

Supply Voltage Supervisor with Reset Circuits

FEATURES

- Operating Voltage Range: 1.0V to 5.5V
- Low Power Consumption: 40µA (Max)
- Precision Supply-Voltage Monitor: 2.63V, 2.93V, 3.08V, 4.00V, 4.65V
- Guaranteed RESET Valid at V_{CC}= 1.0V
- 200ms Reset Pulse Width
- Voltage Monitor for Power-Fail or Low-Battery Warning
- Operating Temperature Range:
 -40°C to +85°C
- Push-pull, RESET Output
- Available in Green Package: SOT23

•

APPLICATIONS

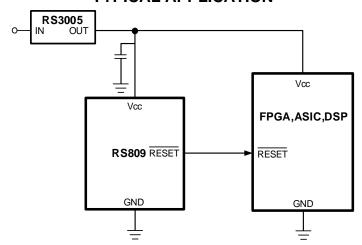
- Computers
- SOC, DSP or Micro controllers
- Embedded Systems
- Industrial Equipment
- Intelligent Instruments
- Critical µP Power Monitoring
- Wireless Communications Systems

DESCRIPTION

The RS809 microprocessor (μP) supervisory circuits reduce the complexity and number of components required to monitor power-supply and battery function in μP systems. This device significantly improves system reliability and accuracy compared to separate ICs or discrete components.

These circuits perform a single function: they assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold, keeping it asserted for at least 200ms after V_{CC} has risen above the reset threshold. Reset thresholds suitable for operation with a variety of supply voltages are available.

The RS809 have push-pull outputs. The RS809 have an active-low \overline{RESET} output. The reset comparator is designed to ignore fast transients on V_{CC} , and the outputs are guaranteed to be in the correct logic state for V_{CC} down to 1.0V.

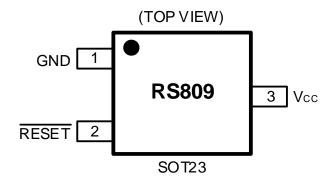

Low supply current makes the RS809 ideal for use in portable equipment. The RS809 is available in Green SOT23 package. It operates over an ambient temperature range of -40°C to +85°C.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
RS809	SOT23(3)	1.30mm×2.92mm

For all available packages, see the orderable addendum at the end of the data sheet.

TYPICAL APPLICATION


Revision History

Note: Page numbers for previous revisions may different from page numbers in the current version.

Version	Change Date	Change Item
A.1	2021/08/09	Initial version completed

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	FUNCTION				
SOT23	INAIVIE	FUNCTION				
1	GND	Ground, reference for all signals.				
2	RESET	Active-Low Reset Output remains low while V _{CC} is below the reset threshold, and for at least 200ms after V _{CC} rises above the reset threshold.				
3	Vcc	Power Supply Voltage that is monitored.				

SPECIFICATIONS

Absolute Maximum Ratings (1)

over operating free-air temperature range (unless otherwise noted) (1)(2)

			MIN	MAX	UNIT
Vcc	Supply voltage range		-0.5	6.0	V
Vı	Input voltage range (2)		-0.5	6.0	V
Vo	Voltage range applied to any output in the high-impeda	ance or power-off state (2)	-0.5	6.0	V
Vo	Voltage range applied to any output in the high or low	state (2)(3)	-0.5	V _{CC} +0.5	V
I _{IK}	Input clamp current	V _I <0		-20	mA
lok	Output clamp current	V ₀ <0		-20	mA
lo	Continuous output current			±20	mA
	Continuous current through Vcc or GND			±20	mA
TJ	Junction temperature		-65	150	°C
T _{stg}	Storage temperature		-65	150	°C
TA	Operating temperature		-40	85	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

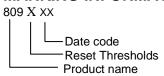
			VALUE	UNIT
V/rop)	Electrostatic discharge	Human-body model (HBM)	±6000	V
V(ESD)	Electrostatic discharge	Machine model (MM)	±300	V

Thermal Information:

		RS809	
$\begin{array}{ll} \text{Re}_{\text{JC(top)}} & \text{Junction-to-case (top) thermal resis} \\ \text{Re}_{\text{JB}} & \text{Junction-to-board thermal resistanc} \\ \Psi_{\text{JT}} & \text{Junction-to-top characterization par} \\ \Psi_{\text{JB}} & \text{Junction-to-board characterization par} \end{array}$	THERMAL METRIC	3PINS	UNIT
		SOT23	
RөJA	Junction-to-ambient thermal resistance	185.6	°C/W
RejC(top)	Junction-to-case (top) thermal resistance	104.3	°C/W
Rөjв	Junction-to-board thermal resistance	54.5	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	31.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	54.5	°C/W
R _{OJC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the *Recommended Operating Conditions table*.



PACKAGE/ORDERING INFORMATION

PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKING (1/2)	PACKAGE OPTION
	RS809-2.63YSF3	-40°C ~+85°C	SOT23	809BXX	Tape and Reel,3000
	RS809-2.93YSF3	-40°C ~+85°C	SOT23	809CXX	Tape and Reel,3000
RS809	RS809-3.08YSF3	-40°C ~+85°C	SOT23	809DXX	Tape and Reel,3000
	RS809-4.00YSF3	-40°C ~+85°C	SOT23	809EXX	Tape and Reel,3000
	RS809-4.65YSF3	-40°C ~+85°C	SOT23	809GXX	Tape and Reel,3000

NOTE:

MARKING INFORMATION

⁽¹⁾ There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
(2) B, C, D, E, G represents different Reset Thresholds.

⁽³⁾ XX = Date Code

ELECTRICAL CHARACTERISTICS

 $V_{CC} = 2.7 V$ to 5.5 V for RS809-2.63; $V_{CC} = 3 V$ to 5.5 V for RS809-2.93; $V_{CC} = 3.16 V$ to 5.5 V for RS809-3.08; $V_{CC} = 4.1 V$ to 5.5 V for RS809-4.00; $V_{CC} = 4.77 V$ to 5.5 V for RS809-4.65; $T_A = -40 ^{\circ} C$ to $+85 ^{\circ} C$, unless otherwise noted, typical at $25 ^{\circ} C$.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	Vcc		1.0		5.5	V
Supply Current	ISUPPLY			20	40	μA
		RS809-2.63	2.56	2.63	2.70	
		RS809-2.93	2.86	2.93	3.00	
Reset Threshold	V_{RT}	RS809-3.08	3.00	3.08	3.16	V
		RS809-4.00	3.90	4.00	4.10	
		RS809-4.65	4.54	4.65	4.72	
		RS809-2.63		12		
		RS809-2.93		14		
Reset Threshold Hysteresis		RS809-3.08		15		mV
Trystorosis		RS809-4.00		20		
		RS809-4.65		23		
Reset Pulse Width	t _{RS}		100	200	350	ms
Reset Threshold Temperature Coefficient				30		ppm/°C
V _{CC} to RESET delay t _{RD}		Vcc=3.3V, RS809-2.93		30		μs
	High	I _{SOURCE} = 500uA	0.7xV _{CC}			V
RESET Output voltage	Low	I _{SINK} = 1.2mA			0.4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

TYPICAL OPERATING CHARACTERISTICS

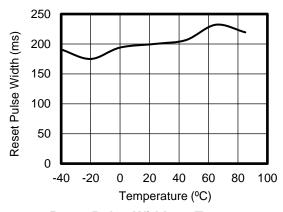


Figure 1. Reset Pulse Width vs Temperature

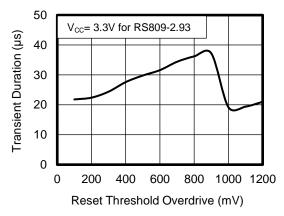


Figure 3. Transient Duration vs Reset Threshold Overdrive

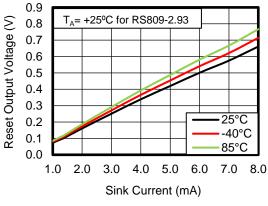


Figure 5. Reset Output Voltage vs Sink Current

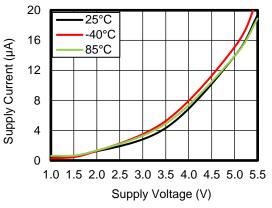


Figure 2. Supply Voltage vs Supply Current

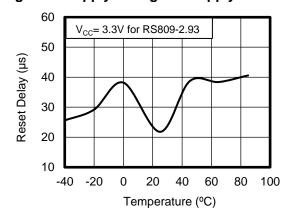


Figure 4. Reset Delay vs Temperature

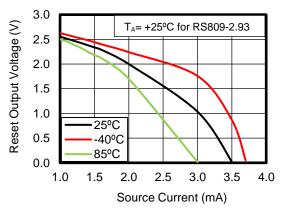


Figure 6. Reset Output Voltage vs Source Current

TYPICAL OPERATING CHARACTERISTICS

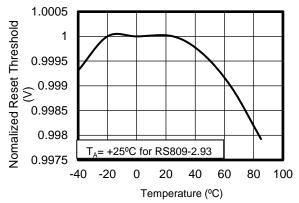


Figure 7. Normalized Reset Threshold vs Temperature

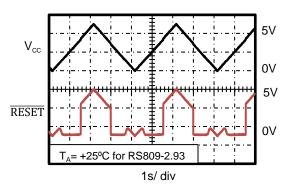


Figure 8. Reset Output Voltage vs Supply Voltage

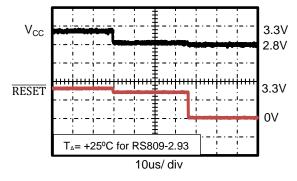
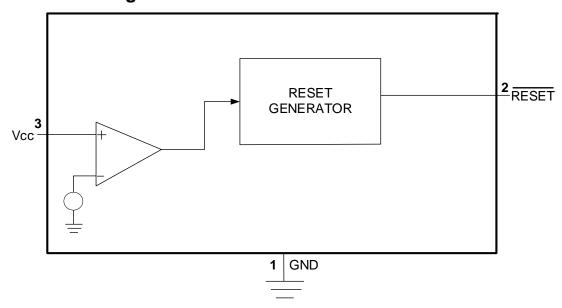



Figure 9. Reset Response Time

Function Block Diagram

Detailed Description

A microprocessor's (μP 's) reset input starts the μP in a known state. The RS809 assert reset to prevent code-execution errors during power-up, power-down or brownout conditions. They assert a reset signal whenever the Vcc supply voltage declines below a preset threshold, keeping it asserted for at least 200ms after Vcc has risen above the reset threshold. The RS809 have a push-pull output stage.

Applications Information

Ensuring a Valid RESET Output Down to Vcc=0V

When V_{CC} falls down below 1V, the RS809 \overline{RESET} output no longer sinks current, it becomes an open circuit. High-impedance CMOS logic inputs can drift to undetermined voltages if left un-driven. If a pull-down resistor is added to the \overline{RESET} pin, as shown in Figure 10, any stray charge or leakage currents will be drained to ground, holding \overline{RESET} low. Resistor value (R1) is not critical. It should be about $100 \mathrm{K}\Omega$, large enough not to load \overline{RESET} and small enough to pull \overline{RESET} to ground.

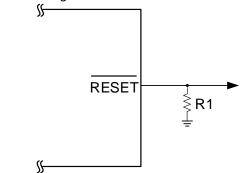
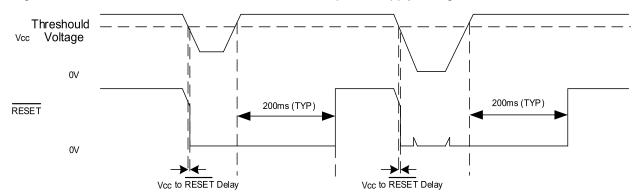


Figure 10. RESET Valid to Ground Circuit

Reset Timing

The reset signal is asserted low for the RS809 when the power supply voltage falls below the threshold trip voltage and remains asserted for at least 200ms after the power supply voltage has risen above the threshold.



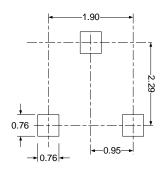
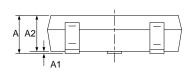
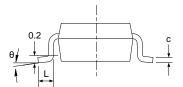
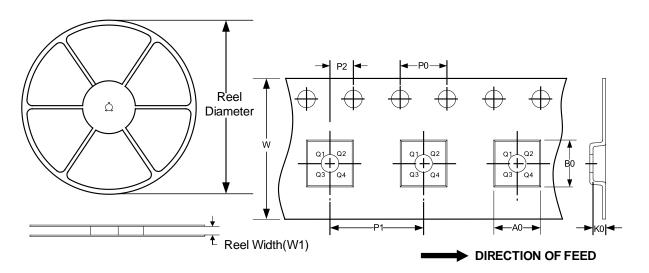


Figure 11. RESET Timing Diagram




PACKAGE OUTLINE DIMENSIONS SOT23

RECOMMENDED LAND PATTERN (Unit: mm)



Complete	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
А	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
A2	0.900	1.050	0.035	0.041
b	0.300	0.500		0.020
С	0.080	0.150	0.110	0.006
D	2.800 3.000	3.000		0.118
Е	1.200	1.400		0.055
E1	2.250	2.550	0.089	0.100
е	0.950	950 (BSC) 0.037		(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300 0.500	0.500	0.012	0.020
θ	0°	8° 0°		8°

TAPE AND REEL INFORMATION REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT23	7"	9.5	3.15	2.77	1.22	4.0	4.0	2.0	8.0	Q3