	-		
t _{h(SI)} ⁽¹⁾	Data input setup time	Slave mode	4	-	ns	
t _{a(SO)} ⁽¹⁾⁽⁴⁾	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3t _{PCLK}	ns	
t _{dis(SO)} (1)(5)	Data output disable time	Slave mode	2	10	ns	
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave mode (after enable edge)	-	25	ns	
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)	-	5	ns	
t _{h(SO)} ⁽¹⁾		Slave mode (after enable edge)	15	-		
t _{h(MO)} (1)	- Data output hold time	Master mode (after enable edge)	2	-	ns	

(1) Guaranteed by characterization results, not tested in production.

(2) The maximum SPI clock frequency should not exceed fPCLK/2.

(3) The maximum SPI clock frequency is highly related with devices and the PCB layout. For more details about the complete solution, please contact your local Artery sales representative.

(4) Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

(5) Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

Figure 40. SPI timing diagram - slave mode and CPHA = 0

Figure 42. SPI timing diagram - master mode

Symbol	Parameter	Conditions	Min	Мах	Unit
tr(СК) tf(СК)	I ² S clock rise and fall time	Capacitive load: C = 50 pF	-	8	
t _{v(WS)} ⁽¹⁾	WS valid time	Master mode	3	-	
t _{h(WS)} ⁽¹⁾	WS hold time	Master mode	2	-	
tsu(WS) ⁽¹⁾	WS setup time	Slave mode	4	-	
th(WS) ⁽¹⁾	WS hold time	Slave mode	0	-	
tsu(SD_MR) ⁽¹⁾	Data input actus time	Master receiver	6.5	-	
tsu(SD_SR) ⁽¹⁾	Data input setup time	Slave receiver	1.5	-	ns
th(SD_MR) ⁽¹⁾⁽²⁾	Data input hald time	Master receiver	0	-	
th(SD_SR) ⁽¹⁾⁽²⁾	Data input noid time	Slave receiver	0.5	-	
t _{v(SD_ST)} ⁽¹⁾⁽²⁾	Data output valid time	Slave transmitter (after enable edge)	-	18	
th(SD_ST) ⁽¹⁾	Data output hold time	Slave transmitter (after enable edge)	11	-	
t _{v(SD_MT)} ⁽¹⁾⁽²⁾	Data output valid time	Master transmitter (after enable edge)	-	3	
th(SD_MT) ⁽¹⁾	Data output hold time	Master transmitter (after enable edge)	0	-	

Table 55. I²S characteristics

(1) Guaranteed by design and/or characterization results.

(2) Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPCLK =125 ns.

Figure 43. I²S slave timing diagram (Philips protocol)

(1) LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 44. I²S master timing diagram (Philips protocol)

(1) LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

5.3.16 **QSPI** characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
fscк 1/t _(СК)	QSPI clock frequency	-	-	-	96	MHz
tw(CKH)	QSPI clock high and low		(t _(CK) / 2) - 2	-	t _(СК) / 2	ns
t _{w(CKL)}	time	-	t _(СК) / 2	-	(t _(CK) / 2) + 2	ns
ts(IN)	Input data setup time	-	2	-	-	ns
th(IN)	Input data hold time	-	4.5	-	-	ns
t _{v(OUT)}	Output data valid time	-	-	1.5	3	ns
th(OUT)	Output data hold time	-	0	-	-	ns

Table 57. QSPI characteristics

Figure 45. QSPI timing diagram

5.3.17 I²C characteristics

GPIO pins SDA and SCL have limitation as follows: they are not "true" open-drain. When configured as open-drain, the PMOS connected between the GPIO pin and V_{DD} is disabled, but is still present.

I²C bus interface can support standard mode (max. 100 kHz), fast mode (max. 400 kHz), and fast mode plus (max. 1 MHz).

5.3.18 SDIO characteristics

Figure 46. SDIO high-speed mode

Figure 47. SD default mode

Table 56. SD/MMC characteristics

Symbol	Parameter	Conditions	Min	Мах	Unit
fpp	Clock frequency in data transfer mode	-	0	48	MHz
tw(CKL)	Clock low time	-	32	-	
tw(скн)	Clock high time	-	30	-	
tr	Clock rise time	-	-	4	ns
tr	Clock fall time	-	-	5	
CMD, D inpu	uts (referenced to CK)				
tisu	Input setup time	-	2	-	
tıн	Input hold time	-	0	-	ns
CMD, D outp	outs (referenced to CK) in MMC and SD HS	mode			
tov	Output valid time	-	-	6	
tон	Output hold time	-	0	-	ns
CMD, D outp	outs (referenced to CK) in SD default mode)			
tovd	Output valid default time	-	-	7	
tонр	Output hold default time	-	0.5	-	

5.3.19 OTGFS characteristics

Table 57. OTGFS startup time

Symbol	Parameter	Max	Unit
t _{STARTUP} ⁽¹⁾	OTGFS transceiver startup time	1	μs

(1) Guaranteed by design, not tested in production.

Table 58. OTGFS DC electrical characteristics

Symbol		Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
	V_{DD}	OTGFS operating voltage	-	3.0(2)		3.6	V
	V _{DI} ⁽³⁾	Differential input sensitivity	I (OTGFS_D+/D-)	0.2		-	
Input levels	V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8		2.5	V
	$V_{\text{SE}}^{(3)}$	Single ended receiver threshold	-	1.3		2.0	
Output	V _{OL}	Static output level low	R_L of 1.24 k Ω to 3.6 $V^{(4)}$	-		0.3	V
levels	V _{OH}	Static output level high	R_L of 15 k Ω to $V_{SS}{}^{(4)}$	2.8		3.6	V
Rpl	l	OTGFS_D+ internal pull-up	VIN = VSS	0.97	1.24	1.58	kΩ
RPD)	OTGFS_D+/D- internal pull-up	VIN = VDD	15	19	25	kΩ

(1) All the voltages are measured from the local ground potential.

(2) The AT32F435/437 USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7 to 3.0 V V_{DD} voltage range.

(3) Guaranteed by characterization results, not tested in production.

(4) R_{L} is the load connected on the USB drivers.

Figure 48. OTGFS timings: definition of data signal rise and fall time

Table 59. OTGFS electrical characteristics

Symbol	Parameter	Conditions	Min ⁽¹⁾	Max ⁽¹⁾	Unit
tr	Rise time ⁽²⁾	C∟ ≤ 50 pF	4	20	ns
t _f	Fall Time ⁽²⁾	C∟ ≤ 50 pF	4	20	ns
trfm	Rise/fall time matching	t _r /t _f	90	110	%
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V

(1) Guaranteed by design, not tested in production.

(2) Measured from 10% to 90% of the data signal. For more detailed information, please refer to USB Specification Chapter 7 (version 2.0).

5.3.20 EMAC characteristics

Operating voltage

Table 60. EMAC DC electrical characteristics

Symbol	Parameter	Min ⁽¹⁾	Max ⁽¹⁾	Unit
V _{DD}	EMAC operating voltage	3.0	3.6	V

(1) All the voltages are measured from the local ground potential.

SMI (station management interface)

Table 61. Dynamic characteristics: EMAC signals for SMI

Symbol	Parameter	Min	Туе	Max	Unit
tMDC	MDC cycle time (1.96 MHz, $f_{AHB} = 200$ MHz)	509	510	511	
t _{d(MDIO)}	MDIO write data valid time	13.5	14.5	15.5	
t _{su(MDIO)}	Read data setup time	35	-	-	ns
t _{h(MDIO)}	Read data hold time	0	-	-	

RMII

Table 62. Dynamic	characteristics:	EMAC signals	for RMII
-------------------	------------------	---------------------	----------

Symbol	Parameter	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time	4	-	-	
t _{ih(RXD)}	Receive data hold time	2	-	-	
t _{su(DV)}	Carrier sense set-up time	4	-	-	20
t _{ih(DV)}	Carrier sense hold time	2	-	-	115
td(TXEN)	Transmit enable valid delay time	8	10	16	
t _{d(TXD)}	Transmit data valid delay time	7	10	16	

Figure 50. EMAC RMII timing diagram

MII

Table 65. Dynamic Characteristics. EMAC Signals for Min						
Symbol	Parameter	Min	Тур	Max	Unit	
t _{su(RXD)}	Receive data setup time	10	-	-		
$\mathbf{t}_{ih(RXD)}$	Receive data hold time	10	-	-		
t _{su(DV)}	Data valid setup time	10	-	-		
t _{ih(DV)}	Data valid hold time	10	-	-		
t _{su(ER)}	Error setup time	10	-	-	ns	
tih(ER)	Error hold time	10	-	-		
td(TXEN)	Transmit enable valid delay time	14	16	18		
t _{d(TXD)}	Transmit data valid delay time	13	16	20	1	

Table 63. Dynamic characteristics: EMAC signals for MII

Figure 51. EMAC MII timing diagram

5.3.21 DVP characteristics

DVP_PCLK polarity: falling edge; DVP_HSYNC and DVP_VSYNC polarity: high level.

Symbol	Parameter	Min	Max	Unit
fdvp_pclk	Frequency of the input pixel clock	-	54	MHz
Duty _{DVP_PCLK}	Duty cycle of the input pixel clock	30	70	%
tsu(DVP_DATA)	Input data setup time	1	-	ns
th(DVP_DATA)	Input data hold time	3.5	-	ns
$t_{su(DVP_HSYNC)}$	Input HSVNCA/SVNC actus time	2		
$t_{su(DVP_VSYNC)}$	input HSTNC/VSTNC setup time	2	-	ns
$t_{h(DVP_HSYNC)}$	Input HSVNCA/SVNC hold time	0		-
th(DVP_VSYNC)	input no rive/vo rive hold time	0	-	115

Table 57. DVP characteristics

Figure 52. DVP timing diagram

5.3.22 12-bit ADC characteristics

Unless otherwise specified, the parameters given in the table below are preliminary values derived from tests performed under ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 15*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vdda	Power supply	-	2.6	-	3.6	V
VREF+	Positive reference voltage ⁽³⁾	-	2.0	-	Vdda	V
Idda	Current on the VDDA input pin	-	-	1000 ⁽¹⁾	1250	μA
IVREF+	Current on the V _{REF+} input pin ⁽³⁾	-	-	140 ⁽¹⁾	180	μA
£	ADC alask fragmanau	V _{REF+} ≥ 2.6 V	0.6	-	80	
IADC	ADC Clock Irequency	V _{REF+} < 2.6 V	0.6	-	30	WHZ
		12-bit resolution, fast channels	0.04	-	5.33	
fs ⁽²⁾		10-bit resolution, fast channels	0.047	-	6.15	
	Sampling rate	8-bit resolution, fast channels	0.055	-	7.27	- MSPS
		6-bit resolution, fast channels	0.067	-	7.27 M 8.88 1.65 1.65 M 17 1/ VREF+ etails	
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 80 MHz	-	-	1.65	MHz
	External ingger frequency	-	-	-	1.65	1/fadc
Vain	Conversion voltage range ⁽³⁾	-	0 (Vssa or Vref- tied to ground))	-	VREF+	V
R _{AIN} ⁽²⁾	External input impedance	-	See Tabl	e 65 for det	ails	Ω
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	10	-	pF
↓ (2)	Calibratian time	f _{ADC} = 80 MHz		2.56		μs
ICAL ⁽²⁾		-		205		1/fadc
t . (2)	Injection trigger conversion	f _{ADC} = 80 MHz	-	-	107	ns
uat' /	latency	-	-	-	3(4)	1/fadc
t . (2)	Regular trigger conversion	f _{ADC} = 80 MHz	-	-	71.4	μs
uatr' /	latency	-	-	-	2(4)	1/fadc
$t_{0}(2)$	Sampling time	f _{ADC} = 80 MHz	0.031	-	8.006	μs
LS' /		-	2.5	-	640.5	1/fadc
t _{STAB} ⁽²⁾	Power-up time	-		150	-	1/fadc
t = = = = (2)	Total conversion time (including	f _{ADC} = 80 MHz, 12-bit resolution	0.188	-	8.163	μs
t _{CONV} ⁽²⁾	sampling time)	12-bit resolution	15 ~ 653 (t _s for successive	sampling +	+ 12.5 for ation)	1/fadc

Table 64. ADC characteristics

(1) Guaranteed by characterization results, not tested in production.

(2) Guaranteed by design, not tested in production.

(3) VREF+ can be internally connected to VDDA depending on the package.

(4) For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in Table 64.

Table 65 are used to define the maximum external impedance allowed for an error below 1 of LSB in 12-bit resolution.

T (0, 11)		R _{AIN} max (Ω) ⁽¹⁾		
Is (Cycle)	ts (μ s)	Fast channels	Slow channels	
2.5	0.031	30	-	
6.5	0.081	200	50	
12.5	0.156	400	350	
24.5	0.306	800	700	
47.5	0.594	1700	1500	
92.5	1.156	3000	2600	
247.5	3.094	9000	8500	
640.5	8.006	20000	19000	

Table 65. R_{AIN} max for f_{ADC} = 80 MHz

(1) Guaranteed by design.

Table 66. ADC accuracy⁽¹⁾

Symbol	Parameter	Test Conditions	Typ ⁽²⁾	Max ⁽²⁾	Unit
ET	Total unadjusted error	$f_{\rm HDO} = 80 \text{ MHz}$ $P_{\rm HHZ} < 20 \text{ kO}$	±1.5	±3	
EO	Offset error	$V_{DDA} = 3.0 \text{ to } 3.6 \text{ V} \text{ T}_{A} = 25 ^{\circ}\text{C}$	±0.5	±1.5	
EG	Gain error	$V_{DDA} = 3.0 \text{ to } 3.0 \text{ v}, 23 \text{ C},$ - $V_{REF+} = V_{DDA},$ - Measurements made after ADC calibration	±0.5	±1.5	LSB
ED	Differential linearity error		±1	+1.5/-1	
EL	Integral linearity error		±1.5	±3	
ET	Total unadjusted error	fund = 15 ~ 80 MHz Run < 20 kO	±2	±4.5	
EO	Offset error	$V_{DDA} = 2.6 \text{ to } 3.6 \text{ V},$ $V_{REF+} = 2.0^{3.6} \text{ V},$	±0.5	±3	
EG	Gain error		+1.5	+4/-2	LSB
ED	Differential linearity error		±1	+2/-1	
EL	Integral linearity error		±1.5	±3.5	

(1) ADC DC accuracy values are measured after internal calibration.

(2) Guaranteed by characterization results, not tested in production.

Figure 53. ADC accuracy characteristics

- (1) Example of an actual transfer curve.
- (2) Ideal transfer curve.
- (3) End point correlation line.
- (4) ET = Maximum deviation between the actual and the ideal transfer curves.
 - EO = Deviation between the first actual transition and the first ideal one.
 - EG = Deviation between the last ideal transition and the last actual one.
 - ED = Maximum deviation between actual steps and the ideal one.
 - EL = Maximum deviation between any actual transition and the end point correlation line.

- (1) Refer to *Table 64* for the values of RAIN and CADC.
- (2) C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 55* or *Figure 56*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 100 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

If HEXT is enabled while ADC uses any input channel of ADC3_IN4~8 and ADC123_IN10~13, following PCB layout guide line below benefits to isolate the high frequency interference from HEXT emitting to ADC input signals nearby.

- Use different PCB layers to route ADC_IN signal apart from HEXT path
- Do not route ADC_IN signals and HEXT path parallel

Figure 55. Power supply and reference decoupling (VREF+ not connected to VDDA)

(1) V_{REF+} input is available only on 100-pin package.

Figure 56. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

(1) V_{REF+} input is available only on 100-pin package.

5.3.23 Internal reference voltage (VINTRV) characteristics

Table 67. Internal reference voltage characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VINTRV	Internal reference voltage	-	1.16	1.20	1.24	V
$T_{\text{Coeff}}^{(1)}$	Temperature coefficient	-	-	50	100	ppm/°C
	ADC sampling time when reading the		5			
Ts_vintrv	internal reference voltage	-	5	-	-	μs

(1) Guaranteed by design, not tested in production.

5.3.24 Temperature sensor (V_{TS}) characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T . (1)	V _{TS} linearity with	T _A = -40 ~ +85 °C	-	±1	±2	
11(1)	temperature	T _A = -40 ~ +105 °C	-	-	±3	
Avg_Slope ⁽¹⁽²⁾⁾	Average slope	-	-4.00	-4.13	-4.25	mV/⁰C
V ₂₅ ⁽¹⁾⁽²⁾	Voltage at 25 °C	-	1.21	1.27	1.34	V
tstart ⁽³⁾	Startup time	-	-	-	100	μs
Ts_temp ⁽³⁾	ADC sampling time when		E			
	reading the temperature	- 5		-	-	μs

Table 68. Temperature sensor characteristics

(1) Guaranteed by characterization results, not tested in production.

(2) The temperature sensor output voltage changes linearly with temperature. The offset of this line varies from chip to chip due to process variation (up to 50 °C from one chip to another). The internal temperature sensor is more suited to applications that detect temperature variations instead of absolute temperatures. If accurate temperature readings are needed, an external temperature sensor part should be used.

(3) Guaranteed by design, not tested in production.

Obtain the temperature using the following formula:

Temperature (in °C) = $\{(V_{25} - V_{TS}) / Avg_Slope\} + 25$.

Where,

 V_{25} = V_{TS} value for 25° C and

Avg_Slope = Average Slope for curve between Temperature vs. V_{TS} (given in mV/° C).

Figure 57. V_{TS} vs. temperature

5.3.25 V_{BAT} voltage monitor characteristics

Table 69. VBAT voltage monitor characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
R _{VBATM} ⁽¹⁾	String resistor value of the V _{BAT} monitor	-	45	-	kΩ
Q	Dividing factor of the VBAT monitor	-	4	-	-
Qet ⁽¹⁾	Total error of Q	-1	-	+1	%
Το μουσικ(2)	ADC sampling time when reading the voltage of	5		-	μs
I S_VBATM ⁽²⁾	the V _{BAT} monitor	5	-		

(1) Guaranteed by characterization results, not tested in production.

(2) Guaranteed by design, not tested in production.

5.3.26 12-bit DAC specifications

Symbol	Parameter	Comments	Min	Тур	Max	Unit
Vdda	Analog supply voltage	-	2.6	-	3.6	V
VREF+ ⁽³⁾	Reference supply voltage	-	2.0	-	3.6	V
Vssa	Ground	-	0	-	0	V
R0 ⁽²⁾	Impedance output with buffer OFF	-	-	13.2	16	kΩ
CLOAD ⁽¹⁾	Capacitive load	-	-	-	50	pF
	Lower DAC_OUT voltage with buffer ON	-	0.15	-	-	V
	Higher DAC_OUT voltage with buffer ON	-	-	-	V _{REF+} - 0.15	V
DAC_001	Lower DAC_OUT voltage with buffer OFF	-	-	0.5	5	mV
	Higher DAC_OUT voltage with buffer OFF	-	-	-	V _{REF+} - 2 mV	V
Idda	DC current consumption in quiescent mode	With no load, V _{REF+} = 3.6 V	-	460	625	μA
Ivref+ ⁽³⁾	DC current consumption in quiescent mode	With no load, V _{REF+} = 3.6 V	-	270	310	μA
DNL ⁽²⁾	Differential non linearity	-	-	±0.4	±0.8	LSB
INL ⁽²⁾	Integral non linearity (difference between measured value and a line drawn between DAC_OUT min and DAC_OUT max)	-	-	±1	±3	LSB
	Offset error (difference between measured		-	10	15	mV
Offset ⁽²⁾	value at Code (0x800) and the ideal value = V _{REF+} /2)	-	-	10	25	LSB
Gain error ⁽²⁾	Gain error	-	-	0.1	0.25	%
t SETTLING	Settling time	C _{LOAD} ≤ 50 pF	-	1	4	μs
Update rate	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1 LSB)	C _{LOAD} ≤ 50 pF	-	-	1	MSPS
twakeup	Wakeup time from off state (setting the EN bit in the DAC Control register)	C _{LOAD} ≤ 50 pF	-	1.2	4	μs

Table 70. DAC characteristics

Guaranteed by design, not tested in production.
 Guaranteed by characterization results, not tested in production.
 V_{REF+} can be internally connected to V_{DDA} depending on the package.

6 Package information

6.1 LQFP144 package information

Figure 58. LQFP144 – 20 x 20 mm 144 pin low-profile quad flat package outline

Querry had		millimeters			
Symbol	Min	Тур	Min		
А	-	-	1.60		
A1	0.05	-	0.15		
A2	1.35	1.40	1.45		
A3	0.59	0.64	0.69		
b	0.18	-	0.26		
b1	0.17	0.20	0.23		
С	0.13	-	0.17		
c1	0.12	0.13	0.14		
D	21.80	22.00	22.20		
D1	19.90	20.00	20.10		
E	21.80	22.00	22.20		
E1	19.90	20.00	20.10		
е	0.50 BSC.				
L	0.45	0.60	0.75		
L1		1.00 REF.			
θ	0°	3.5°	7°		

Table 71. LQFP144 – 20 x 20 mm 144 pin low-profile quad flat package mechanical data

6.2 LQFP100 package information

Figure 59. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline

Table 72. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package mechanical data

Quarte al	millimeters					
Symbol	Min Typ		Мах			
А	-	-	1.60			
A1	0.05	-	0.15			
A2	1.35	1.40	1.45			
b	0.17	0.17 0.20				
С	0.10	0.10 0.127				
D	16.00 BSC.					
D1	14.00 BSC.					
E	16.00 BSC.					
E1	14.00 BSC.					
E	0.50 BSC.					
L	0.45	0.60	0.75			
L1	1.00 REF.					

6.3 LQFP64 package information

• • •	millimeters					
Symbol	Min	Тур	Max			
А	-	-	1.60			
A1	0.05	-	0.15			
A2	1.35	1.40	1.45			
b	0.17	0.20	0.27			
С	0.09	-	0.20			
D	11.75	12.00	12.25			
D1	9.90	10.00	10.10			
E	11.75	12.00 12.25				
E1	9.90	9.90 10.00 10.10				
е	0.50 BSC.					
Θ	3.5° REF.					
L	0.45	0.45 0.60 0.75				
L1		1.00 REF.				
CCC	0.08					

Table 73. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data

6.4 LQFP48 package information

Figure 61. LQFP48 – 7 x 7 mm 48 pin low-profile quad flat package outline

0	millimeters					
Symbol	Min	Min Typ				
А	-	-	1.60			
A1	0.05	-	0.15			
A2	1.35	1.40	1.45			
b	0.17	0.17 0.22				
С	0.09	0.09 -				
D	8.80	30 9.00 9.				
D1	6.90	.90 7.00 7.1				
E	8.80	8.80 9.00 9.20				
E1	6.90	7.00	7.10			
е	0.50 BSC.					
Θ	0°	3.5° 7°				
L	0.45	0.60	0.75			
L1	1.00 REF.					

Table 74. LQFP48 – 7 x 7 mm 48 pin low-profile quad flat package mechanical data

6.5 QFN48 package information

Oursel of	Millimeters							
Symbol	Min	Тур	Мах					
А	0.80	0.85	0.90					
A1	0.00	0.00 0.02 0.05						
A3		0.203 REF.						
b	0.15	0.15 0.20 0.25						
D	5.90	6.00 6.10						
D2	3.07	3.17 3.27						
E	5.90	5.90 6.00 6.10						
E2	3.07 3.17 3.27							
е	0.40 BSC.							
К	0.20	-	-					
L	0.35	0.40 0.45						

Table 75. QFN48 – 6 x 6 mm 48 pin quad flat no-leads package mechanical data

6.6 Device marking

ARTERY devices may have the following markings, depending on the types of packages.

Figure 63. Marking example

6.7 Thermal characteristics

The maximum chip junction temperature (T_j max) must never exceed the values given in *Table 12*. The maximum chip-junction temperature, T_j max, in degrees Celsius, may be calculated using the following equation:

$$T_jmax = T_amax + (P_dmax x \Theta_{JA})$$

Where:

- T_amax is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_dmax is the sum of P_{INT}max and P_{GPIO}max (P_dmax = P_{INT}max + P_{GPIO}max),
- P_{INT}max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{GPIO}max represents the maximum power dissipation on output pins where:

$$\mathsf{P}_{\mathsf{GPIO}}\mathsf{max} = \Sigma(\mathsf{V}_{\mathsf{OL}} \ge \mathsf{I}_{\mathsf{OL}}) + \Sigma((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \ge \mathsf{I}_{\mathsf{OH}}),$$

taking into account the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the GPIOs at low and high level in the application.

Symbol	Parameter	Value	Unit		
	Thermal resistance junction-ambient LQFP144 – 20 x 20 mm/0.5 mm pitch	49.7			
	Thermal resistance junction-ambient LQFP100 – 14 x 14 mm/0.5 mm pitch	63.2			
Θ _{JA}	Thermal resistance junction-ambient LQFP64 – 10 x 10 mm/0.5 mm pitch	64.4	°C/W		
	Thermal resistance junction-ambient LQFP48 – 7 x 7 mm/0.5 mm pitch	62.5			
	Thermal resistance junction-ambient QFN48 – 6 x 6 mm/0.4 mm pitch	32.0			

Table 76. Package thermal characteristics

7 Part numbering

Table 77. AT	32F435	/437	' ser	ies pa	art n	umb	ering	
Example:	AT32	F	4	3	7	Z	М	Ţ 7
Product family								
AT32 = ARM-based 32-bit microcontro	ller							
Product type								
F = General-purpose								
Core								
4 = Cortex [®] -M4								
Product series								
3 = High performance								
Product application								
7 = Ethernet EMAC series								
5 = OTGFS series								
Pin count								
Z = 144 pins								
V = 100 pins								
R = 64 pins								
C = 48 pins								
Internal Flash memory size								
M = 4 MBytes of the internal Flash mer	nory							
G = 1 MBytes of the internal Flash mer	nory							
C = 256 KBytes of the internal Flash m	emory							
Package								
T = LQFP								
U = QFN								
Temperature range								

7 = -40 °C to +105 °C

For a list of available options (speed, package, etc.) or for more information concerning this device, please contact your local ARTERY sales office.

8 Document revision history

Table 78. Document revision history

Date	Version	Change
2021.12.10	2.00	Initial release
2022.1.13	2.01	1. Updated <i>Figure</i> 62
		2. Updated the contents of <i>Table 16</i> .

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Purchasers understand and agree that purchasers are solely responsible for the selection and use of Artery's products and services.

Artery's products and services are provided "AS IS" and Artery provides no warranties express, implied or statutory, including, without limitation, any implied warranties of merchantability, satisfactory quality, non-infringement, or fitness for a particular purpose with respect to the Artery's products and services.

Notwithstanding anything to the contrary, purchasers acquires no right, title or interest in any Artery's products and services or any intellectual property rights embodied therein. In no event shall Artery's products and services provided be construed as (a) granting purchasers, expressly or by implication, estoppel or otherwise, a license to use third party's products and services; or (b) licensing the third parties' intellectual property rights; or (c) warranting the third party's products and services and its intellectual property rights.

Purchasers hereby agrees that Artery's products are not authorized for use as, and purchasers shall not integrate, promote, sell or otherwise transfer any Artery's product to any customer or end user for use as critical components in (a) any medical, life saving or life support device or system, or (b) any safety device or system in any automotive application and mechanism (including but not limited to automotive brake or airbag systems), or (c) any nuclear facilities, or (d) any air traffic control device, application or system, or (e) any weapons device, application or system, or (f) any other device, application or system where it is reasonably foreseeable that failure of the Artery's products as used in such device, application or system would lead to death, bodily injury or catastrophic property damage.

© 2022 ARTERY Technology - All rights reserved