SLOS179A – FEBRUARY 1997 – REVISED MARCH 2001


- Power Dissipation as Low as 10 μW Typ Per Amplifier
- Operates on a Single Silver-Oxide Watch Battery, V_{DD} = 1.4 V Min
- V_{IO}...450 μV/850 μV Max in DIP and Small-Outline Package (TLC1078/79)
- Input Offset Voltage Drift . . . 0.1 μV/Month Typ, Including the First 30 Days
- High-impedance LinCMOS[™] Inputs I_{IB} = 0.6 pA Typ
- High Open-Loop Gain . . . 800 000 Typ
- Output Drive Capability > 20 mA
- Slew Rate . . . 47 V/ms Typ
- Common-Mode Input Voltage Range Extends Below the Negative Rail
- Output Voltage Range Includes Negative Rail
- On-Chip ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel

description

The TLC107x operational amplifiers offer ultralow offset voltage, high gain, 110-kHz bandwidth, 47-V/ms slew rate, and just 150- μ W power dissipation per amplifier.

With a supply voltage of 1.4 V, common-mode input to the negative rail, and output swing to the negative rail, the TLC107xC is an ideal solution for low-voltage battery-operated systems. The 20-mA output drive capability means that the TLC107x can easily drive small resistive and large capacitive loads when needed, while maintaining ultra-low standby power dissipation.

Since this device is functionally compatible as well as pin compatible with the TLC27L2/4 and TLC27L7/9, the TLC107x easily upgrades existing designs that can benefit from its improved performance.

NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinCMOS is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

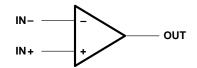
Copyright © 2001, Texas Instruments Incorporated

SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001

description (continued)

The TLC107x incorporates internal ESD-protection circuits that will prevent functional failures at voltages up to 2000 V as tested under MIL-PRF-38535, Method 3015.2; however, care should be exercised when handling these devices as exposure to ESD may result in degradation of the device parametric performance. The TLC107x design also inhibits latch-up of the device inputs and outputs even with surge currents as large 100 mA.

The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 85° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C. The wide range of packaging options includes small-outline and chip-carrier versions for high-density system applications.

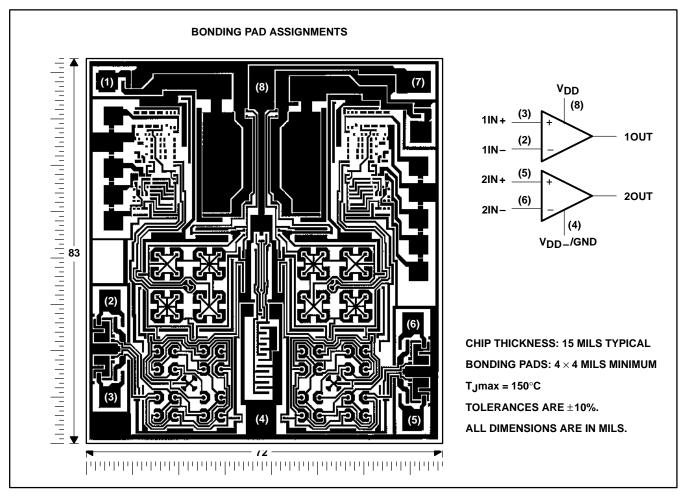

AVAILABLE OPTIONS												
	PACKAGED DEVICES											
TA	SMALL OUTLINE [†] (D)	CHIP CARRIER (FK)	CERAMIC DIP (J)	CERAMIC DIP (JG)	PLASTIC DIP (N)	PLASTIC DIP (P)	FORM‡ (Y)					
0°C to 70°C	TLC1078CD TLC1079CD	—	_	_	TLC1079CN	TLC1078CP	TLC1078Y TLC1079Y					
-40°C to 85°C	TLC1078ID TLC1079ID	—	_	_	TLC1079IN	TLC1078IP	—					
-55°C to 125°C	TLC1078MD TLC1079MD	TLC1078MFK TLC1079MFK	TLC1079MJ	TLC1078MJG	TLC1079MN	TLC1078MP	—					

AVAILABLE OBTIONS

[†] The D package is available taped and reeled. Add the suffix R to the device type (e.g., TLC1078CDR).

[‡]Chip forms are tested 25°C only.

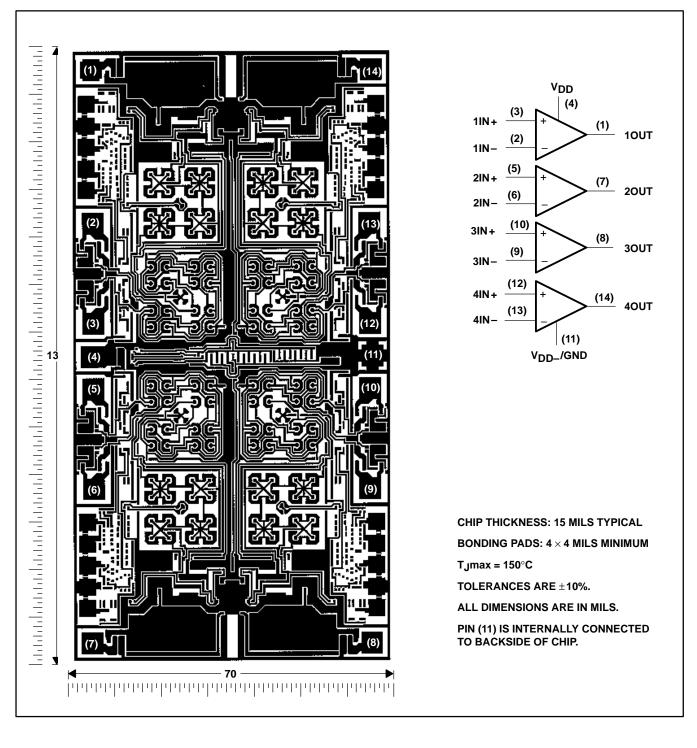
symbol (each amplifier)



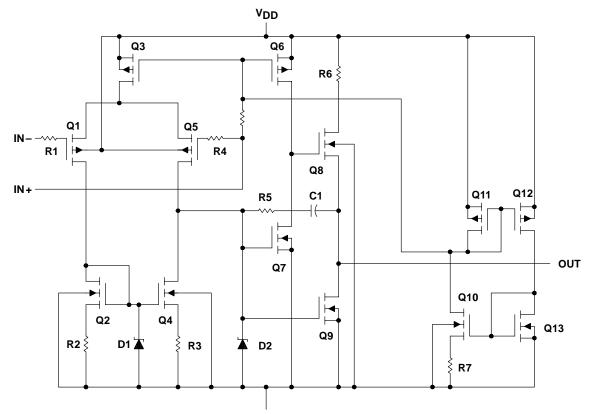
TLC1078, TLC1078Y, TLC1079, TLC1079Y LinCMOSTM μPOWER PRECISION OPERATIONAL AMPLIFIERS SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001

TLC1087Y chip information

This chip, when properly assembled, displays characteristics similar to the TLC1078C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips can be mounted with conductive epoxy or a gold-silicon preform.



SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001


TLC1079Y chip information

This chip, when properly assembled, display characteristics similar to the TLC1079C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips can be mounted with conductive epoxy or a gold-silicon preform.

equivalent schematic (each amplifier)

GND

ACTUAL DEVICE COMPONENT COUNT									
COMPONENT TLC1078 TLC1079									
Transistors	38	76							
Resistors	16	32							
Diodes	12	24							
Capacitors	2	4							

SLOS179A – FEBRUARY 1997 – REVISED MARCH 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{DD} (see Note 1)	18 V
Differential input voltage, V _{ID} (see Note 2)	
Input voltage range, V _I (any input)	
Input current, I _I (each input)	
Output current, I _O (each output)	
Total current into V _{DD} (see Note 3)	
Duration of short-circuit at (or below) $T_A = 25^{\circ}C$ (see Note 3)	
Continuous total power dissipation	
Operating free-air temperature range, T _A : C suffix	
M suffix	–55°C to 125°C
Storage temperature range	
Case temperature for 60 seconds: FK package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package	e 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package	300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.

2. Differential voltages are at IN+ with respect to IN-.

3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation ratings are not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D8	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW
D-14	950 mW	7.6 mW/°C	608 mW	494 mW	190 mW
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW	230 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	200 mW

recommended operating conditions

		C SU	FFIX	I SUF	FIX	M SU	FFIX	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{DD}	Supply voltage, V _{DD}		16	3	16	4	16	V
	$V_{DD} = 5 V$	-0.2	4	-0.2	4	0	4	V
Common-mode input voltage, V_{IC} $V_{DD} = 10 V$		-0.2	9	-0.2	9	0	9	v
Operating free-air temperature, T_A	Dperating free-air temperature, T _A		70	-40	85	-55	125	°C

SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature

						TLC1	078C			
	PARAMETER	TEST CONDITIONS	TAT	v	'DD = 5	V	V	DD = 10	V	UNIT
		CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
\/	Input offect veltere	V _O = 1.4 V,	25°C		160	450		180	600	
VIO	Input offset voltage	R _S = 50 Ω,	Full range			800			950	μV
ανιο	Temperature coefficient of input offset voltage	$V_{IC} = 0,$ $R_I = 1 M\Omega$	25°C to 70°C		1.1			1		μV/°C
lio	Input offset current (see Note 4)		25°C		0.1	60		0.1	60	рА
10	input onset current (see Note 4)	$V_{O} = V_{DD}/2$,	70°C		7	300		7	300	PA
lin	Input bias current (see Note 4)	$V_{IC} = V_{DD}/2$	25°C		0.6	60		0.7	60	рA
IВ			70°C		40	600		50	600	
Vien	Common-mode input voltage		25°C	-0.2 to 4	-0.3 to 4.2		-0.2 to 9	-0.3 to 9.2		V
VICR	range (see Note 5)		Full range	-0.2 to 3.5			-0.2 to 8.5			V
			25°C	3.2	4.1		8.2	8.9		
Vон	High-level output voltage	$V_{ID} = 100 \text{ mV},$ $R_I = 1 \text{ M}\Omega$	0°C	3.2	4.1		8.2	8.9		V
			70°C	3.2	4.2		8.2	8.9		
		100	25°C		0	25		0	25	
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	0°C		0	25		0	25	mV
			70°C		0	25		0	25	
		D 4140	25°C	250	525		500	850		
AVD	Large-signal differential voltage amplification	$R_L = 1 M\Omega$, See Note 6	0°C	250	680		500	1010		۷/m۱
			70°C	200	380		350	660		
			25°C	70	95		75	97		
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$	0°C	70	95		75	97		dB
			70°C	70	95		75	97		
			25°C	75	98		75	98		
^k SVR	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$	V _O = 1.4 V	0°C	75	98		75	98		dB
			70°C	75	98		75	98		
		$V_{O} = V_{DD}/2$,	25°C		20	34		29	46	
IDD	Supply current (two amplifiers) V		0°C		24	42		36	66	μΑ
			70°C		16	28		22	40	

[†]Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

6. At $V_{DD} = 5 \text{ V}$. $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature

						TLC1	079C			
	PARAMETER	TEST CONDITIONS	T _A †	v	ر DD = 2 \	1	V	DD = 10	v	UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
VIO	Input offset voltage		25°C		190	850		200	1150	μV
۷Ю	input onset voltage	$V_{O} = 1.4 V$, $V_{IC} = 0$,	Full range			1200			1500	μv
αΛΙΟ	Temperature coefficient of input offset voltage	$R_{S} = 50 \Omega$, $R_{I} = 1 M\Omega$	25°C to 70°C		1.1			1		μV/°C
lio	Input offset current		25°C		0.1	60		0.1	60	рA
10	(see Note 4)	$V_{O} = V_{DD}/2$,	70°C		7	300		7	300	μA
lin	Input bias current	$V_{IC} = V_{DD}/2$	25°C		0.6	60		0.7	60	pА
IВ	(see Note 4)		70°C		40	600		50	600	μ <u>ν</u>
M	Common mode input		25°C	-0.2 to 4	-0.3 to 4.2		-0.2 to 9	-0.3 to 9.2		V
VICR	voltage range (see Note 5)	F	Full range	-0.2 to 3.5			-0.2 to 8.5			V
^V ОН			25°C	3.2	4.1		8.2	8.9		
	High-level output voltage	$V_{ID} = 100 \text{ mV},$ $R_I = 1 \text{ M}\Omega$	0°C	3.2	4.1		8.2	8.9		V
			70°C	3.2	4.2		8.2	8.9		
	Low-level output voltage	V _{ID} = -100 mV, I _{OL} = 0	25°C		0	25		0	25	
VOL			0°C		0	25		0	25	mV
			70°C		0	25		0	25	
			25°C	250	525		500	850		
AVD	Large-signal differential voltage amplification	$R_L = 1 M\Omega$, See Note 6	0°C	250	700		500	1010		V/mV
	voltage amplification		70°C	200	380		350	660		
			25°C	70	95		75	97		
CMRR	Common mode rejection ratio	VIC = VICRmin	0°C	70	95		75	97		dB
	1410		70°C	70	95		75	97		
			25°C	75	98		75	98		
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 V \text{ to } 10 V,$ $V_{O} = 1.4 V$	0°C	75	98		75	98		dB
			70°C	75	98		75	98		
	0		25°C		40	68		57	92	
IDD	Supply current (four amplifiers)	$V_O = V_{DD}/2$, $V_{IC} = V_{DD}/2$, No load	0°C		48	84		72	132	μA
	ampimers) V		70°C		31	56		44	80	1

[†]Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001

TLC1078C **TEST CONDITIONS** PARAMETER $V_{DD} = 5 \overline{V}$ $V_{DD} = 10 V$ UNIT TA MIN TYP MAX MIN ТҮР MAX 25°C 32 47 $R_L = 1 M\Omega$, $C_{L} = 20 \text{ pF},$ SR Slew rate at unity gain 0°C 35 51 V/ms VI(PP) = 1 V, See Figure 1 70°C 27 38 ٧n Equivalent input noise voltage f = 1 kHz, $R_S = 20 \Omega$ 25°C 68 68 nV/√Hz 25°C 85 110 B₁ Unity-gain bandwidth $C_{L} = 20 \text{ pF},$ See Figure 2 0°C 100 125 kHz 70°C 65 90 25°C 34° 38° Phase margin at unity gain $C_{L} = 20 \text{ pF},$ See Figure 2 0°C 36° 40° φm 30° 34° 70°C

operating characteristics at specified free-air temperature

operating characteristics at specified free-air temperature

							TLC1	079C											
	PARAMETER	TEST CONDITIONS		TA	V _{DD} = 5 V			V _{DD} = 10 V			UNIT								
					MIN	TYP	MAX	MIN	TYP	MAX									
		-	$C_{\rm L} = 20 \rm pF$				32			47									
SR	Slew rate at unity gain	$R_L = 1 M\Omega$, $V_{1}(DD) = 1 V$	CL = 20 p⊦, See Figure 1	0°C		35			51										
		*((FF) = 1 *,	occ rigare r	ecc rigare r	70°C		27			38									
٧n	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω	25°C		68			68		nV/√Hz								
				25°C		85			110										
B ₁	Unity-gain bandwidth	C _L = 20 pF,	C _L = 20 pF,	C _L = 20 pF,	See Figure 2	See Figure 2	See Figure 2	See Figure 2	See Figure 2	See Figure 2	See Figure 2	0°C		100			125		kHz
				70°C		65			90										
				25°C		34°			38°										
[¢] m	Phase margin at unity gain	C _L = 20 pF,	See Figure 2	0°C		36°			40°										
				70°C		30°			34°										

SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature

						TLC	10781			
	PARAMETER	TEST CONDITIONS	т _А †	\	/ _{DD} = 5 \	V	V	DD = 10	V	UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
Vie	Input offset voltage		25°C		160	450		180	600	μV
VIO	input onset voltage	V _O = 1.4 V, R _S = 50 Ω,	Full range			950			1100	μv
αΛΙΟ	Temperature coefficient of input offset voltage	$V_{IC} = 0, R_{I} = 1 M\Omega$	25°C to 85°C		1.1			1		μV/°C
lio	Input offset current		25°C		0.1	60		0.1	60	pА
10	(see Note 4)	$V_{O} = V_{DD}/2$,	85°C		24	1000		26	1000	μA
lin	Input bias current (see Note 4)	$V_{IC} = V_{DD}/2$	25°C		0.6	60		0.7	60	pА
IВ	input bias current (see Note 4)		85°C		200	2000		220	2000	μų
Vien	Common-mode input voltage		25°C	-0.2 to 4	-0.3 to 4.2		-0.2 to 9	-0.3 to 9.2		V
VICR	range (see Note 5)		Full range	-0.2 to 3.5			-0.2 to 8.5			V
			25°C	3.2	4.1		8.2	8.9		
Vон	High-level output voltage	$V_{ID} = 100 \text{ mV},$ $R_I = 1 \text{ M}\Omega$	-40°C	3.2	4.1		8.2	8.9		V
-			85°C	3.2	4.2		8.2	8.9		
	Low-level output voltage	V _{ID} = -100 mV, I _{OL} = 0	25°C		0	25		0	25	
VOL			-40°C		0	25		0	25	mV
			85°C		0	25		0	25	
			25°C	250	525		500	850		
AVD	Large-signal differential voltage amplification	$R_L = 1 M\Omega$, See Note 6	-40°C	250	900		500	1550		V/mV
	amplification		85°C	150	300		250	585		
			25°C	70	95		75	97		
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$	-40°C	70	95		75	97		dB
			85°C	70	95		75	97		
			25°C	75	98		75	98		
k SVR	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$	V _O = 1.4 V	-40°C	75	98		75	98		dB
			85°C	75	98		75	98		
		$V_{O} = V_{DD}/2$,	25°C		20	34		29	46	
IDD	Supply current (two amplifiers) Vi		-40°C		31	54		50	86	μA
			85°C		15	26		20	36	

[†] Full range is -40° C to 80° C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

6. At $V_{DD} = 5 V$, $V_{O} = 0.25 V$ to 2 V; at $V_{DD} = 10 V$, $V_{O} = 1 V$ to 6 V.

SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001

						TLC1	0791			
	PARAMETER	TEST CONDITIONS	т _A †	V	ر DD = 2 /	/	V	01 = DD	v	UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
VIO	Input offset voltage		25°C		190	850		200	1150	μV
۷Ю	input onset voltage	$V_{\text{O}} = 1.4 \text{ V}, \qquad V_{\text{IC}} = 0,$	Full range			1350			1650	μv
αΛΙΟ	Temperature coefficient of input offset voltage	$R_S = 50 \Omega$, $R_I = 1 M\Omega$	25°C to 85°C		1.1			1		μV/°C
lio	Input offset current		25°C		0.1	60		0.1	60	pА
١O	(see Note 4)	$V_{O} = V_{DD}/2$,	85°C		24	1000		26	1000	- рл
IIB	Input bias current	$V_{IC} = V_{DD}/2$	25°C		0.6	60		0.7	60	pА
ΊΒ	(see Note 4)		85°C		200	2000		220	2000	P/
VICR	Common-mode input voltage range		25°C	-0.2 to 4	-0.3 to 4.2		-0.2 to 9	-0.3 to 9.2		V
VICR	(see Note 5)		Full range	-0.2 to 3.5			-0.2 to 8.5			V
VOH			25°C	3.2	4.1		8.2	8.9		
	High-level output voltage	$V_{ID} = 100 \text{ mV},$ $R_I = 1 \text{ M}\Omega$	-40°C	3.2	4.1		8.2	8.9		V
			85°C	3.2	4.2		8.2	8.9		
			25°C		0	25		0	25	
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	-40°C		0	25		0	25	mV
			85°C		0	25		0	25	
			25°C	250	525		500	850		
AVD	Large-signal differential voltage amplification	$R_L = 1 M\Omega$, See Note 6	-40°C	250	900		500	1550		V/mV
	voltage amplification		85°C	150	330		250	585		
			25°C	70	95		75	97		
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$	-40°C	70	95		75	97		dB
			85°C	70	95		75	97		
			25°C	75	98		75	98		
k SVR	Supply-voltage rejection ratio ($\Delta V_{DD} / \Delta V_{IO}$)	$V_{DD} = 5 V \text{ to } 10 V,$ $V_{O} = 1.4 V$	-40°C	75	98		75	98		dB
		VU - 1.4 V	85°C	75	98		75	98		
	Currently ourses at		25°C		40	68		57	92	
IDD		$V_O = V_{DD}/2$, $V_{IC} = V_{DD}/2$, No load	-40°C		62	108		98	172	μA
			85°C		29	52		40	72	

electrical characteristics at specified free-air temperature

[†] Full range is –40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001

operating characteristics at specified free-air temperature

	PARAMETER	TEST CONDITIONS		PARAMETER TEST CONDITIONS T_A $V_{DD} = 5 V$ $V_{DD} = 10 V$		V	UNIT											
					MIN	TYP	MAX	MIN	TYP	MAX								
		-	C _L = 20 pF, V, See Figure 1				32			47								
SR	Slew rate at unity gain			-40°C		39			59		V/ms							
	*I(PP) -	•I(PP) = 1 •,		85°C	25			34										
٧ _n	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω	25°C		68		68			nV/√Hz							
		C _L = 20 pF, See Figure 2	C _L = 20 pF,	See Figure 2	F, See Figure 2	25°C		85			110							
В ₁	Unity-gain bandwidth					See Figure 2	-40°C		130									
				85°C		55			80									
				25°C		34°			38°									
φm	Phase margin at unity gain	$C_L = 20 \text{ pF}$, See Figure 2 -4	$C_L = 20 \text{ pF}$, See Figure 2 -40°C		-40°C		38°		40°									
	5 7 5			85°C		28°			32°									

operating characteristics at specified free-air temperature

							TLC1	0791												
	PARAMETER	TEST CO	TEST CONDITIONS		V _{DD} = 5 V			V _{DD} = 10 V			UNIT									
				MIN	TYP	MAX	MIN	TYP	MAX											
				25°C		32			47											
SR	Slew rate at unity gain	$R_L = 1 M\Omega$, $V_{I}(PP) = 1 V$.	CL = 20 pF, See Figure 1	-40°C		39			59		V/ms									
		VI(PP) = 1 V,		85°C	2				34											
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$	25°C		68			68		nV/√Hz									
		C _L = 20 pF, Se	C _L = 20 pF,	C _L = 20 pF,		oF, See Figure 2	= 20 pF, See Figure 2	See Figure 2	See Figure 2	25°C		85			110					
В ₁	Unity-gain bandwidth				See Figure 2					See Figure 2	See Figure 2	See Figure 2	See Figure 2	See Figure 2	See Figure 2	See Figure 2	-40°C		130	
				85°C		55			80											
				25°C		34°			38°											
φm	Phase margin at unity gain	C _L = 20 pF, See Figure 2	$C_L = 20 \text{ pF}$, See Figure 2	C _L = 20 pF, See Figure 2	C _L = 20 pF, See Figure 2	C _L = 20 pF, See Fig	C _L = 20 pF, S	C _L = 20 pF,	C _L = 20 pF, See Figure 2	$C_L = 20 \text{ pF}$, See Figure 2 -40°	See Figure 2	See Figure 2	F, See Figure 2	-40°C	38°			42°		
	0 70			85°C		28°			32°											

SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001

electrical characteristics at specified operating free-air temperature

						TLC1	078M				
	PARAMETER	TEST CONDITIONS	т _А †	l v	ر _{DD} = 5	1	v	DD = 10	V	υνιτ	
				MIN	TYP	MAX	MIN	TYP	MAX	1	
Vie	Input offect voltage	V _O = 1.4 V,	25°C		160	450		180	600	μV	
VIO	Input offset voltage	$V_{IC} = 0,$	Full range			1250			1400	μν	
αΛΙΟ	Temperature coefficient of input offset voltage	R _S = 50 Ω, R _L = 1 MΩ	25°C to 125°C		1.4			1.4		μV/°C	
10	Input offset current		25°C		0.1	60		0.1	60	pА	
U	(see Note 4)	$V_{O} = V_{DD}/2$,	125°C		1.4	15		1.8	15	nA	
IIB	Input bias current	$V_{IC} = V_{DD}/2$	25°C		0.6	60		0.7	60	pА	
ΊΒ	(see Note 4)		125°C		9	35		10	35	nA	
VICR	Common-mode input		25°C	0 to 4	-0.3 to 4.2		0 to 9	-0.3 to 9.2		V	
VICR	voltage range (see Note 5)		Full range	0 to 3.5			0 to 8.5			V	
			25°C	3.2	4.1		8.2	8.9			
V _{OH} I	High-level output voltage	$V_{ID} = 100 \text{ mV},$ $R_I = 1 \text{ M}\Omega$	−55°C	3.2	4.1		8.2	8.8		V	
			125°C	3.2	4.2		8.2	9		1	
			25°C		0	25		0	25		
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	−55°C		0	25		0	25	mV	
		10L = 0	125°C		0	25		0	25		
			25°C	250	525		500	850			
AVD	Large-signal differential voltage amplification	R _L = 1 MΩ , See Note 6	−55°C	250	950		500	1750		V/m\	
	voltage amplification		125°C	35	200		75	380			
			25°C	70	95		75	97			
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$	−55°C	70	95		75	97		dB	
			125°C	70	85		75	91			
			25°C	75	98		75	98			
	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$	V _O = 1.4 V	−55°C	70	98		70	98		dB	
			125°C	70	98		70	98			
		$V_{O} = V_{DD}/2$,	25°C		20	34		29	46		
IDD	Supply current (two amplifiers)	$V_{IC} = V_{DD}/2$,	−55°C		35	60		56	96	μA	
	/	No load	125°C		14	24		18	30		

[†] Full range is -55° C to 125° C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature

						TLC1	079M				
	PARAMETER	TEST CONDITIONS	T _A †	v	ر DD = 2 \	/	V	DD = 10 '	v		
				MIN	TYP	MAX	MIN	TYP	MAX		
VIO	Input offset voltage		25°C		190	850		200	1150	μV	
۷Ю	input onset voltage	$V_{O} = 1.4 V$, $V_{IC} = 0$,	Full range			1600			1900	μv	
αΛΙΟ	Temperature coefficient of input offset voltage	$R_{S} = 50 \Omega$, $R_{I} = 1 M\Omega$	25°C to 125°C		1.4			1.4		μV/°C	
10	Input offset current		25°C		0.1	60		0.1	60	pА	
IIO	(see Note 4)	$V_{O} = V_{DD}/2$,	125°C		1.4	15		1.8	15	nA	
IIB	Input bias current	$V_{IC} = V_{DD}/2$	25°C		0.6	60		0.7	60	pА	
ΊΒ	(see Note 4)		125°C		9	35		10	35	nA	
Vien	Common mode input		25°C	0 to 4	-0.3 to 4.2		0 to 9	-0.3 to 9.2		V	
VICR	voltage range (see Note 5)		Full range	0 to 3.5			0 to 8.5			V	
VOH High-level output		14 (an 14	25°C	3.2	4.1		8.2	8.9			
	High-level output voltage	$V_{ID} = 100 \text{ mV},$ $R_L = 1 \text{ M}\Omega$	−55°C	3.2	4.1		8.2	8.9		V	
			125°C	3.2	4.2		8.2	9			
		1 () () () () () () () () () (25°C		0	25		0	25		
VOL	Low-level output voltage	V _{ID} = -100 mV, I _{OL} = 0	−55°C		0	25		0	25	mV	
		OL 0	125°C		0	25		0	25		
	Lange stored differential		25°C	250	525		500	850			
AVD	Large-signal differential voltage amplification	$R_L = 1 M\Omega$, See Note 6	−55°C	250	950		500	1750		V/mV	
	renage ampineation		125°C	35	200		75	380			
			25°C	70	95		75	97			
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$	−55°C	70	95		75	97		dB	
	lato		125°C	70	85		75	91			
			25°C	75	98		75	98			
	Supply voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 V \text{ to } 10 V,$ $V_{O} = 1.4 V$	−55°C	70	98		70	98		dB	
			125°C	70	98		70	98			
	Cumply sums of		25°C		40	68		57	92		
IDD	Supply current (four amplifiers)	$V_O = V_{DD}/2$, $V_{IC} = V_{DD}/2$, No load	−55°C		69	120		111	192	μA	
	(· · · · · · · · · · · · · · · · · · ·		125°C		27	48		35	60]	

[†] Full range is -55° C to 125° C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

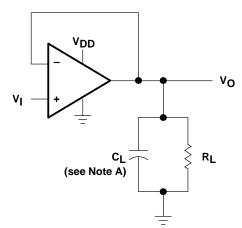
5. This range also applies to each input individually.

6. At $V_{DD} = 5 V$, $V_{O} = 0.25 V$ to 2 V; at $V_{DD} = 10 V$, $V_{O} = 1 V$ to 6 V.

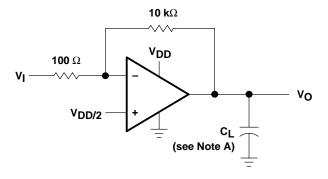
TLC1078, TLC1078Y, TLC1079, TLC1079Y LinCMOS™ μPOWER PRECISION OPERATIONAL AMPLIFIERS SLOS179A – FEBRUARY 1997 – REVISED MARCH 2001

operating characteristics at specified free-air temperature

	PARAMETER	TEST CO	Τ _Α	V _{DD} = 5 V			V _{DD} = 10 V			UNIT				
					MIN	TYP	MAX	MIN	TYP	MAX				
		-		25°C		32			47					
SR	SR Slew rate at unity gain	R _L = 1 MΩ, VI(PP) = 1 V,		−55°C		41			63		V/ms			
			CCC righter	125°C		20			27					
٧ _n	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω	25°C		68			68		nV/√Hz			
			See Figure 2	25°C		85			110					
B ₁	Unity-gain bandwidth	C _L = 20 pF,		See Figure 2	See Figure 2	See Figure 2	See Figure 2	−55°C		140		165		
				125°C		45			70					
				25°C		34°			38°					
φm	Phase margin at unity gain	C _L = 20 pF,	See Figure 2	−55°C		39°			43°					
				125°C		25°			29°					


operating characteristics at specified free-air temperature

							TLC1	079M					
	PARAMETER	TEST CO	ΤA	V _{DD} = 5 V			V _{DD} = 10 V			UNIT			
					MIN	TYP	MAX	MIN	TYP	MAX			
		D (110)	$R_L = 1 M\Omega$, $C_L = 20 pF$, $V_{I(PP)} = 1 V$, See Figure 1	$R_L = 1 M\Omega$, $C_L = 20 pF$,			32			47			
SR	R Slew rate at unity gain									41			63
		*I(PP) = 1 *,		125°C		20			27				
٧n	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω	25°C		68			68		nV/√Hz		
			See Figure 2	25°C		85			110				
B ₁	Unity-gain bandwidth	0 00 05		See Figure 2	re 2 -55°C 140 165								
	Onity-gain bandwidth	C _L = 20 pF,			See Figure 2	125°C		45			70		kHz
				25°C		34°			38°		KIIZ		
	Phase margin at unity gain	$C_{1} = 20 \text{ pE}$	See Figure 2	−55°C		39°			43°				
φm	Filase margin at utility gain	C _L = 20 pF,	See Figure 2	125°C		25°			29°				


SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001

PARAMETER MEASUREMENT INFORMATION

Figure 2. Unity-Gain Bandwidth and Phase-Margin Test Circuit

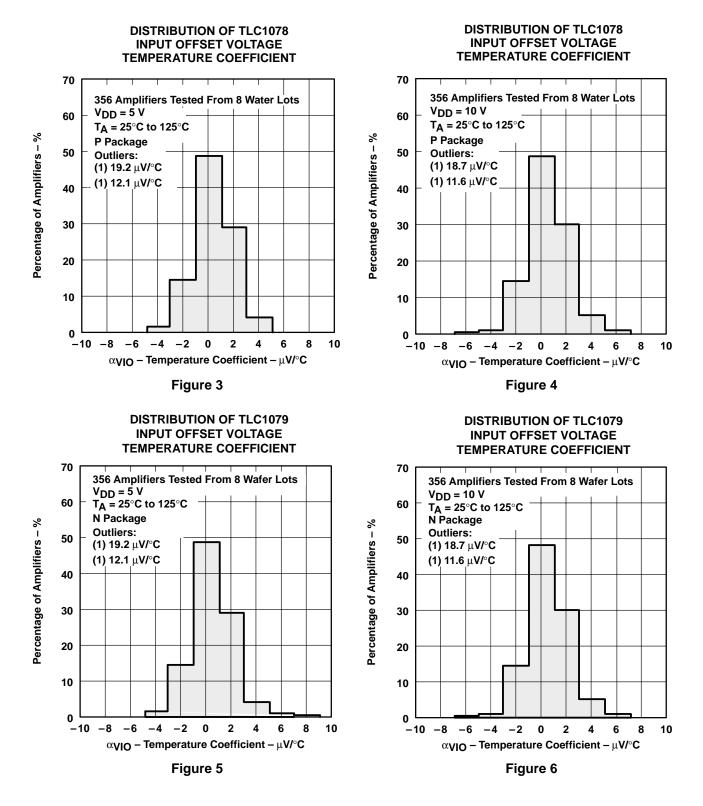
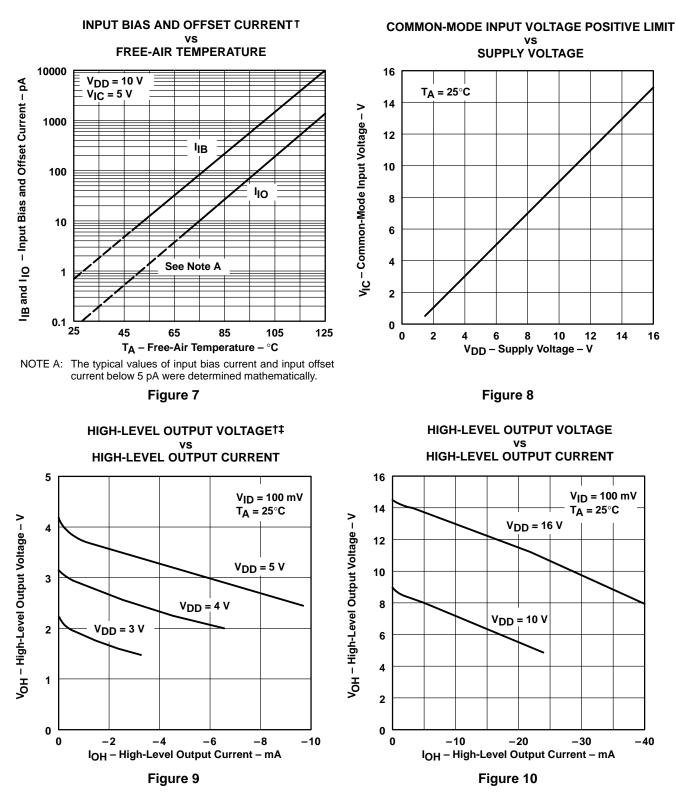
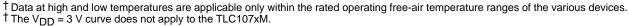

TYPICAL CHARACTERISTICS

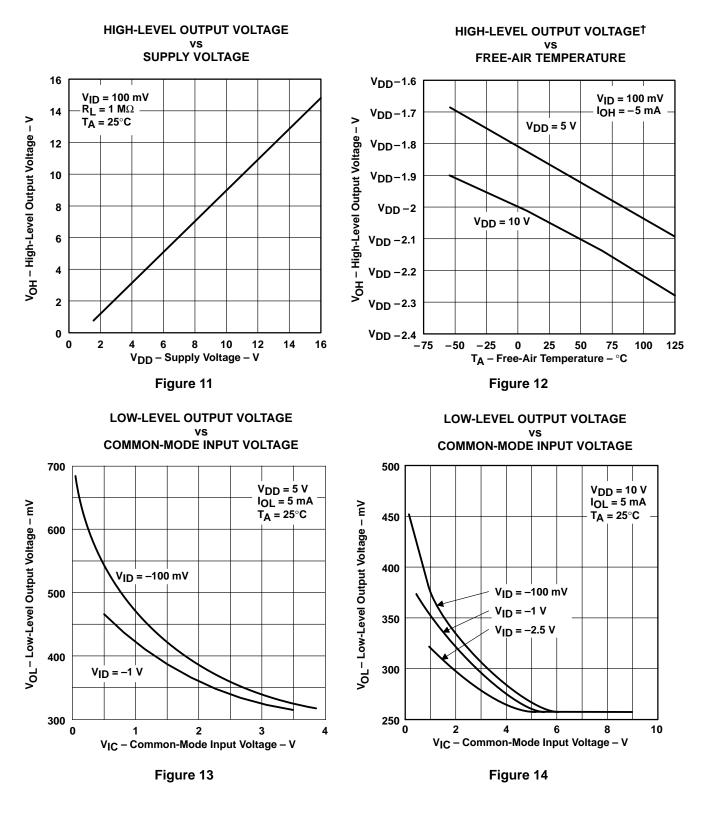
			FIGURE
αγιο	Temperature coefficient of input offset voltage	Distribution	3 – 6
I _{IB}	Input bias current	vs Free-air temperature	7
ΙΟ	Input offset current	vs Free-air temperature	7
VIC	Common-mode input voltage	vs Supply voltage	8
Vон	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	9, 10 11 12
V _{OL}	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	13, 14 15 16 17, 18
AVD	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	19 20 21, 22
VOM	Maximum peak output voltage	vs Frequency	23
I _{DD}	Supply current	vs Supply voltage vs Free-air temperature	24 25
SR	Slew rate	vs Supply voltage vs Free-air temperature	26 27
	Normalized slew rate	vs Free-air temperature	28
Vn	Equivalent input noise voltage	vs Frequency	29
В ₁	Unity-gain bandwidth	vs Supply voltage vs Free-air temperature	30 31
[¢] m	Phase margin	vs Supply voltage vs Free-air temperature vs Capacitive load	32 33 34
	Phase shift	vs Frequency	21, 22

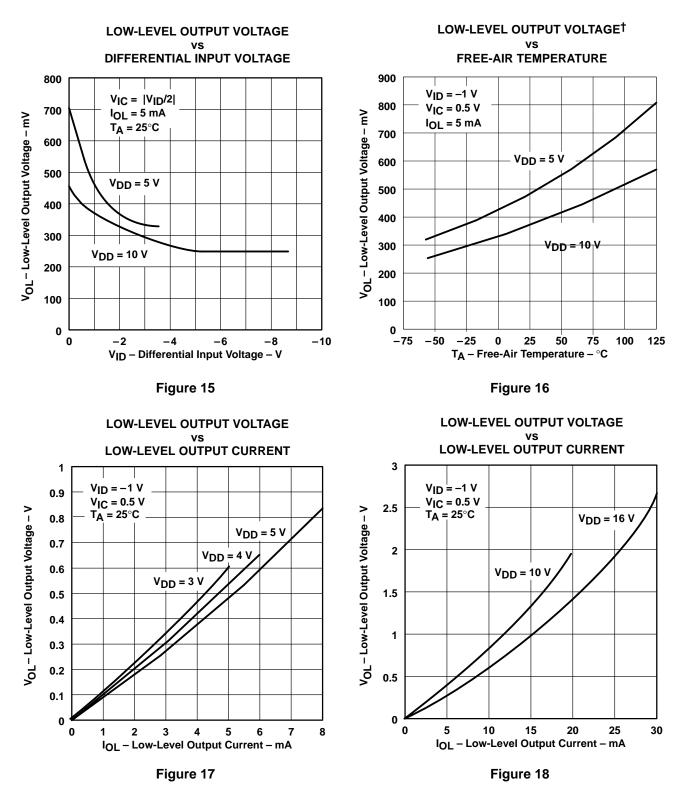
Table of Graphs


TYPICAL CHARACTERISTICS

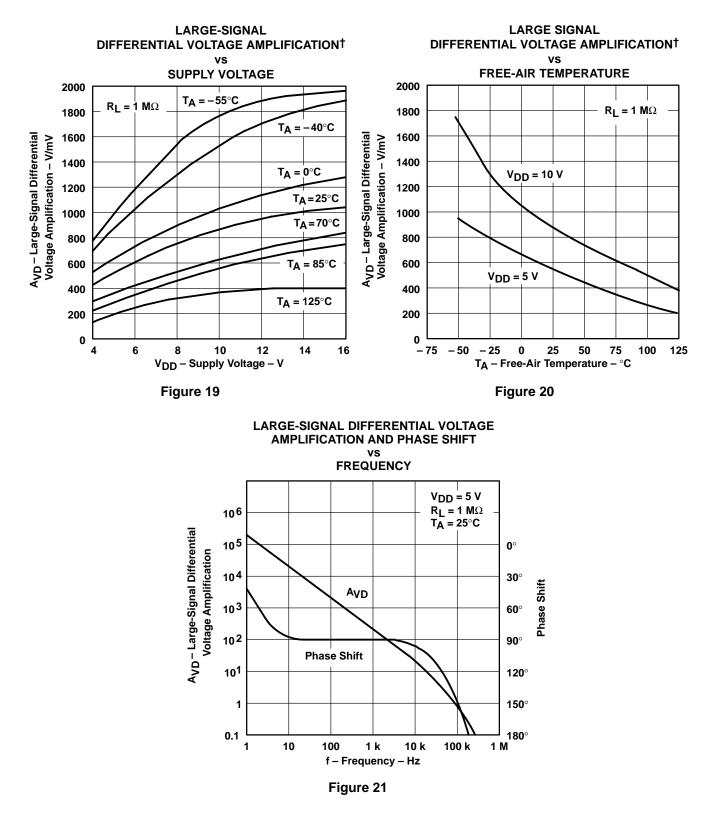


SLOS179A – FEBRUARY 1997 – REVISED MARCH 2001

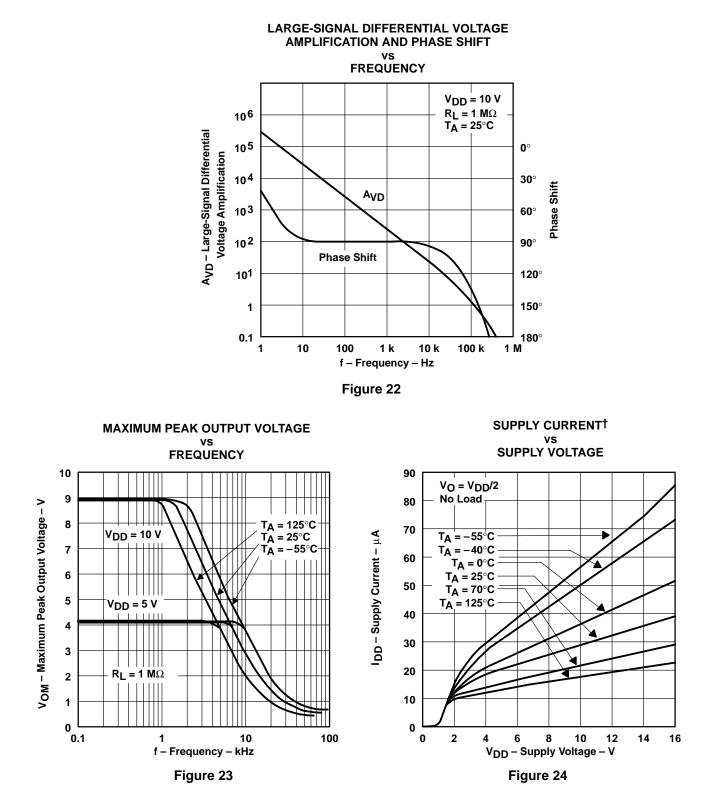

TYPICAL CHARACTERISTICS

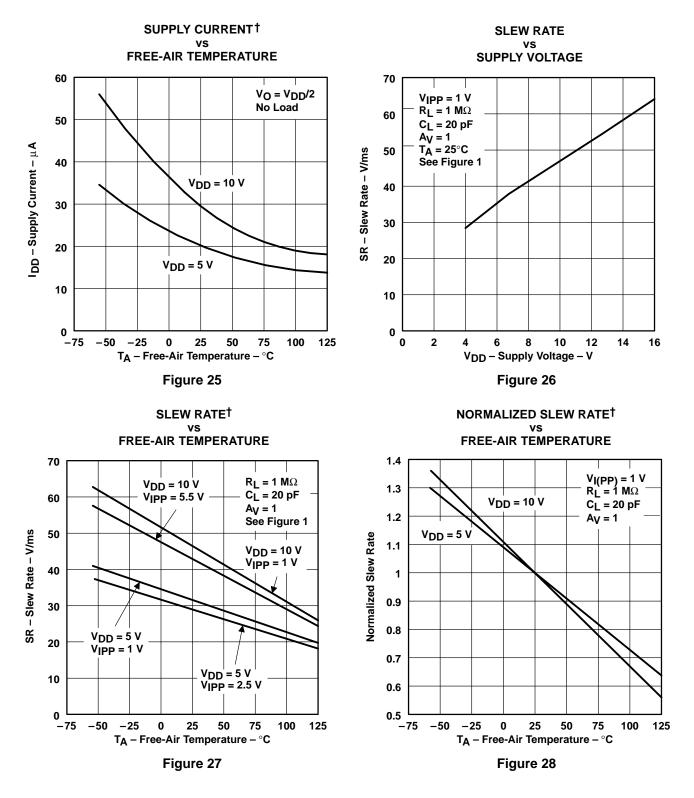

TYPICAL CHARACTERISTICS

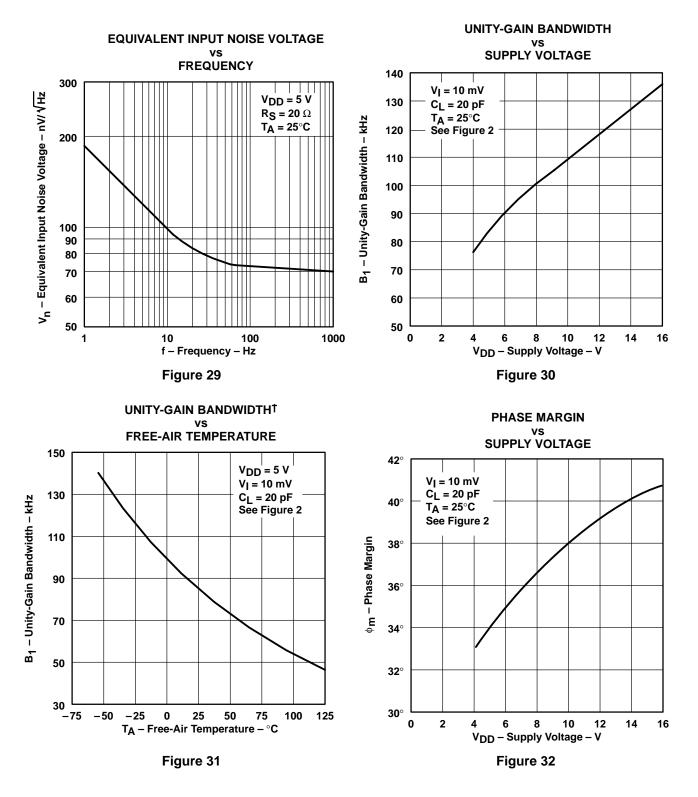
SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001

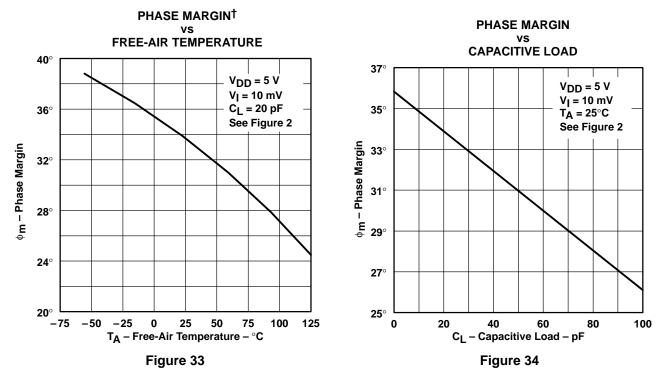

TYPICAL CHARACTERISTICS

SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001


TYPICAL CHARACTERISTICS


SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001


TYPICAL CHARACTERISTICS


SLOS179A - FEBRUARY 1997 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

15-Apr-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLC1078CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1078C	Samples
TLC1078CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1078C	Samples
TLC1078CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1078C	Samples
TLC1078CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1078C	Samples
TLC1078CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC1078CP	Samples
TLC1078CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC1078CP	Samples
TLC1078ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	1078	Samples
TLC1078IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	1078	Samples
TLC1078IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	1078	Samples
TLC1078IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC1078IP	Samples
TLC1078IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC1078IP	Samples
TLC1078MDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	1078M	Samples
TLC1079CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC1079C	Samples
TLC1079CDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC1079C	Samples
TLC1079CDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		TLC1079C	Samples
TLC1079CN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC1079CN	Samples
TLC1079CNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC1079CN	Samples

15-Apr-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
TLC1079ID	(1) ACTIVE	SOIC	D	14	50	(2) Green (RoHS & no Sb/Br)	(6) CU NIPDAU	(3) Level-1-260C-UNLIM		(4/5) TLC1079I	Samples
TLC1079IDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		TLC1079I	Samples
TLC1079IDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		TLC1079I	Samples
TLC1079IN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC1079IN	Samples
TLC1079INE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC1079IN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

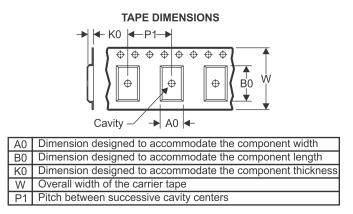
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

www.ti.com

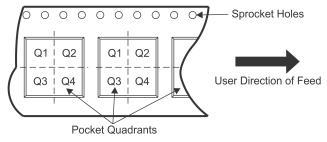
15-Apr-2017

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

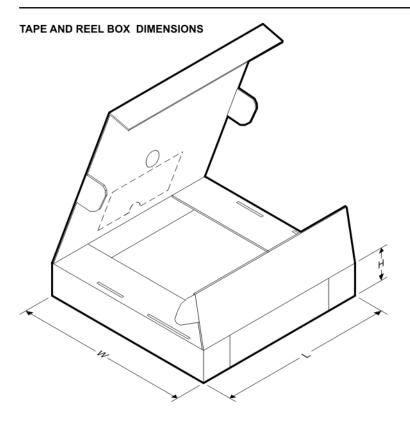

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

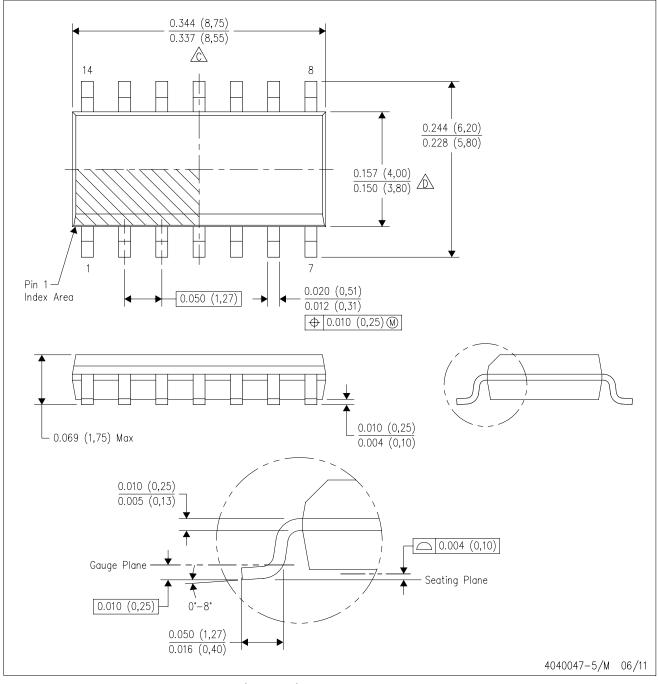

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC1078CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC1078IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC1078IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC1079CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLC1079IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

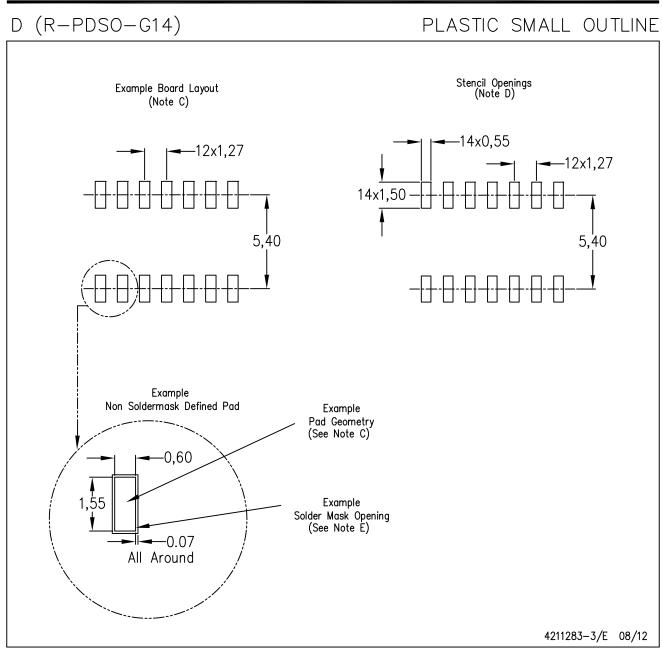
13-Feb-2016



*All dimensions are nominal

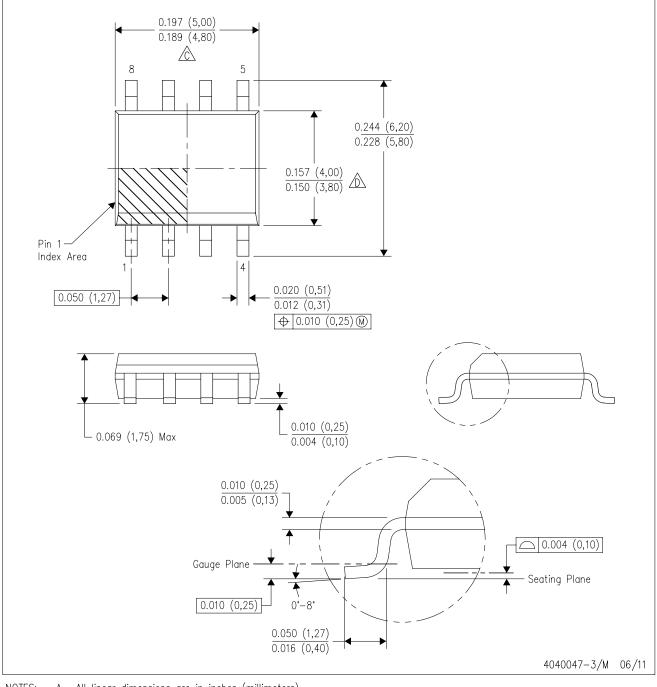
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC1078CDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC1078IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC1078IDR	SOIC	D	8	2500	367.0	367.0	38.0
TLC1079CDR	SOIC	D	14	2500	367.0	367.0	38.0
TLC1079IDR	SOIC	D	14	2500	367.0	367.0	38.0

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

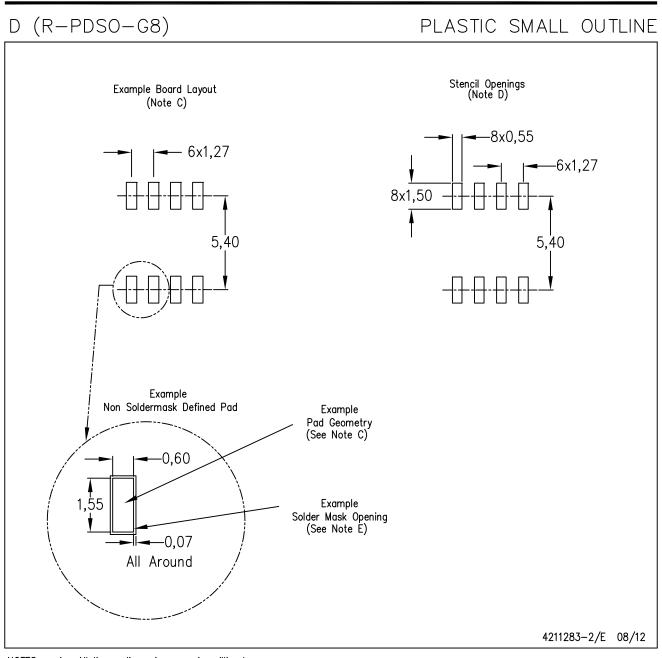
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.


NOTES: A. All linear dimensions are in millimeters.

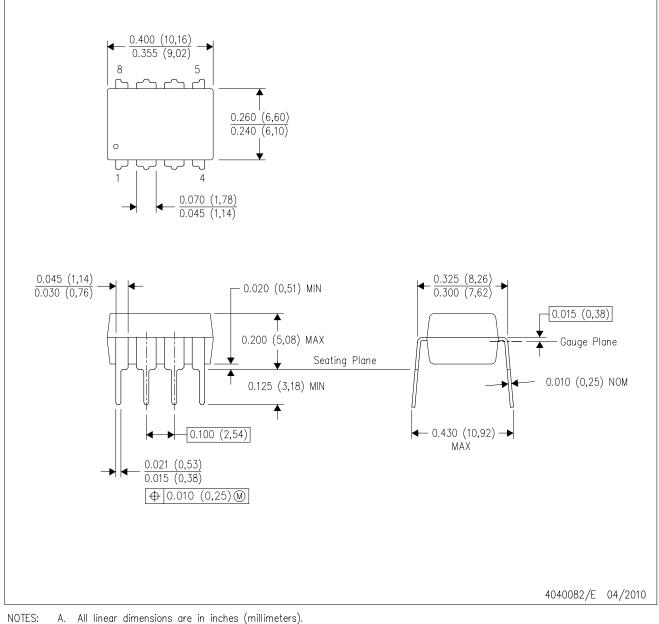
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

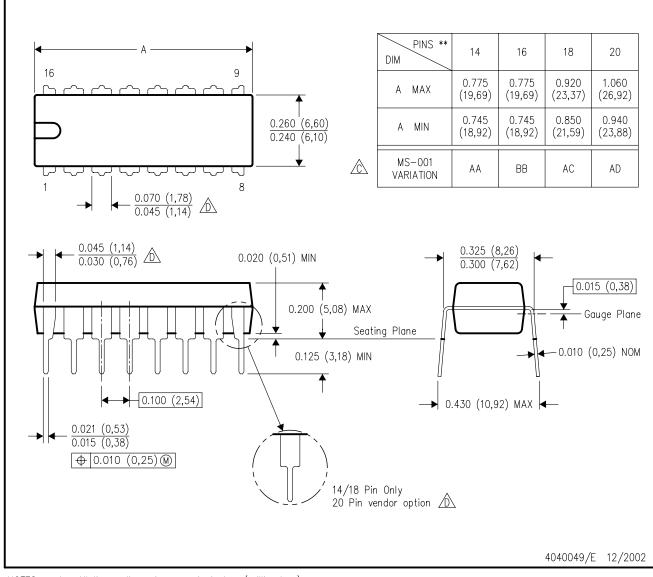
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE


- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated