

Octal Buffer/Line Drivers, 3-State

CD74AC/ACT540 - Inverting CD74AC/ACT541 - Non-Inverting

Type Features:

- Buffered inputs
- Typical propagation delay: 4.5 ns @ V_{CC} = 5 V, T_A = 25° C, C_L = 50 pF

The CD54/74AC540, -541, and CD54/74ACT540, -541 octal buffer/line drivers use the RCA ADVANCED CMOS technology. The CD54/74AC/ACT540 are inverting 3-state buffers having two active-LOW output enables. The CD54/74AC/ACT541 are non-inverting 3-state buffers having two active-LOW output enables.

The CD74AC540, -541, and CD74ACT540, -541 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Industrial (–40 to +85°C) and Extended Industrial/Military (–55 to +125°C).

The CD54AC540, -541, and CD54ACT540, -541, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

Family Features:

- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design
- Speed of bipolar FAST®/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply.
- ± 24-mA output drive current
 - Fanout to 15 FAST® ICs
 - Drives 50-ohm transmission lines

TRUTH TABLE

	CD54/74AC/ACT540								
INPUTS		OUTPUTS							
ŌE1, ŌE2	Α	Υ							
L	L	Н							
L	н	L							
н	Х	_ Z							

TRUTH TABLE

	CD54/74AC/ACT541									
INPUTS		OUTPUTS								
OE1, OE2	Α	Υ								
L	L	L								
L	н	Н								
н	X	Z								

H = High Voltage

L = Low Voltage

X = Immaterial

Z = High Impedance

[®]FAST is a Registered Trademark of Fairchild Semiconductor Corp.

MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE (V _{CC})	–0.5 to 6 V
DC INPUT DIODE CURRENT, $I_{ K }$ (for $V_{ } < -0.5$ or $V_{ } > V_{CC} + 0.5$ V)	±20 mA
DC OUTPUT DIODE CURRENT, I_{OK} (for $V_O < -0.5$ or $V_O > V_{CC} + 0.5$ V)	±50 mA
DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, IO (for VO > -0.5 or VO < VCC + 0.5 V)	±50 mA
DC V _{CC} OR GROUND CURRENT (I _{CC} or I _{GND})	±100 mA*
PACKAGE THERMAL IMPEDANCE, θJA (see Note 1): E package	69°C/W
M package	58°C/W
STORAGE TEMPERATURE (T _{stq})	–65 to +150°C
LEAD TEMPERATURE (DURINĞ SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s maximum	+265°C
Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contacting lead tips only	+300°C
* For up to 4 outputs per device; add +25 mA for each additional output	

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERICTIC	LIM	LIMITS				
CHARACTERISTIC	MIN.	MAX.	UNITS			
Supply-Voltage Range, V _{cc} *: (For T _A = Full Package-Temperature Range) AC Types ACT Types	1.5 4.5	5.5 5.5	V			
DC Input or Output Voltage, V _I , V _O	0	Vcc	V			
Operating Temperature, T _A :	-55	+125	°C			
Input Rise and Fall Slew Rate, dt/dv at 1.5 V to 3 V (AC Types) at 3.6 V to 5.5 V (AC Types) at 4.5 V to 5.5 V (ACT Types)	0 0 0	50 20 10	ns/V ns/V ns/V			

^{*}Unless otherwise specified, all voltages are referenced to ground.

TERMINAL ASSIGNMENT DIAGRAMS

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.

