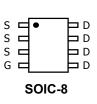


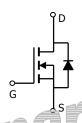
AO4422

N-Channel Enhancement Mode Field Effect Transistor

General Description

The AO4422 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$ and low gate charge. This device is suitable for use as a load switch or in PWM applications. The source leads are separated to allow a Kelvin connection to the source, which may be used to bypass the source inductance.


Features


 $V_{DS}(V) = 30V$

 $I_{D} = 11A$

 $R_{DS(ON)}$ < 15m Ω (V_{GS} = 10V)

 $R_{DS(ON)}$ < 24m Ω (V_{GS} = 4.5V)

SOIC-8								
Absolute Maximum Rairus A-25 Cuniess otherwise noted Parameter Symbol Maximum Units								
				V				
Drain-Source Voltage		V_{DS}	30	V				
Gate-Source Voltage		V_{GS}	±20	V				
Continuous Drain	T _A =25°C		11					
Current ^A	T _A =70°C	I_D	9.3	Α				
Pulsed Drain Current ^B		I _{DM}	70					
	T _A =25°C	В	3	10/				
Power Dissipation	T _A =70°C	$-P_D$	2.1	W				
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	°C				

Thermal Characteristics								
Parameter	Symbol	Тур	Typ Max U					
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	31	40	°C/W			
Maximum Junction-to-Ambient ^A	Steady-State	$\kappa_{\theta JA}$	59	75	°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	16	24	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units				
STATIC PARAMETERS										
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V				
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V			1	μА				
		T _J =55°C			5					
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			100	nA				
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$	1	1.8	3	V				
$I_{D(ON)}$	On state drain current	V_{GS} =4.5V, V_{DS} =5V	30			Α				
	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =11A		12.6	15	mΩ				
$R_{DS(ON)}$		T _J =125°C				11132				
		V_{GS} =4.5V, I_D =10A		19.6	24	mΩ				
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =11A				S				
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.76	1	V				
I_S	Maximum Body-Diode Continuous Curr			4.3	Α					
DYNAMIC	PARAMETERS									
C _{iss}	Input Capacitance			1040		pF				
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz		180		pF				
C_{rss}	Reverse Transfer Capacitance			110		pF				
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		0.7		Ω				
SWITCHI	NG PARAMETERS									
Q _g (10V)	Total Gate Charge					nC				
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =11A				nC				
Q_{gs}	Gate Source Charge	V _{GS} -10V, V _{DS} -13V, I _D -11A				nC				
Q_{gd}	Gate Drain Charge					nC				
t _{D(on)}	Turn-On DelayTime					ns				
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =1.3 Ω ,				ns				
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω				ns				
t _f	Turn-Off Fall Time					ns				
t _{rr}	Body Diode Reverse Recovery Time	I _F =11A, dI/dt=100A/μs				ns				
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =11A, dI/dt=100A/μs				nC				

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature. C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.