

STPS60170C

High voltage power Schottky rectifier

Datasheet - production data

Description

This dual diode Schottky rectifier is suited for high frequency switched mode power supplies.

Packaged in TO-220AB this device is intended for use to enhance the reliability of the application.

Table 1: Device summary

Value
2 x 30 A
170 V
175 °C
0.76 V

Features

- High junction temperature capability
- Good trade-off between leakage current and forward voltage drop

This is information on a product in full production.

- Low leakage current
- Low thermal resistance
- Avalanche capability specified
- High frequency operation
- ECOPACK[®]2 compliant component

1 Characteristics

Table 2: Absolute ratings (limiting values, per diode, at 25 °C, unless otherwise specified)

Symbol	Paramete	Value	Unit		
Vrrm	Repetitive peak reverse voltage			170	V
I _{F(RMS)}	Forward rms current			45	А
1	Average forward current δ = 0.5,	ward current δ = 0.5, T _c = 150 °C		30	А
I _{F(AV)}	square wave	$1_{\rm C} = 150^{-1}{\rm C}$	Per device	60	A
IFSM	Surge non repetitive forward currenttp = 10 ms sinusoidal			270	А
Parm	$ \begin{array}{l} \mbox{Repetitive peak avalanche power} & t_p = 10 \ \mbox{\mu s}, \\ T_j = 125 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			985	W
T _{stg}	Storage temperature range			-65 to +175	℃.
Tj	Maximum operating junction temperature ⁽¹⁾			175	C

Notes:

 $^{(1)}(dP_{tot}/dT_j) < (1/R_{th(j-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 3: Thermal parameters

Symbol	Parameter Max. value			Unit
Durin	lunction to page	Per diode	Per diode 1.0	
R _{th(j-c)}	Junction to case	Total	0.7	°C/W
Rth(c)	Coupling		0.4	

When the diodes 1 and 2 are used simultaneously:

 $\Delta T_{j \text{ (diode1)}} = P_{(\text{diode1})} x R_{\text{th}(j-c)} \text{ (per diode)} + P_{(\text{diode2})} x R_{\text{th}(c)}$

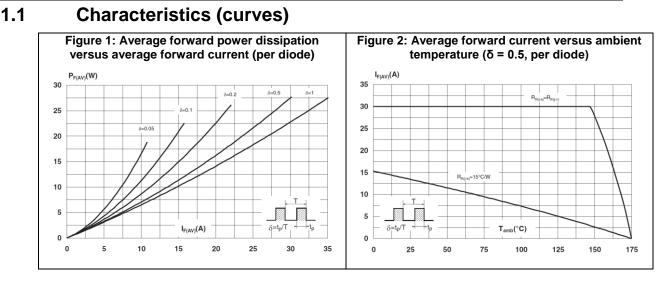
Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
IR ⁽¹⁾	Reverse leakage current	Tj = 25 °C	Vr = Vrrm	-		35	μA
		Tj = 125 °C		-	8	35	mA
	$V_{F}^{(2)} Forward voltage drop \qquad \qquad \frac{T_{j} = 25 \text{ °C}}{T_{j} = 125 \text{ °C}} I_{F} = 30 \text{ A}$ $T_{j} = 25 \text{ °C} I_{F} = 30 \text{ A}$	-		0.94			
V _F ⁽²⁾		Tj = 125 °C	IF = 30 A	-	0.72	0.76	V
		Tj = 25 °C		-	0.97	1.05	v
		T _j = 125 °C	I _F = 60 A	-	0.86	0.92	

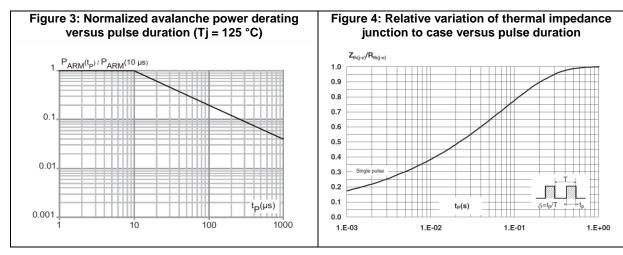
Notes:

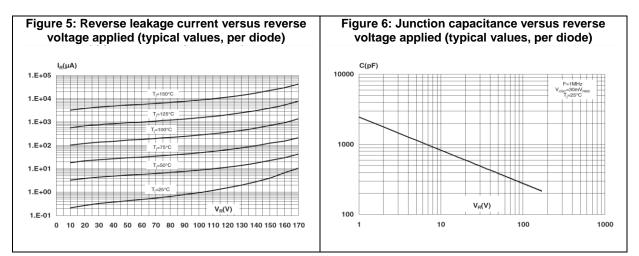
 $^{(1)} \mathsf{Pulse}$ test: t_p = 5 ms, δ < 2% $^{(2)} \mathsf{Pulse}$ test: t_p = 380 µs, δ < 2%

To evaluate the conduction losses, use the following equation:

 $P = 0.60 \text{ x } I_{F(AV)} + 0.0053 \text{ x } I_{F^2(RMS)}$

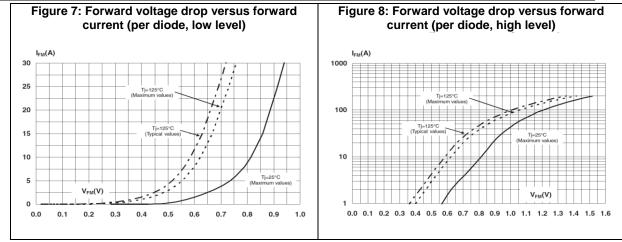

DocID11642 Rev 3




STPS60170C

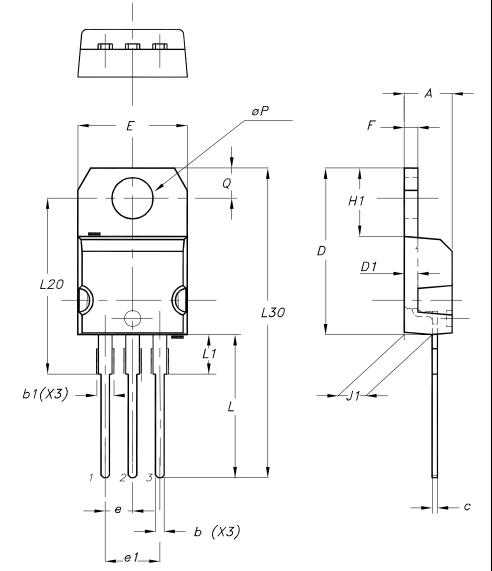
51

Characteristics



DocID11642 Rev 3

STPS60170C


2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

- Cooling method: by conduction (C)
- Epoxy meets UL 94,V0
- Recommended torque value: 0.55 N·m
- Maximum torque value: 0.7 N·m

2.1 TO-220AB package information

Package information

STPS60170C

Table 5: TO-220AB package mechanical data						
Dimensions						
Ref.	Millimeters		Incl	hes		
	Min.	Max.	Min.	Max.		
А	4.40	4.60	0.173	0.181		
b	0.61	0.88	0.240	0.035		
b1	1.14	1.70	0.045	0.067		
с	0.48	0.70	0.019	0.028		
D	15.25	15.75	0.600	0.620		
D1	1.27 typ.		0.050 typ.			
E	10.00 10.		0.394	0.409		
е	2.40	2.70	0.094	0.106		
e1	4.95	5.15	0.195	0.203		
F	1.23	1.32	0.048	0.052		
H1	6.20	6.60	0.244	0.260		
J1	2.40	2.72	0.094	0.107		
L	13.00	14.00	0.512	0.551		
L1	3.50	3.93	0.138	0.155		
L20	16.40 typ.		0.646	δ typ.		
L30	28.90 typ.		1.138	3 typ.		
θΡ	3.75	3.85	0.148	0.152		
Q	2.65	2.95	0.104	0.116		

57

3 Ordering information

Table 6: Ordering information						
Order code Marking Package Weight Base qty. Delivery mod				Delivery mode		
STPS60170CT	STPS60170CT	TO-220AB	1.95 g	50	Tube	

4 Revision history

Table 7: Document r	revision history	
---------------------	------------------	--

Date	Revision	Changes
18-Feb-2005	1	First issue.
11-Dec-2015	2	Updated conduction losses equation values and reformatted to current standard.
15-Jan-2018	3	Updated Table 2: "Absolute ratings (limiting values, per diode, at 25 °C, unless otherwise specified)".

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

