
- Programmable Look-Ahead Up/Down
 Binary Counters
- Fully Synchronous Operation for Counting and Programming
- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Fully Independent Clock Circuit

SN54LS169B, SN54S169 . . . J OR W PACKAGE SN74LS169B, SN74S169 . . . D OR N PACKAGE

SN54LS169B, SN54S169 . . . FK PACKAGE

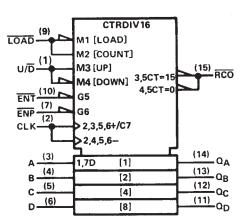
description

These synchronous presettable counters feature an internal carry look-ahead for cascading in high speed counting applications. The 'LS169B and 'S169 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the countenable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple-clock) counters. A buffered clock input triggers the four master-slave flip-flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable; that is the outputs may each be preset to either level. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.

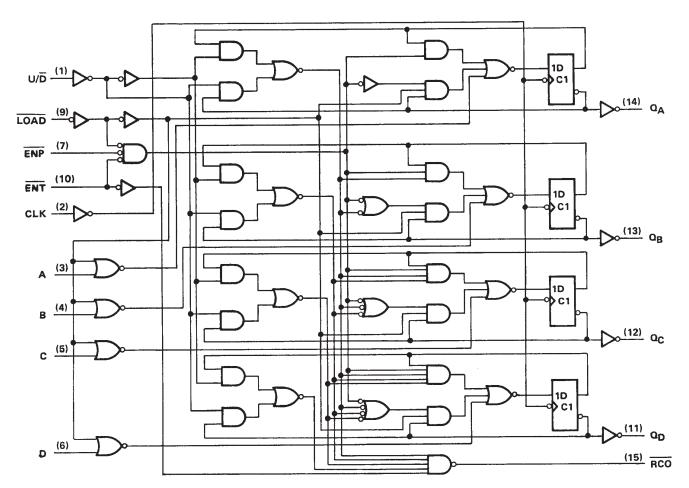
NC-No internal connection

ТҮРЕ	TYPICAL I CLOCK FR	TYPICAL POWER	
	COUNTING UP	COUNTING DOWN	DISSIPATION
'LS169B	35MHz	35MHz	100mW
'S169	70MHz	55MHz	500mW


The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a carry output. Both count enable inputs (ENP, ENT) must be low to count. The direction of the count is determined by the level of the up/down input. When the input is high, the counter counts up; when low, it counts down. Input ENT is fed forward to enable the carry output. The carry output thus enabled will produce a low-level output pulse with a duration approximately equal to the high portion of the QA output when counting up and approximately equal to the low portion of the QA output when counting down. This low-level overflow carry pulse can be used to enable successive cascaded stages. Transitions at the ENP or ENT inputs are allowed regardless of the level of the clock input. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design.

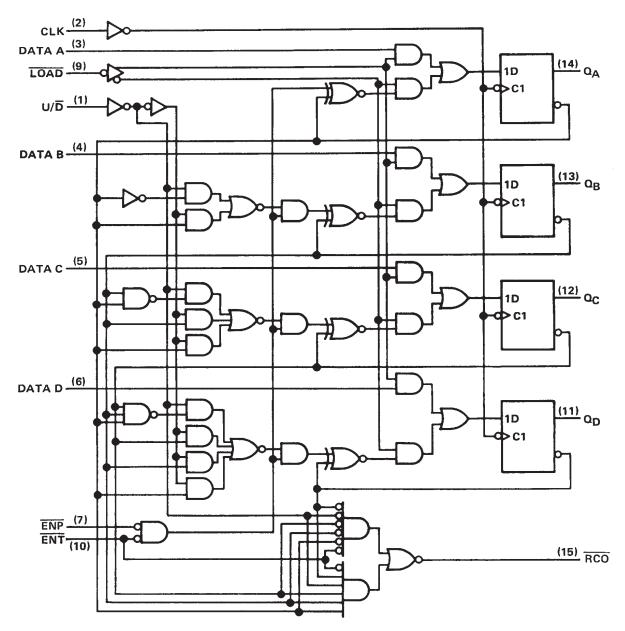
These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, LOAD, U/D) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

SDLS134 - OCTOBER 1976 - REVISED MARCH 1988


logic symbol[†]

 $^{\dagger} \text{This}$ symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

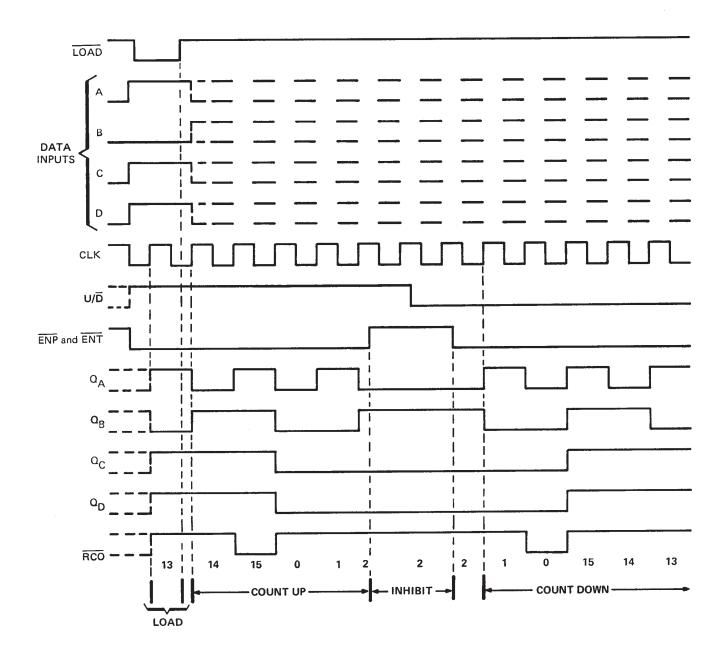
logic diagram (positive logic)



Pin numbers shown are for D, J, N, and W packages.

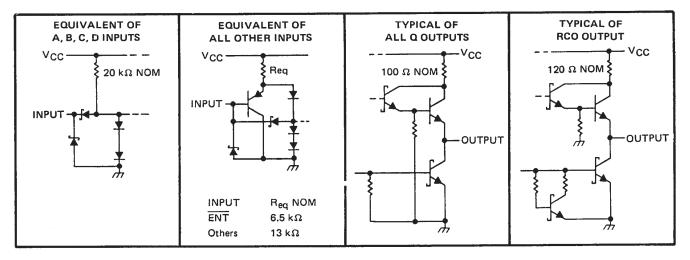
SN54LS169B, SN54S169 SN74LS169B, SN74S169 SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS SDLS134 - OCTOBER 1976 - REVISED MARCH 1988

logic diagram (positive logic)


Pin numbers shown are for D, J, N, and W packages.

typical load, count, and inhibit sequences

Illustrated below is the following sequence:


- 1. Load (preset) to binary thirteen.
- 2. Count up to fourteen, fifteen (maximum), zero, one, and two.
- 3. Inhibit
- 4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen

SN54LS169B, SN54S169 SN74LS169B, SN74S169 SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS SDLS134 – OCTOBER 1976 – REVISED MARCH 1988

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Input voltage		7 V
Operating free-air temperature range:	SN54LS169B	C to 125°C
	SN74LS169B	°C to 70°C
Storage temperature range	- 65°C	C to 150°C
 1. Voltage values are with respect to petw	ork ground terminal	

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

				SI	V54LS1	69B	SN	74LS16	59B	
				MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage			4.5	5	5.5	4.75	5	5.25	V
VIH	High-level-input voltage			2			2			V
VIL	Low-level input voltage					0.7			0.8	V
юн	High-level output current		RCO			- 0.4			- 0.4	mA
011	•		Any Q			- 1.2			- 1.2	mA
	Low-level output current	~	RCO			4			8	mA
		Any Q							24	mA
fclock	Clock frequency						0		20	MHz
tw(clock)	Width of clock pulse (high or low)) (see Figure 1)		25			25			ns
		Data inputs	A, B, C, D	30			30			
		ENP or ENT		30			30			ns
t _{su}	Setup time, (see Figure 1)	Load		35			35] ""
		U/D					35			
t _h	Hold time at any input with respe	ct to clock (see Fig	0			0			ns	
ТА	Operating free-air temperature			- 55		125	0		70	°C

SDLS134 - OCTOBER 1976 - REVISED MARCH 1988

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST COND			SN	154LS16	69B	SN	174LS16	69B	
PARAMETER		MIN	TYP [‡]	MAX	MIN	түр‡	MAX				
VIK	V _{CC} = MIN,	lı = – 18 mA					- 1.5			- 1.5	V
	V _{CC} = MIN,	V _{IH} = 2 V,	RCO	l _{OH} = - 0.4 mA	2.5	3.4		2.7	3.4		
VOH	VIL = MAX		Any Q	I _{OH} = – 1.2 mA	2.4	3.2		2.4	3.2		
			RCO	IOH = 4 mA		0.25	0.4		0.25	0.4	
	V _{CC} = MIN,	V _{IH} = 2 V,	I NCO	IOL = 8 mA					0.35	0.5	
VOL	V _{IL} = MAX			I _{OL} = 12 mA		0.25	0.4		0.25	0.4] `
			Any Q	I _{OL} = 24 mA					0.35	0.5]
l1	V _{CC} = MAX,	V ₁ = 7 V					0.1			0.1	mA
Чн	V _{CC} = MAX,	V ₁ = 2.7 V					20			20	μA
				AD, ENP, CLK			- 0.2			- 0.2	mA
ΊL	V _{CC} = MAX,	V∣ = 0.4 V	All othe	r inputs			- 0.4			- 0.4] """
			RCO		- 20		- 100	- 20		- 100	
IOS§	$V_{CC} = MAX,$	vo = 0 v	Any Q		- 30		- 130	- 30		- 130	- m/
Icc	V _{CC} = MAX,	See Note 2			1	28	45		28	45	m/

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

I + All typical values are at V_{CC} = 5 V, T_A = 25°C.

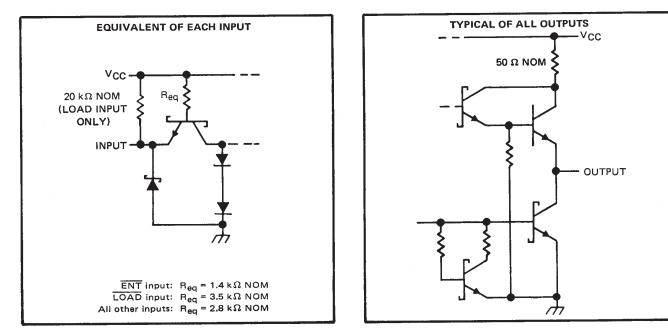
§Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: ICC is measured after applying a momentary 4.5 V, then ground, to the clock input with all other inputs grounded and the outputs open.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

	FROM	то	7707.001			'LS169	в	UNIT
PARAMETER¶	(INPUT)	(OUTPUT)	TEST CON	MIN	ТҮР	MAX	UNTI	
fmax					20	35		MHz
tPLH	01.14	RCO				26	40	ns
tPHL	CLK	RCU				17	25	113
tPLH			D - 0 + 0	CL = 15 pF		15	25	
tPHL .	ENT	RCO	$R_L = 2 k\Omega$, $C_L = 15 pF$		11	20	ns	
tPLH						23	35	ns
^t PHL	U/D	RCO				15	25	115
^t PLH				0 45 5		16	25	
^t PHL	CLK	Any Q	R _L = 667 Ω,	С _L = 45 рF		17	25	ns

¶ Propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (0), the ripple carry output transistion will be in phase. If the count is maximum (15), the ripple carry output will be out of phase.


NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54LS169B, SN54S169 SN74LS169B, SN74S169 SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS SDLS134 – OCTOBER 1976 – REVISED MARCH 1988

SDLS134 – OCTOBER 1976 – REVISED MARCH 7

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (See Note 4)	7 V
Input voltage	
Interemitter voltage (see Note 5)	
Operating free-air temperature range: SN54S169 (see Note 6)	55°C to 125°C
SN74S169	
Storage temperature range	35°C to 150°C

recommended operating conditions

		S	N54S1	69	S	N74S1	69	
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				- 1			1	mA
Low-level output current, IOL				20			20	mA
Clock frequency, fclock		0		40	0		40	MH:
Width of clock pulse, tw(clock) (high	or low) (see Figure 1)	10			10			ns
	Data inputs A, B, C, D	4			4			
	ENP or ENT	14			14			ns
Setup time,t _{su} (see Figure 1)	Load	9			6			
	U/D	20			20			
Hold time at any input with respect to	o clock, tw (see Figure 1)	1			1			ns
Operating free-air temperature, TA (se		- 55		125	0		70	°C

NOTES: 4. Voltage values, except interemitter voltage, are with respect to network ground terminal.

- 5. This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the count enable inputs ENP and ENT.
- A SN54S169 in the W package operating at free-air temperatures above 91 °C requires a heat sink that provides a thermal resistance from case to free-air, R_{θCA}, of not more than 26 °C/W.

SDLS134 - OCTOBER 1976 - REVISED MARCH 1988

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				s	N54S1	69	S	69		
PARAMETER		TEST CO	MIN	TYP [‡]	MAX	MIN	түр‡	MAX		
VIH High-level input voltage				2			2			V
VII Low-level input voltage						0.8			0.8	V
VIK Input clamp voltage		$V_{CC} = MIN,$	$I_{I} = -18 \text{ mA}$			- 1.2			- 1.2	V
V _{OH} High-level output voltage	$V_{CC} = MIN,$ $V_{IL} = 0.8 V,$	$V_{IH} = 2 V,$ $I_{OH} = -1 mA$	2.5	3.4		2.7	3.4		v	
V _{OL} Low-level output voltage		$V_{CC} = MIN,$ $V_{IL} = 0.8 V,$	V _{IH} = 2 V, I _{OL} = 20 mA			0.5			0.5	v
I Input current at maximum in	put voltage	$V_{CC} = MAX,$	V ₁ = 5.5 V			1			1	mA
	ENT					100			100	
IIH High-level input current	Load	$V_{CC} = MAX,$	$V_{i} = 2.7 V$	- 10		- 200	- 10		- 200	μA
	Other inputs	1				50			50	
	ENT					- 4			-4	- mA
IIL Low-level input current	Other inputs	$V_{CC} = MAX,$	$V_{1} = 0.5 V$			- 2			- 2	
IOS Short-circuit output current§	•	$V_{CC} = MAX,$		- 40		- 100	- 40		- 100	mA
ICC Supply current		V _{CC} = MAX,	See Note 2		100	160		100	160	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25 °C.

§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

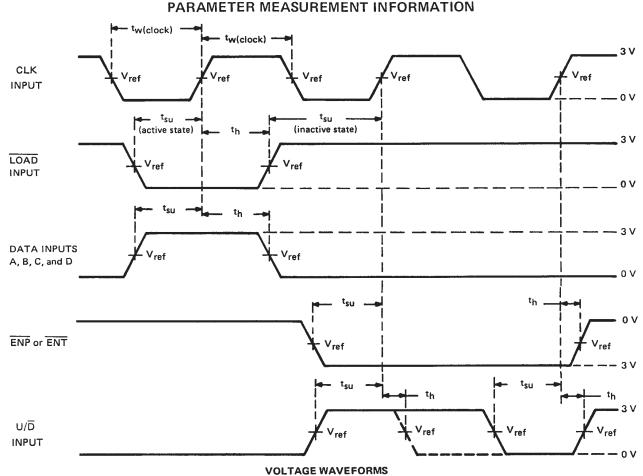
NOTE 2: ICC is measured after applying a momentary 4.5 V, then ground, to the clock input with all other inputs grounded and the outputs open.

	FROM	TO	TECT CONDITIONS	U/	Ъ – Н	IGH	U/	D = L(w	
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	MIN	түр	MAX	
f _{max}				40	70		40	55		MHz
tPLH	01.14	RCO			14	21		14	21	ns
tPHL	CLK	RCO	0 15 5		20	28		20	28	
tPLH	01.14		$C_{L} = 15 pF,$ $R_{L} = 280 \Omega,$		8	15		8	15	ns
tPHL	CLK	Any Q	See Figures 2 and 3		11	15		11	15] ""
tPLH			and Note 3		7.5	11		6	12	
tPHL	ENT	RCO			15	22		15	25	ns
tPLH [¢]			1		9	15		8	15	
tPHL≎		RCO			10	15		16	22	ns

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

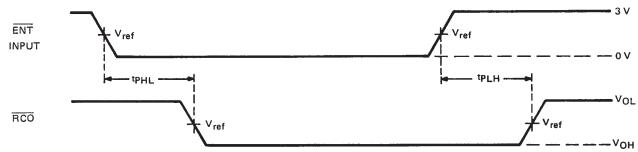
1 tmax = maximum clock frequency

tpLH = propagation delay time, low-to-high-level output


tpHL = propagation delay time, high-to-low-level output

Propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (O), the ripple carry output transition will be in phase. If the count is maximum (15 for 'S169), the ripple carry output will be out of phase.