Technical Data _	
------------------	--

STATIC ELECTRICAL CHARACTERISTICS: AC Series

						AMBIENT	TEMPE	RATURE	(T _A) - °(
CHARACTERISTIC	cs	TEST CONDITIONS		V _{cc}	+:	25	-40 to	o +85	-55 to	+125	UNITS			
		V, (V)	I _o (mA)	(v)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.				
High-Level Input			,	1.5	1.2	_	1.2		1.2					
Voltage	V _{iH}			3	2.1	_	2.1	_	2.1		V			
				5.5	3.85	_	3.85	l –	3.85		l			
Low-Level Input				1.5		0.3	_	0.3	-	0.3				
Voltage	VIL	:		3		0.9	_	0.9	-	0.9	V			
				5.5	-	1.65	_	1.65		1.65]			
High-Level Output			-0.05	1.5	1.4	_	1.4		1.4	_				
Voltage	V_{OH}	V _{IH}	-0.05	- 3	2.9	_	2.9		2.9					
		or	-0.05	4.5	4.4	_	. 4.4	_	4.4	_	1			
		VIL	-4	3	2.58	_	2.48		2.4	_] v			
			-24	4.5	3.94	_	3.8	_	3.7]			
		" " 1	-75	5.5			3.85		_]			
		#, * }	-50	5.5	_		_		3.85					
Low-Level Output		,	0.05	1.5		0.1		0.1	_	0.1				
Voltage	V_{OL}	VIH	0.05	3	_	0.1	_	0.1		0.1	1			
		or	0.05	4.5	_	0.1	_	0.1	_	0.1	1			
		Vil	12	3		0.36	_	0.44	_	0.5	V			
			24	4.5	_	0.36	_	0.44		0.5	1			
					(75	5.5	_		_	1.65		_]
		#. * }	50	5.5	_		_	_		1.65	1			
Input Leakage Current	l _i	V _{cc} or GND		5.5	_	±0.1	_	±1	-	±1	μΑ			
3-State Leakage Current	loz	V _{IH}												
		V _{IL} V _O =		5.5	_	±0.5	_	±5	_	±10	μΑ			
		or GND												
Quiescent Supply Current, MSI	Icc	V _∞ or GND	0	5.5	_	8	_	80	_	160	μΑ			

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize

power dissipation.

* Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

				AMBIENT TEMPERATURE (TA) - °C]	
CHARACTERIST	ICS	TEST CONDITIONS		V _{cc}	+	+25		o +85	-55 to	+125	UNITS
		V, (V)	I _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.]
High-Level Input Voltage	ViH			4.5 to 5.5	2	_	2	_	2	_	v
Low-Level Input Voltage	VIL			4.5 to 5.5		0.8		0.8	_	0.8	v
High-Level Output		ViH	-0.05	4.5	4.4	_	4.4		4.4		
Voltage	V _{OH}	or V _{IL}	-24	4.5	3.94		3.8		3.7		v
		#, * {	-75	5.5	_		3.85		_] .
		"	-50	5.5		_	_		3.85	_	
Low-Level Output		ViH	0.05	4.5	_	0.1		0.1		0.1	
Voltage	Vol	or V _{IL}	24	4.5		0.36		0.44	_	0.5	v
		#. * }	75	5.5			_	1.65] `
		···)	50	5.5						1.65	
Input Leakage Current	l,	V _{CC} or GND		5.5	_	±0.1	_	±1		±1	μА
3-State Leakage Current	loz	VIH or VIL Vo = Vcc or GND		5.5	_	±0.5		±5	_	±10	μΑ
Quiescent Supply Current, MSI	lcc	V _{cc} or GND	0	5.5	_	8	_	80		160	μΑ
Additional Quiescent Current per Input P TTL Inputs High 1 Unit Load		V _{cc} -2.1		4.5 to 5.5		2.4		2.8		3	mA

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.

* Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

ACT INPUT LOADING TABLE

INPUT	UNIT LOAD*					
	540	541				
DATA	1.42	0.5				
OE1, OE2	1.3	1.3				

*Unit load is Δl_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25° C.

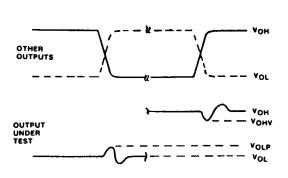
SWITCHING CHARACTERISTICS: AC Series; t,, t, = 3 ns, C, = 50 pF

			AMBI	ENT TEMPE	RATURE (1	Γ _A) - °C	
CHARACTERISTICS	SYMBOL	(vs	-40 1	lo +85	-55 to	o +125	UNITS
	1 1	(*)	MIN.	MAX.	MIN.	MAX.	}
Propagation Delays: Data to Output AC540	tpLH tpHL	1.5 3.3* 5†	2.4 1.8	77 8.6 6.2	2.4 1.7	85 9.5 6.8	ns
AC541	t _{PLH} t _{PHL}	1.5 3.3 5	 2.8 2.1	89 9.9 7.1	 2.7 2	98 10.9 7.8	ns
Enable, to Output to Output	t _{PZL} t _{PZH}	1.5 3.3 5	4.6 3.1	136 16.4 10.9	- 4.5 3	150 18 12	ns
Disable to Output to Output	t _{PLZ} t _{PHZ}	1.5 3.3 5	3.9 3.1	136 13.6 10.9	3.8 3	150 15 12	ns
Power Dissipation Capacitance AC540 AC541	C _{PD} ‡			Тур. Тур.		Тур. Тур.	pF
Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5		V			
Max. (Peak) Vol. During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5	1 Typ. @ 25°C			V	
Input Capacitance	Cı	_	_	10	_	10	pF
3-State Output Capacitance	Co	_	<u> </u>	15		15	pF

SWITCHING CHARACTERISTICS: ACT Series; t,, t, = 3 ns, C, = 50 pF

			AMBI	AMBIENT TEMPERATURE (TA) - °C					
CHARACTERISTICS	SYMBOL	V _{cc}	-40	o +85	-55 to	=125	UNITS		
		(V)	MIN.	MAX.	MIN.	MAX.]		
Propagation Delays: Data to Output ACT540	tpLH tpHL	5†	1.9	6.5	1.8	7.2	ns		
ACT541	t _{PLH} t _{PHL}	5†	2.1	7.5	2.1	8.2	ns		
Enable to Output	t _{PZL} t _{PZH}	5	3.5	12.2	3.4	13.4	ns		
Disable to Output	t _{PLZ} t _{PHZ}	5	3.5	12.2	3.4	13.4	ns		
Power Dissipation Capacitance ACT540 ACT541	C _{PO} §	-		60 Typ. 60 Typ. 60 Typ. 60 Typ.			pF		
Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5		٧ .					
Max. (Peak) V _{OL} During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5	1 Typ. @ 25°C			v			
Input Capacitance	Cı	_	T -	10	_	10	pF		
3-State Output Capacitance	Co	. –	_	15	_	15	pF		

*3.3 V: min. is @ 3.6 V max. is @ 3 V

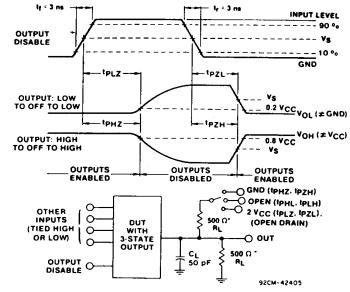

§C_{PD} is used to determine the dynamic power consumption, per channel.

For AC series, $P_D = V_{cc}^2 f_i (C_{PD} + C_L)$ For ACT series, $P_D = V_{cc}^2 f_i (C_{PD} + C_L) + V_{cc} \Delta I_{cc}$ where

f_i = input frequency C_L = output load capacitance

 V_{CC} = supply voltage.

PARAMETER MEASUREMENT INFORMATION


NOTES:

- 1. VOHY AND VOLP ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST.

 2. INPUT PULSES HAVE THE FOLLOWING CHARACTERISTICS:
- PRR ≤ 1 MHz, t₇ = 3 ns, t₁ = 3 ns, SKEW 1 ns.

 3. R.F. FIXTURE WITH 700-MHz DESIGN RULES REQUIRED.
 IC SHOULD BE SOLDERED INTO TEST BOARD AND BYPASSED WITH 0.1 pF CAPACITOR. SCOPE AND PROBES REQUIRE 700-MHz BANDWIDTH.

9205-42406

*FOR AC SERIES ONLY: WHEN v_{CC} = 1.5 V, r_L = 1 $k\Omega$

Fig. 1 - Simultaneous switching transient waveforms.

Fig. 2 - Three-state propagation delay waveforms and test circuit.

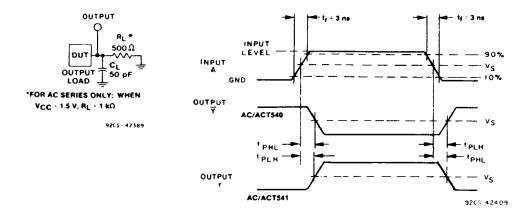


Fig. 3 - Propagation delay times and test circuit.

	CD54/74AC	CD54/74ACT
Input Level	V _{cc}	3 V
Input Switching Vottage, Vs	0.5 V _{cc}	1.5 V
Output Switching Voltage, V ₅	0.5 V _{CC}	0.5 V _{cc}

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CD54AC541F3A	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54AC541F3A	Samples
CD54ACT540F3A	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54ACT540F3A	Samples
CD54ACT541F3A	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54ACT541F3A	Samples
CD74AC540M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC540M	Samples
CD74AC540M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		AC540M	Samples
CD74AC540ME4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC540M	Samples
CD74AC541E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74AC541E	Samples
CD74AC541EE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74AC541E	Samples
CD74AC541M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC541M	Samples
CD74AC541M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC541M	Samples
CD74AC541M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC541M	Samples
CD74AC541M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC541M	Samples
CD74AC541MG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC541M	Samples
CD74AC541SM96	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC541SM	Samples
CD74AC541SM96G4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC541SM	Samples
CD74ACT540E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74ACT540E	Samples
CD74ACT540EE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74ACT540E	Samples

17-Mar-2017

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CD74ACT540M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT540M	Samples
CD74ACT540M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT540M	Samples
CD74ACT540M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT540M	Samples
CD74ACT540MG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT540M	Samples
CD74ACT541E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74ACT541E	Samples
CD74ACT541EE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74ACT541E	Samples
CD74ACT541M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT541M	Samples
CD74ACT541M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT541M	Samples
CD74ACT541M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT541M	Samples
CD74ACT541M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT541M	Samples
CD74ACT541MG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT541M	Samples
CD74ACT541SM96	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT541SM	Samples
CD74ACT541SM96E4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT541SM	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

17-Mar-2017

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

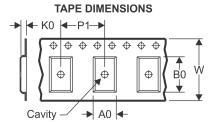
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54AC541, CD54ACT540, CD54ACT541, CD74AC541, CD74ACT540, CD74ACT541:

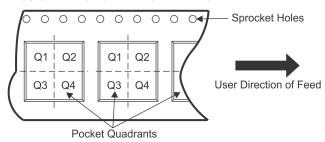
- Catalog: CD74AC541, CD74ACT540, CD74ACT541
- Military: CD54AC541, CD54ACT540, CD54ACT541

NOTE: Qualified Version Definitions:

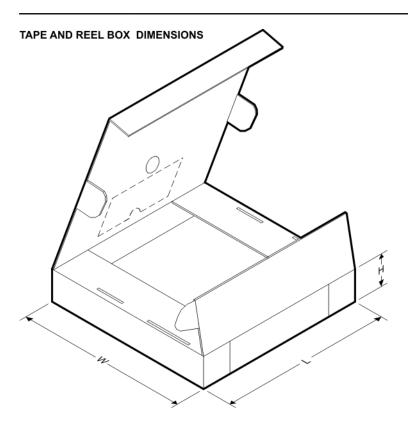

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 10-Aug-2016

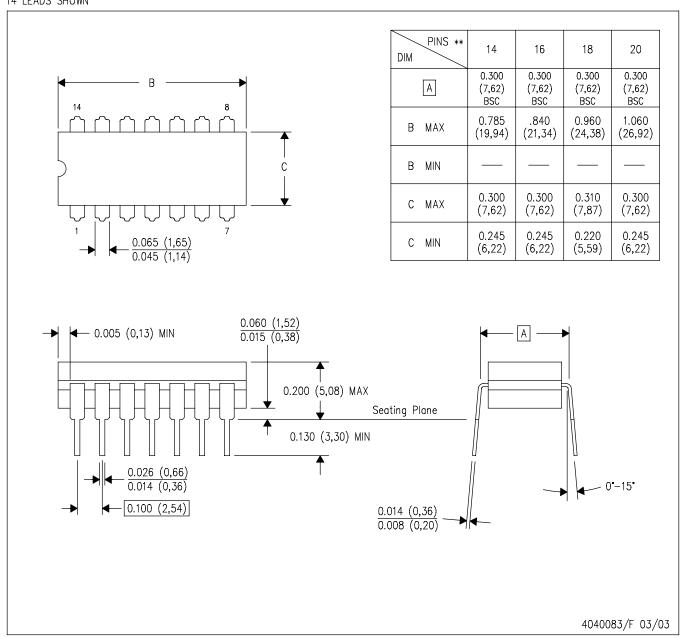

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

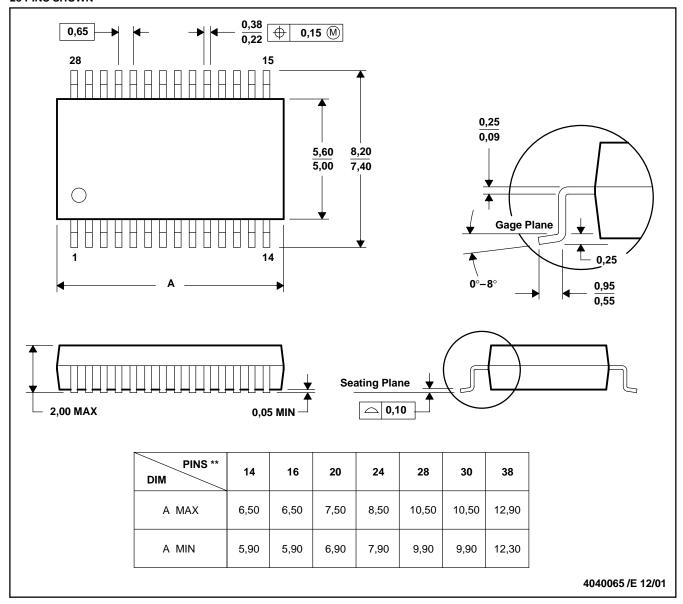
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74AC540M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
CD74AC541M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
CD74AC541SM96	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
CD74ACT540M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
CD74ACT541M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
CD74ACT541SM96	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1


www.ti.com 10-Aug-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74AC540M96	SOIC	DW	20	2000	367.0	367.0	45.0
CD74AC541M96	SOIC	DW	20	2000	367.0	367.0	45.0
CD74AC541SM96	SSOP	DB	20	2000	367.0	367.0	38.0
CD74ACT540M96	SOIC	DW	20	2000	367.0	367.0	45.0
CD74ACT541M96	SOIC	DW	20	2000	367.0	367.0	45.0
CD74ACT541SM96	SSOP	DB	20	2000	367.0	367.0	38.0

14 LEADS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

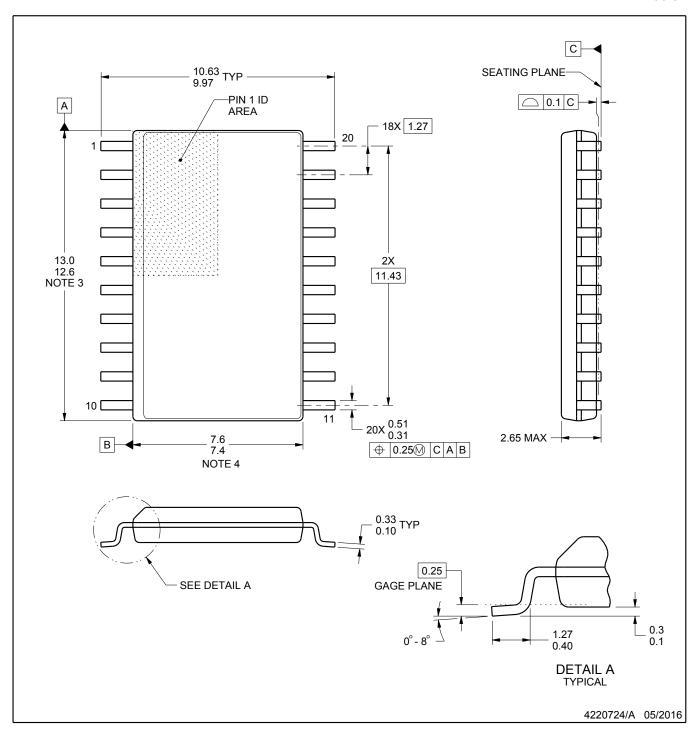
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

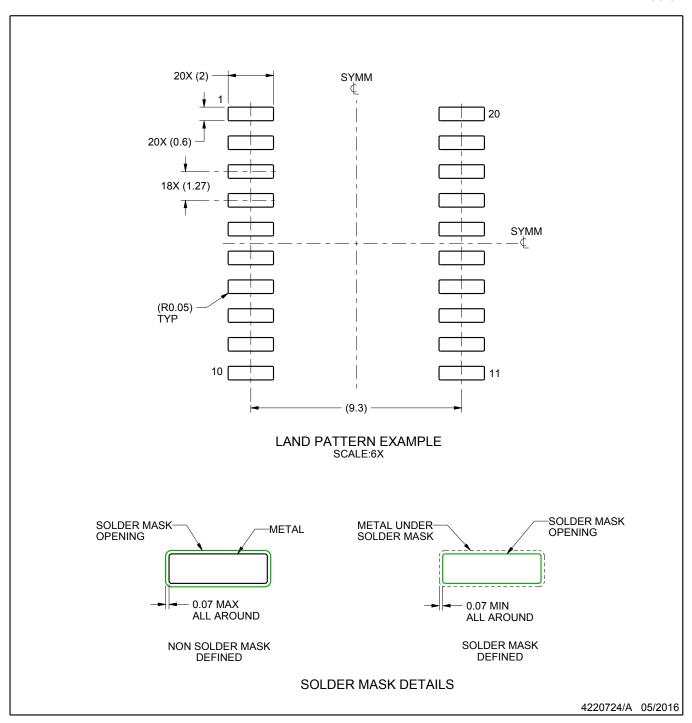
16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

SOIC

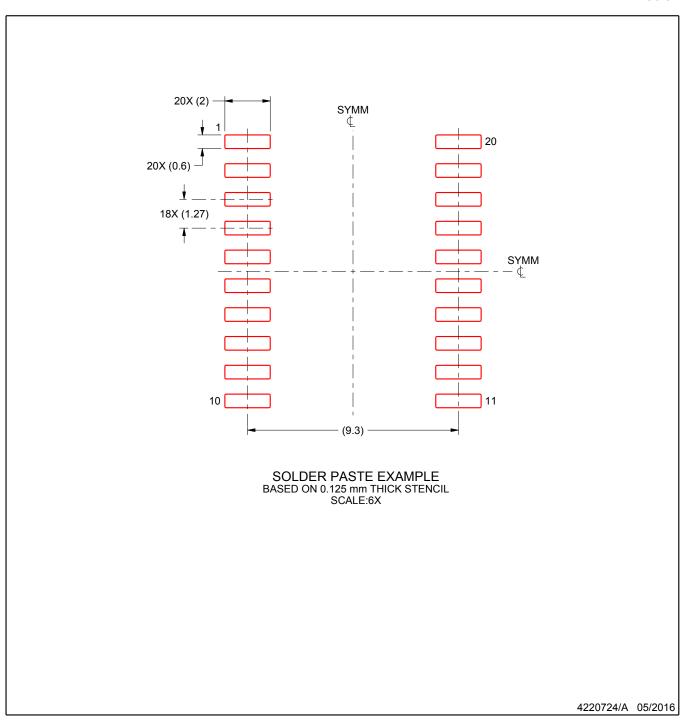
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.