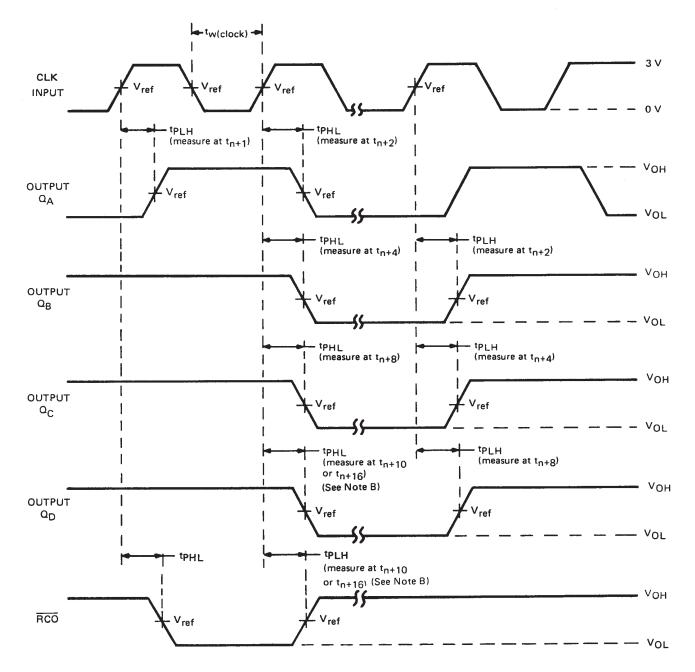
NOTE 3: Load circuits and voltage waveforms are shown in Section 1.



SDLS134 – OCTOBER 1976 – REVISED MARCH 1988

- NOTES: A. The input pulses are supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, Z_{out} \approx 50 Ω ; for 'LS169B, t_r \leq 15 ns; t_f \leq 6 ns, and for 'S169, t_r \leq 2.5 ns, t_f \leq 2.5 ns.
 - B. For 'LS169B, V_{ref} = 1.3 V; for 'S168 and 'S169, V_{ref} = 1.5 V.

FIGURE 1-PULSE WIDTHS, SETUP TIMES, HOLD TIMES


VOLTAGE WAVEFORMS

- NOTES: A. The input pulses are supplied by a generator having the following characteristics: PRR ≤ MHz, duty cycle ≤ 50%, Z_{out} ≈ 50 Ω; for 'LS169B, t_r ≤ 15 ns, t_f ≤ 5 ns; and for 'S169, t_r ≤ 2.5 ns, t_f ≤ 2.5 ns.
 - B. tpLH and tpHL from enable T input to ripple carry output assume that the counter is at the maximum count, all Q outputs high. C. For 'LS169B, $V_{ref} = 1.3 V$; for 'S169, $V_{ref} = 1.5 V$.
 - D. Propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (0) the ripple carry output transition will be in phase. If the count is maximum (15), the ripple carry output will be out of phase.

FIGURE 2-PROPAGATION DELAY TIMES TO CARRY OUTPUT

SDLS134 – OCTOBER 1976 – REVISED MARCH 1988

PARAMETER MEASUREMENT INFORMATION

UP-COUNT VOLTAGE WAVEFORMS

NOTES: A. The input pulses are supplied by a generator having the following characteristics: PRR < 1 MHz, duty cycle <50%, $Z_{out} \approx 50 \ \Omega$; for 'LS169B, $t_r \le 15 \ \text{ns}$; $t_f \le 6 \ \text{ns}$, and 'S169, $t_r \le 2.5 \ \text{ns}$, $t_f \le 2.5 \ \text{ns}$. Vary PRR to measure f_{max} .

- B. Outputs Q_D and carry are tested at t_{n+16} , where t_n is the bit-time when all outputs are low. C. For 'LS169B, $V_{ref} = 1.3 V$; for 'S169, $V_{ref} = 1.5 V$.

FIGURE 3-PROPAGATION DELAY TIMES FROM CLOCK

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
80018022A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	80018022A SNJ54LS 169BFK	Samples
8001802EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	8001802EA SNJ54LS169BJ	Samples
8001802EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	8001802EA SNJ54LS169BJ	Samples
8001802FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	8001802FA SNJ54LS169BW	Samples
8001802FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	8001802FA SNJ54LS169BW	Samples
SN54LS169BJ	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS169BJ	Samples
SN54LS169BJ	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS169BJ	Samples
SN54S169J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54S169J	Samples
SN54S169J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54S169J	Samples
SN74LS169BD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS169B	Samples
SN74LS169BD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS169B	Samples
SN74LS169BN	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS169BN	Samples
SN74LS169BN	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS169BN	Samples
SN74LS169BNE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS169BN	Samples
SN74LS169BNE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS169BN	Samples
SNJ54LS169BFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	80018022A SNJ54LS 169BFK	Samples
SNJ54LS169BFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	80018022A SNJ54LS	Samples

17-Mar-2017

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
										169BFK	
SNJ54LS169BJ	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	8001802EA SNJ54LS169BJ	Samples
SNJ54LS169BJ	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	8001802EA SNJ54LS169BJ	Samples
SNJ54LS169BW	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	8001802FA SNJ54LS169BW	Samples
SNJ54LS169BW	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	8001802FA SNJ54LS169BW	Samples
SNJ54S169J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54S169J	Samples
SNJ54S169J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54S169J	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

www.ti.com

PACKAGE OPTION ADDENDUM

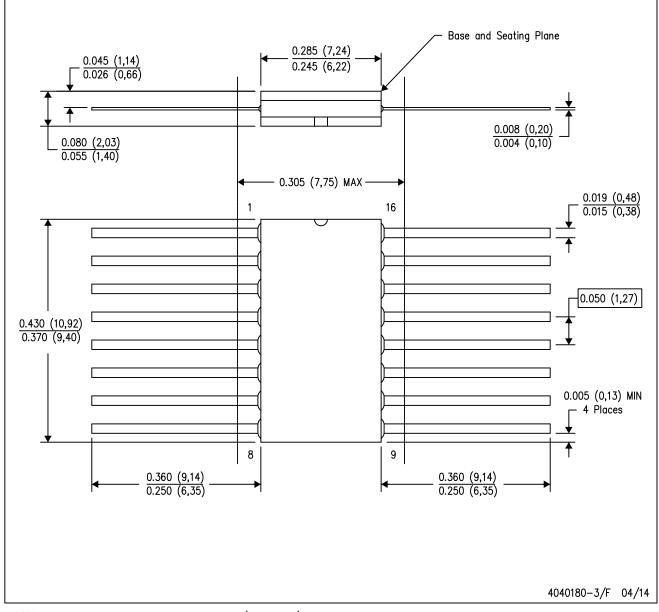
17-Mar-2017

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54LS169B, SN74LS169B :


- Catalog: SN74LS169B
- Military: SN54LS169B

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP2-F16

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

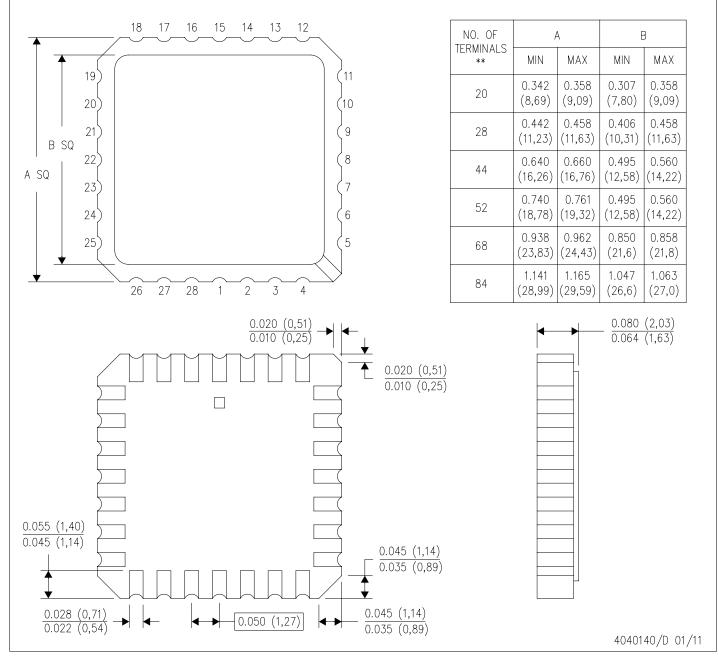
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated