- Excellent Output Drive Capability
$\mathrm{V}_{\mathrm{O}}= \pm 2.5 \mathrm{~V}$ Min at $\mathrm{R}_{\mathrm{L}}=100 \Omega$,

$$
\mathrm{V}_{\mathrm{CC} \pm}= \pm 5 \mathrm{~V}
$$

$\mathrm{V}_{\mathrm{O}}= \pm 12.5 \mathrm{~V}$ Min at $\mathrm{R}_{\mathrm{L}}=600 \Omega$, $\mathrm{V}_{\mathrm{CC} \pm}= \pm 15 \mathrm{~V}$

- Low Supply Current . . . $280 \mu \mathrm{~A}$ Typ
- Decompensated for High Slew Rate and Gain-Bandwidth Product
$A_{V D}=0.5 \mathrm{Min}$
Slew Rate $=10 \mathrm{~V} / \mathrm{us}$ Typ
Gain-Bandwidth Product $=6.5 \mathrm{MHz}$ Typ

description

The TLE2161, TLE2161A, and TLE2161B are JFET-input, low-power, precision operational amplifiers manufactured using the Texas Instruments Excalibur process. Decompensated for stability with a minimum closed-loop gain of 5, these devices combine outstanding output drive capability with low power consumption, excellent dc precision, and high gain-bandwidth product.

In addition to maintaining the traditional JFET advantages of fast slew rates and low input bias and offset currents, the Excalibur process offers outstanding parametric stability over time and temperature. This results in a device that remains precise even with changes in temperature and over years of use.

- Wide Operating Supply Voltage Range $\mathrm{V}_{\mathrm{CC} \pm}= \pm 3.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- High Open-Loop Gain . . . $280 \mathrm{~V} / \mathrm{mV}$ Typ
- Low Offset Voltage . . . $500 \mu \mathrm{~V}$ Max
- Low Offset Voltage Drift With Time $0.04 \mu \mathrm{~V} / \mathrm{Month}$ Typ
- Low Input Bias Current ... 5 pA Typ

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs
LOAD RESISTANCE

AVAILABLE OPTIONS

$\mathrm{T}_{\mathbf{A}}$	VIOmax AT $25^{\circ} \mathrm{C}$	PACKAGE			
		SMALL OUTLINE (D)	CHIP CARRIER (FK)	$\begin{aligned} & \text { CERAMIC } \\ & \text { DIP } \\ & \text { (JG) } \\ & \hline \end{aligned}$	PLASTIC DIP (P)
$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { to } \\ 70^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 500 \mu \mathrm{~V} \\ 1.5 \mathrm{mV} \\ 3 \mathrm{mV} \end{gathered}$	TLE2161ACD TLE2161CD	-	-	TLE2161BCP TLE2161ACP TLE2161CP
$\begin{gathered} -40^{\circ} \mathrm{C} \\ \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 500 \mu \mathrm{~V} \\ 1.5 \mathrm{mV} \\ 3 \mathrm{mV} \end{gathered}$	TLE2161AID TLE2161ID	-	-	TLE2161BIP TLE2161AIP TLE2161IP
$\begin{gathered} -55^{\circ} \mathrm{C} \\ \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 500 \mu \mathrm{~V} \\ 1.5 \mathrm{mV} \\ 3 \mathrm{mV} \end{gathered}$	TLE2161AMD TLE2161MD	TLE2161AMFK TLE2161MFK	TLE2161BMJG TLE2161AMJG TLE2161MJG	TLE2161BMP TLE2161AMP TLE2161MP

The D packages are available taped and reeled. Add R suffix to device type (e.g., TLE2161ACDR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE uPOWER OPERATIONAL AMPLIFIERS

description (continued)

A variety of available options includes small-outline packages and chip-carrier versions for high-density system applications.

The C-suffix devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The I-suffix devices are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The M-suffix devices are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

D, JG, OR P PACKAGE
(TOP VIEW)

NC - No internal connection

equivalent schematic

All component values are nominal.

TLE2161, TLE2161A, TLE2161B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE μ POWER OPERATIONAL AMPLIFIERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\dagger}$
Supply voltage, $\mathrm{V}_{\mathrm{CC}}+($ see Note 1) 19 V
Supply voltage, V_{CC} - - 19 V
Differential input voltage, $\mathrm{V}_{\text {ID }}$ (see Note 2) $\pm 38 \mathrm{~V}$
Input voltage range, V_{1} (any input) $\mathrm{V}_{\mathrm{CC} \pm}$
Input current, II (each input) $\pm 1 \mathrm{~mA}$
Output current, IO $\pm 80 \mathrm{~mA}$
Total current into $\mathrm{V}_{\mathrm{CC}}+$ 80 mA
Total current out of V_{CC} - 80 mA
Duration of short-circuit current at (or below) $25^{\circ} \mathrm{C}$ (see Note 3) unlimited
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range, T_{A} : C suffix $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
I suffix $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
M suffix $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Case temperature for 60 seconds: FK package $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds: D or P package $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 60 seconds: JG package $300^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between $\mathrm{V}_{\mathrm{CC}}+$, and $\mathrm{V}_{\mathrm{CC}}-$.
2. Differential voltages are at $\mathrm{IN}+$ with respect to $\mathrm{IN}-$
3. The output may be shorted to either supply. Temperature and /or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW	145 mW
FK	1375 mW	$11.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	880 mW	715 mW	275 mW
JG	1050 mW	$8.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	672 mW	546 mW	210 mW
P	1000 mW	$8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	640 mW	520 mW	200 mW

recommended operating conditions

		C SUFFIX		I SUFFIX		M SUFFIX		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
Supply voltage, $\mathrm{V}_{\mathrm{CC} \pm}$		± 3.5	± 18	± 3.5	± 18	+3.5	± 18	V
Common-mode input voltage, VIC	$\mathrm{V}_{\mathrm{CC}} \pm= \pm 5 \mathrm{~V}$	-1.6	4	-1.6	4	-1.6	4	V
	$\mathrm{V}_{\mathrm{CC} \pm \pm}= \pm 15 \mathrm{~V}$	-11	13	-11	13	-11	13	
Operating free-air temperature, T_{A}		0	70	-40	85	-55	125	${ }^{\circ} \mathrm{C}$

electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC} \pm} \pm \pm 5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}{ }^{\dagger}$	$\begin{gathered} \hline \text { TLE2161C, TLE2161AC } \\ \text { TLE2161BC } \\ \hline \end{gathered}$			UNIT		
			MIN	TYP		MAX					
VIO	Input offset voltage	TLE2161C			$V_{\text {IC }}=0$,	$\mathrm{R}_{S}=50 \Omega$	$25^{\circ} \mathrm{C}$		0.8	3.1	mV
			Full range					4			
			$25^{\circ} \mathrm{C}$				0.6	2.6			
		TE2161AC	Full range					3.5			
			$25^{\circ} \mathrm{C}$				0.5	1.9			
		E2161BC	Full range					2.4			
< VIIO	Temperature coefficient of input offset voltage		Full range				6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
	Input offset voltage long-term drift (see Note 4)		$25^{\circ} \mathrm{C}$				0.04		$\mu \mathrm{V} / \mathrm{mo}$		
${ }_{1} \mathrm{O}$	Input offset current		$25^{\circ} \mathrm{C}$				1		pA		
			Full range					0.8	nA		
IB	Input bias current		$25^{\circ} \mathrm{C}$				3		pA		
			Full range					2	nA		
VICR	Common-mode input voltage range				$25^{\circ} \mathrm{C}$	$\begin{array}{r} -1.6 \\ \text { to } 4 \end{array}$	$\begin{array}{r} -2 \\ \text { to } 6 \end{array}$		V		
					Full range	$\begin{array}{r} -1.6 \\ \text { to } 4 \end{array}$			V		
$\mathrm{V}_{\mathrm{OM}}+$	Maximum positive peak output voltage swing		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	3.5	3.7		V		
			Full range	3.3							
			$\mathrm{R}_{\mathrm{L}}=100 \Omega$		$25^{\circ} \mathrm{C}$	2.5	3.1				
			Full range	2							
VOM -	Maximum negative peak output voltage swing				$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	-3.7	-3.9		V
			Full range	-3.3							
			$\mathrm{R}_{\mathrm{L}}=100 \Omega$		$25^{\circ} \mathrm{C}$	-2.5	-2.7				
			Full range	-2							
AvD	Large-signal differential voltage amplification				$\mathrm{V}_{\mathrm{O}}= \pm 2.8 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	15	80		V / mV
			Full range	2							
			$\mathrm{V} \mathrm{O}=0$ to $2 \mathrm{~V}, \quad \mathrm{R} \mathrm{L}=100 \Omega$		$25^{\circ} \mathrm{C}$	0.75	45				
			Full range	0.5							
			$\mathrm{V}_{\mathrm{O}}=0$ to $-2 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=100 \Omega$		$25^{\circ} \mathrm{C}$	0.5	3				
			Full range	0.25							
r_{i}	Input resistance						$25^{\circ} \mathrm{C}$		10^{12}		Ω
c_{i}	Input capacitance				$25^{\circ} \mathrm{C}$		4		pF		
z_{0}	Open-loop output im		$10=0$		$25^{\circ} \mathrm{C}$		280		Ω		
CMRR	Common-mode rejection ratio		$\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ICR }}$ min, $\quad \mathrm{R}_{\text {S }}=50 \Omega$		$25^{\circ} \mathrm{C}$	65	82		dB		
			Full range	65							
kSVR	Supply-voltage rejection ratio ($\Delta \mathrm{V}_{\mathrm{CC}} \pm / \Delta \mathrm{V}_{\mathrm{IO}}$)				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \pm= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V}, \\ & \mathrm{R}=50 \Omega \end{aligned}$		$25^{\circ} \mathrm{C}$	75	93		dB
			Full range	75							
ICC	Supply current		$\mathrm{V}_{\mathrm{O}}=0$,	No load	$25^{\circ} \mathrm{C}$		280	325	$\mu \mathrm{A}$		
			Full range				350				
${ }^{\Delta l} \mathrm{CC}$	Supply-current change over operating temperature range				Full range		29		$\mu \mathrm{A}$		

[^0]operating characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC}} \pm= \pm 5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS			$\mathrm{T}^{+}{ }^{\dagger}$	$\begin{gathered} \text { TLE2161C, TLE2161AC } \\ \text { TLE2161BC } \\ \hline \end{gathered}$			UNIT			
		MIN	TYP	MAX								
SR	Slew rate (see Figure 1)				$A_{V D}=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$C_{L}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$	7	10		V/us
		$\begin{gathered} \text { Full } \\ \text { range } \end{gathered}$	5									
V_{n}	Equivalent input noise voltage (see Figure 2)	R ${ }_{\text {S }}=20 \Omega$,	$\mathrm{f}=10 \mathrm{~Hz}$		$25^{\circ} \mathrm{C}$		59	100	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$			
		R ${ }_{\text {S }}=20 \Omega$,	$\mathrm{f}=1 \mathrm{kHz}$				43	60				
$\mathrm{V}_{\mathrm{n} \text { (PP) }}$	Peak-to-peak equivalent input noise voltage	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			$25^{\circ} \mathrm{C}$		1.1		$\mu \mathrm{V}$			
In	Equivalent input noise current	$\mathrm{f}=1 \mathrm{kHz}$			$25^{\circ} \mathrm{C}$		1		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$			
THD	Total harmonic distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{O}(\mathrm{PP})}=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\mathrm{AVD}=5,$	$\mathrm{f}=10 \mathrm{kHz},$	$25^{\circ} \mathrm{C}$		0.025\%					
	Gain-bandwidth product (see Figure 3)	$\mathrm{f}=100 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		5.8		MHz			
		$\mathrm{f}=100 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			4.3					
t_{s}	Settling time	$\varepsilon=0.1 \%$			$25^{\circ} \mathrm{C}$		5		$\mu \mathrm{s}$			
							10					
BOM	Maximum output-swing bandwidth	$A_{V D}=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$		420		kHz			
ϕ_{m}	Phase margin (see Figure 3)	$\mathrm{A}_{\mathrm{VD}}=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		70°					
		$\mathrm{A}_{\mathrm{V} D}=5$,	$\mathrm{R}_{\mathrm{L}}=100 \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			84°					

\dagger Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC}} \pm= \pm 15 \mathrm{~V}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}{ }^{\dagger}$	TLE2161C, TLE2161AC TLE2161BC			UNIT		
			MIN	TYP		MAX					
VIO	Input offset voltage	TLE2161C			$V_{I C}=0$,	RS $=50 \Omega$	$25^{\circ} \mathrm{C}$		0.6	3	mV
			Full range					3.9			
		1AC	$25^{\circ} \mathrm{C}$				0.5	1.5			
		E2161AC	Full range					2.5			
		TLE2161BC	$25^{\circ} \mathrm{C}$				0.3	0.5			
		LE2	Full range					1			
$\alpha^{\text {VIO }}$	Temperature coefficient of input offset voltage		Full range				6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
	Input offset voltage long-term drift (see Note 4)		$25^{\circ} \mathrm{C}$				0.04		$\mu \mathrm{V} / \mathrm{mo}$		
${ }^{1} \mathrm{O}$	Input offset current		$25^{\circ} \mathrm{C}$				2		pA		
			Full range					1	nA		
	Input bias current		$25^{\circ} \mathrm{C}$				4		pA		
			Full range					3	nA		
VICR	Common-mode input voltage range				$25^{\circ} \mathrm{C}$	$\begin{array}{r} -11 \\ \text { to } 13 \\ \hline \end{array}$	$\begin{array}{r} -12 \\ \text { to } 16 \\ \hline \end{array}$		V		
					Full range	$\begin{array}{r} -11 \\ \text { to } 13 \end{array}$			V		
$\mathrm{V}_{\mathrm{OM}}+$	Maximum positive p		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	13.2	13.7		V		
		tput voltage swing			Full range	13					
		put volage swing	$\mathrm{R}_{\mathrm{L}}=600 \Omega$		$25^{\circ} \mathrm{C}$	12.5	13.2				
					Full range	12					
V_{OM} -	Maximum negative		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	-13.2	-13.7		V		
		utput voltage swing			Full range	-13					
		tpur volage swing	$\mathrm{R}_{\mathrm{L}}=600 \Omega$		$25^{\circ} \mathrm{C}$	-12.5	-13				
					Full range	-12					
AvD	Large-signal differe		$\mathrm{V}_{\mathrm{O}}= \pm 10$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	30	230		V/mV		
					Full range	20					
		age amplification	$\mathrm{V}_{\mathrm{O}}=0$ to $8 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=600 \Omega$		$25^{\circ} \mathrm{C}$	25	100				
					Full range	10					
			$\mathrm{V}_{\mathrm{O}}=0$ to $-8 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=600 \Omega$		$25^{\circ} \mathrm{C}$	3	25				
					Full range	1					
r_{i}	Input resistance				$25^{\circ} \mathrm{C}$		10^{12}		Ω		
c_{i}	Input capacitance				$25^{\circ} \mathrm{C}$		4		pF		
z_{0}	Open-loop output im		$\mathrm{I}=0$		$25^{\circ} \mathrm{C}$		280		Ω		
CMRR	Common-mode rejection ratio		$\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ICR }} \mathrm{min}, \quad \mathrm{R}_{\text {S }}=50 \Omega$		$25^{\circ} \mathrm{C}$	72	90		dB		
			Full range	70							
kSVR	Supply-voltage rejection ratio ($\Delta \mathrm{V}_{\mathrm{CC} \pm} / \Delta \mathrm{V}_{\mathrm{IO}}$)				$\begin{aligned} & \mathrm{VCC} \pm= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V}, \\ & \mathrm{RS}=50 \Omega \end{aligned}$		$25^{\circ} \mathrm{C}$	75	93		dB
			Full range	75							
ICC	Supply current		$\mathrm{VO}=0$,	No load	$25^{\circ} \mathrm{C}$		290	350	$\mu \mathrm{A}$		
					Full range			375			
$\Delta^{\text {I CC }}$	Supply-current change over operating temperature range				Full range		34		$\mu \mathrm{A}$		

\dagger Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ extrapolated to $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ using the Arrhenius equation and assuming an activation energy of 0.96 eV .
operating characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC} \pm} \pm \pm 15 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS			$\mathrm{T}_{\mathbf{A}}{ }^{\dagger}$	TLE2161C, TLE2161AC TLE2161BC			UNIT			
		MIN	TYP	MAX								
SR	Slew rate (see Figure 1)				$A_{V D}=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \quad \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		$25^{\circ} \mathrm{C}$	7	10		V/us
		Full range	5									
V_{n}	Equivalent input noise voltage (see Figure 2)	$\mathrm{R}_{\mathrm{S}}=20 \Omega$,	$\mathrm{f}=10 \mathrm{~Hz}$		$25^{\circ} \mathrm{C}$		70	100	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$			
		RS $=20 \Omega$,	$\mathrm{f}=1 \mathrm{kHz}$				40	60				
$V_{n}(P P)$	Peak-to-peak equivalent input noise voltage	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			$25^{\circ} \mathrm{C}$		1.1		$\mu \mathrm{V}$			
In_{n}	Equivalent input noise current	$\mathrm{f}=1 \mathrm{kHz}$			$25^{\circ} \mathrm{C}$		1.1		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$			
THD	Total harmonic distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{O}(\mathrm{PP})}=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\bar{A} \mathrm{VD}=5,$	$\mathrm{f}=10 \mathrm{kHz},$	$25^{\circ} \mathrm{C}$		0.025\%					
	Gain-bandwidth product (see Figure 3)	$\mathrm{f}=100 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		6.4		MHz			
		$\mathrm{f}=100 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{L}}=600 \Omega$,	$\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$			5.6					
t_{s}	Settling time	$\varepsilon=0.1 \%$$\varepsilon=0.01 \%$			$25^{\circ} \mathrm{C}$		5		$\mu \mathrm{s}$			
						10						
Bom	Maximum output-swing bandwidth	$\mathrm{A}_{\mathrm{V} D}=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			$25^{\circ} \mathrm{C}$		116		kHz		
ϕ_{m}	Phase margin (see Figure 3)	$\mathrm{A}_{\mathrm{VD}}=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		72°					
		$\mathrm{AVD}=5$,	$\mathrm{R}_{\mathrm{L}}=600 \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			78°					

\dagger Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC} \pm}= \pm 5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS		$\mathrm{T}_{\mathbf{A}}{ }^{\dagger}$	$\begin{gathered} \hline \text { TLE2161I, TLE2161AI } \\ \text { TLE2161BI } \end{gathered}$			UNIT		
			MIN	TYP		MAX					
V_{10}	Input offset voltage	TLE21611			V IC $=0$,	$R_{S}=50 \Omega$	$25^{\circ} \mathrm{C}$		0.8	3.1	mV
			Full range					4.4			
		TLE2161AI	$25^{\circ} \mathrm{C}$				0.6	2.6			
			Full range					3.9			
		TLE2161BI	$25^{\circ} \mathrm{C}$				0.5	1.9			
			Full range					2.7			
$\alpha^{\text {VIO }}$	Temperature coefficient of input offset voltage		Full range				6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
	Input offset voltage long-term drift (see Note 4)		$25^{\circ} \mathrm{C}$				0.04		$\mu \mathrm{V} / \mathrm{mo}$		
10	Input offset current		$25^{\circ} \mathrm{C}$				1		pA		
			Full range					2	nA		
IIB	Input bias current		$25^{\circ} \mathrm{C}$				3		pA		
			Full range					4	nA		
VICR	Common-mode input voltage range				$25^{\circ} \mathrm{C}$	$\begin{array}{r} \hline-1.6 \\ \text { to } \\ 4 \end{array}$	-2 to 6		V		
					Full range	$\begin{array}{r} \hline-1.6 \\ \text { to } \\ 4 \end{array}$					
VOM +	Maximum positive peak output voltage		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	3.5	3.7		V		
			Full range	3.1							
			$\mathrm{R}_{\mathrm{L}}=100 \Omega$		$25^{\circ} \mathrm{C}$	2.5	3.1				
			Full range	2							
V ${ }_{\text {OM - }}$	Maximum negative peak output voltage swing				$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	-3.7	-3.9		V
			Full range	-3.1							
			$\mathrm{R}_{\mathrm{L}}=100 \Omega$		$25^{\circ} \mathrm{C}$	-2.5	-2.7				
			Full range	-2							
Avd	Large-signal differential voltage amplification				$\mathrm{V}_{\mathrm{O}}= \pm 2.8 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	15	80		V/mV
			Full range	2							
			$\mathrm{V}_{\mathrm{O}}=0$ to $2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		$25^{\circ} \mathrm{C}$	0.75	45				
			Full range	0.5							
			$\mathrm{V}_{\mathrm{O}}=0$ to $-2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		$25^{\circ} \mathrm{C}$	0.5	3				
			Full range	0.25							
r_{i}	Input resistance						$25^{\circ} \mathrm{C}$		10^{12}		Ω
c_{i}	Input capacitance				$25^{\circ} \mathrm{C}$		4		pF		
z_{0}	Open-loop output im		$\mathrm{O}=0$		$25^{\circ} \mathrm{C}$		280		Ω		
CMRR	Common-mode rejection ratio		$\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ICR }}$ min, $\quad \mathrm{R}_{\text {S }}=50 \Omega$		$25^{\circ} \mathrm{C}$	65	82		dB		
			Full range	65							
kSVR	Supply-voltage rejection ratio ($\Delta \mathrm{V}_{\mathrm{CC} \pm} \pm \Delta \mathrm{V}_{\mathrm{IO}}$)				$\begin{aligned} & \mathrm{VCC} \pm= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V}, \\ & \mathrm{RS}=50 \Omega \end{aligned}$		$25^{\circ} \mathrm{C}$	75	93		dB
			Full range	65							
ICC	Supply current		$\mathrm{V}_{\mathrm{O}}=0$,	No load	$25^{\circ} \mathrm{C}$		280	325	$\mu \mathrm{A}$		
			Full range				350				
${ }^{\Delta I} \mathrm{CC}$	Supply-current change over operating temperature range				Full range		29		$\mu \mathrm{A}$		

\dagger Full range is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_{A}=150^{\circ} \mathrm{C}$ extrapolated to $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ using the Arrhenius equation and assuming an activation energy of 0.96 eV .
operating characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC}} \pm= \pm 5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}{ }^{\dagger}$	$\begin{gathered} \hline \text { TLE2161I, TLE2161AI } \\ \text { TLE2161BI } \\ \hline \end{gathered}$			UNIT			
		MIN	TYP	MAX								
SR	Slew rate (see Figure 1)				$A_{V D}=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$C_{L}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$	7	10		V/us
		Full range	5									
V_{n}	Equivalent input noise voltage (see Figure 2)	RS $=20 \Omega$,	$\mathrm{f}=10 \mathrm{~Hz}$		$25^{\circ} \mathrm{C}$		59	100	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$			
		R ${ }_{\text {S }}=20 \Omega$,	$\mathrm{f}=1 \mathrm{kHz}$				43	60				
$V_{n}(P P)$	Peak-to-peak equivalent input noise voltage	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			$25^{\circ} \mathrm{C}$		1.1		$\mu \mathrm{V}$			
In	Equivalent input noise current	$\mathrm{f}=1 \mathrm{kHz}$			$25^{\circ} \mathrm{C}$		1		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$			
THD	Total harmonic distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{O}(\mathrm{PP})}=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$A_{V D}=5,$	$\mathrm{f}=10 \mathrm{kHz},$	$25^{\circ} \mathrm{C}$		0.025\%					
	Gain-bandwidth product (see Figure 3)	$\mathrm{f}=100 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		5.8		MHz			
		$\mathrm{f}=100 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{L}}=100 \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			4.3					
$\mathrm{t}_{\text {s }}$	Settling time	$\varepsilon=0.1 \%$			$25^{\circ} \mathrm{C}$		5		$\mu \mathrm{s}$			
		$\varepsilon=0.01 \%$					10					
BOM	Maximum output-swing bandwidth	$A_{V} \mathrm{D}=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$		420		kHz			
ϕ_{m}	Phase margin (see Figure 3)	$\mathrm{A}_{\mathrm{V} D}=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		70°					
		$\mathrm{A}_{\mathrm{V} D}=5$,	$\mathrm{R}_{\mathrm{L}}=100 \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			84°					

\dagger Full range is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC}} \pm= \pm 15 \mathrm{~V}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}{ }^{\dagger}$	$\begin{gathered} \hline \text { TLE2161I, TLE2161AI } \\ \text { TLE2161BI } \end{gathered}$			UNIT		
			MIN	TYP		MAX					
V_{10}	Input offset voltage	TLE2161I			$V_{I C}=0$,	$\mathrm{R}_{S}=50 \Omega$	$25^{\circ} \mathrm{C}$		0.6	3	mV
			Full range					4.3			
		TLE2161AI	$25^{\circ} \mathrm{C}$				0.5	1.5			
			Full range					2.9			
		TLE2161BI	$25^{\circ} \mathrm{C}$				0.3	0.5			
			Full range					1.3			
$\alpha \mathrm{VIO}$	Temperature coefficient of input offset voltage		Full range				6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
	Input offset voltage long-term drift (see Note 4)		$25^{\circ} \mathrm{C}$				0.04		$\mu \mathrm{V} / \mathrm{mo}$		
${ }^{1} \mathrm{O}$	Input offset current		$25^{\circ} \mathrm{C}$				2		pA		
			Full range					3	nA		
IB	Input bias current		$25^{\circ} \mathrm{C}$				4		pA		
			Full range					5	nA		
VICR	Common-mode input voltage range				$25^{\circ} \mathrm{C}$	$\begin{array}{r} \hline-11 \\ \text { to } \\ 13 \end{array}$	$\begin{array}{r} -12 \\ \text { to } \\ 16 \end{array}$		V		
					Full range	$\begin{array}{r} \hline-11 \\ \text { to } \\ 13 \end{array}$			V		
VOM +	Maximum positive p		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	13.2	13.7		V		
		but voltage swing			Full range	13					
		tput voltage swing	$\mathrm{R}_{\mathrm{L}}=600 \Omega$		$25^{\circ} \mathrm{C}$	12.5	13.2				
					Full range	12					
VOM -	Maximum negative		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	-13.2	-13.7		V		
					Full range	-13					
		utput voltage swing	$\mathrm{R}_{\mathrm{L}}=600 \Omega$		$25^{\circ} \mathrm{C}$	-12.5	-13				
					Full range	-12					
AvD	Large-signal differen		$\mathrm{V}_{0}= \pm 10$	$R_{L}=10 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	30	230		V / mV		
					Full range	20					
		lage amplification	$\mathrm{V}_{0}=0$ to $8 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=600 \Omega$		$25^{\circ} \mathrm{C}$	25	100				
					Full range	10					
			$\mathrm{V}_{0}=0$ to $-8 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=600 \Omega$		$25^{\circ} \mathrm{C}$	3	25				
					Full range	1					
r_{i}	Input resistance				$25^{\circ} \mathrm{C}$		10^{12}		Ω		
c_{i}	Input capacitance				$25^{\circ} \mathrm{C}$		4		pF		
z_{0}	Open-loop output im		IO = 0		$25^{\circ} \mathrm{C}$		280		Ω		
CMRR	Common-mode rejection ratio		$V_{\text {II }}=V_{\text {ICR }}$ min, $\quad R S=50 \Omega$		$25^{\circ} \mathrm{C}$	72	90		dB		
			Full range	65							
kSVR	Supply-voltage rejection ratio ($\Delta \mathrm{V}_{\mathrm{CC} \pm} / \Delta \mathrm{V}_{\mathrm{IO}}$)				$\begin{aligned} & \mathrm{V}_{\mathrm{CC} \pm \pm}= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V}, \\ & \mathrm{R}=50 \Omega \end{aligned}$		$25^{\circ} \mathrm{C}$	75	93		dB
			Full range	65							
ICC	Supply current		$\mathrm{V}_{\mathrm{O}}=0$,	No load	$25^{\circ} \mathrm{C}$		290	350	$\mu \mathrm{A}$		
					Full range			375			
$\Delta^{\text {I }} \mathrm{CC}$	Supply-current change over operating temperature range				Full range		34		$\mu \mathrm{A}$		

\dagger Full range is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_{A}=150^{\circ} \mathrm{C}$ extrapolated to $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ using the Arrhenius equation and assuming an activation energy of 0.96 eV .

operating characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC}} \pm \pm 15 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}{ }^{\dagger}$	$\begin{gathered} \hline \text { TLE2161I, TLE2161AI } \\ \text { TLE2161IB } \end{gathered}$			UNIT			
		MIN	TYP	MAX								
SR	Slew rate (see Figure 1)				AVD $=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$C_{L}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$	7	10		V/us
		Full range	5									
V_{n}	Equivalent input noise voltage (see Figure 2)	$\mathrm{R}_{\mathrm{S}}=20 \Omega$,	$\mathrm{f}=10 \mathrm{~Hz}$		$25^{\circ} \mathrm{C}$		70	100	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$			
		RS $=20 \Omega$,	$\mathrm{f}=1 \mathrm{kHz}$				40	60				
$V_{n}(P P)$	Peak-to-peak equivalent input noise voltage	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			$25^{\circ} \mathrm{C}$		1.1		$\mu \mathrm{V}$			
In	Equivalent input noise current	$\mathrm{f}=1 \mathrm{kHz}$			$25^{\circ} \mathrm{C}$		1.1		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$			
THD	Total harmonic distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{O}(\mathrm{PP})}=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$A_{V D}=5,$	$\mathrm{f}=10 \mathrm{kHz},$	$25^{\circ} \mathrm{C}$		0.025\%					
	Gain-bandwidth product (see Figure 3)	$\mathrm{f}=100 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		6.4		MHz			
		$\mathrm{f}=100 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{L}}=600 \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			5.6					
t_{s}	Settling time	$\varepsilon=0.1 \%$			$25^{\circ} \mathrm{C}$		5		$\mu \mathrm{s}$			
		$\varepsilon=0.01 \%$					10					
BOM	Maximum output-swing bandwidth	$A \vee D=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$		116		kHz			
ϕ_{m}	Phase margin (see Figure 3)	$A_{V} \mathrm{D}=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		72°					
		$\mathrm{A}_{\mathrm{V} D}=5$,	$\mathrm{R}_{\mathrm{L}}=600 \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			78°					

\dagger Full range is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC} \pm} \pm \pm 5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS	$\mathrm{T}_{\mathbf{A}}{ }^{\dagger}$		$\begin{aligned} & \text { E2161N } \\ & \vdots 2161 \mathrm{Al} \\ & 2161 \mathrm{~B} \end{aligned}$		UNIT	
			MIN		TYP	MAX			
V_{IO}	Input offset voltage	TLE2161M		$\mathrm{V}_{\text {IC }}=0, \quad \mathrm{R}_{\text {S }}=50 \Omega$	$25^{\circ} \mathrm{C}$		0.8	3.1	mV
			Full range				6		
		TLE2161AM	$25^{\circ} \mathrm{C}$			0.6	2.6		
			Full range				4.6		
		TLE2161BM	$25^{\circ} \mathrm{C}$			0.5	1.9		
			Full range				3.1		
$\alpha \mathrm{VIO}$	Temperature coefficient of input offset voltage		Full range		6			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
	Input offset voltage long-term drift (see Note 4)		$25^{\circ} \mathrm{C}$		0.04			$\mu \mathrm{V} / \mathrm{mo}$	
${ }^{1} \mathrm{O}$	Input offset current		$25^{\circ} \mathrm{C}$			1		pA	
			Full range				15	nA	
IIB	Input bias current		$25^{\circ} \mathrm{C}$			3		pA	
			Full range				30	nA	
VICR	Common-mode input voltage range			$25^{\circ} \mathrm{C}$	$\begin{array}{r} \hline-1.6 \\ \text { to } 4 \end{array}$	$\begin{array}{r} -2 \\ \text { to } 6 \end{array}$		V	
				Full range	$\begin{array}{r} \hline-1.6 \\ \text { to } 4 \end{array}$			V	
VOM +	Maximum positive peak output voltage swing	All packages	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	3.5	3.7		V	
				Full range	3				
		FK and JG packages	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	$25^{\circ} \mathrm{C}$	2.5	3.6		V	
				Full range	2				
		D and P packages	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	$25^{\circ} \mathrm{C}$	2.5	3.1			
				Full range	2				
VOM -	Maximum negative peak output voltage swing	All packages	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	-3.7	-3.9		V	
				Full range	-3				
		FK and JG packages	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	$25^{\circ} \mathrm{C}$	-2.5	-3.5			
				Full range	-2				
		D and P packages	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	$25^{\circ} \mathrm{C}$	-2.5	-2.7			
				Full range	-2				
AVD	Large-signal differential voltage amplification	All packages	$\mathrm{V}_{0}= \pm 2.8 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	15	80		V/mV	
				Full range	2				
		FK and JG packages	$\mathrm{V}_{0}=0$ to $2.5 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=600 \Omega$	$25^{\circ} \mathrm{C}$	1	65			
				Full range	0.5				
			$\mathrm{V}_{0}=0$ to $-2.5 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=600 \Omega$	$25^{\circ} \mathrm{C}$	1	16			
				Full range	0.5				
		D and P packages	$\mathrm{V}_{0}=0$ to $2 \mathrm{~V}, \quad \mathrm{R} \mathrm{L}=100 \Omega$	$25^{\circ} \mathrm{C}$	0.75	45			
				Full range	0.5				
			$\mathrm{V}_{0}=0$ to $-2 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=100 \Omega$	$25^{\circ} \mathrm{C}$	0.5	3			
				Full range	0.25				

\dagger Full range is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_{A}=150^{\circ} \mathrm{C}$ extrapolated to $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ using the Arrhenius equation and assuming an activation energy of 0.96 eV .
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC} \pm}= \pm 5 \mathrm{~V}$ (unless otherwise noted continued)

PARAMETER		TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}{ }^{\dagger}$	TLE2161MTLE2161AMTLE2161BM			UNIT		
		MIN	TYP		MAX					
r_{i}	Input resistance					$25^{\circ} \mathrm{C}$		10^{12}		Ω
c_{i}	Input capacitance			$25^{\circ} \mathrm{C}$		4		pF		
z_{0}	Open-loop output impedance	$\mathrm{O}=0$		$25^{\circ} \mathrm{C}$		280		Ω		
CMRR	Common-mode rejection ratio	$\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ICR }} \mathrm{min}, \quad \mathrm{R}_{\text {S }}=50 \Omega$		$25^{\circ} \mathrm{C}$	65	82		dB		
				Full range	60					
kSVR	Supply-voltage rejection ratio ($\left.\Delta \mathrm{V}_{\mathrm{CC}} \pm / \Delta \mathrm{V}_{\mathrm{IO}}\right)$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \pm= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V}, \\ & \mathrm{RS}=50 \Omega \end{aligned}$		$25^{\circ} \mathrm{C}$	75	93		dB		
				Full range	65					
${ }^{\text {I C C }}$	Supply current	$\mathrm{V}_{\mathrm{O}}=0$,	No load	$25^{\circ} \mathrm{C}$		280	325	$\mu \mathrm{A}$		
				Full range			350			
${ }^{\Delta I} \mathrm{CC}$	Supply-current change over operating temperature range			Full range		39		$\mu \mathrm{A}$		

\dagger Full range is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
operating characteristics, $\mathrm{V}_{\mathrm{CC} \pm}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS			$\begin{gathered} \hline \text { TLE2161M } \\ \text { TLE2161AM } \\ \text { TLE2161BM } \end{gathered}$			UNIT			
		MIN	TYP	MAX							
SR	Slew rate (see Figure 1)				$\mathrm{A}_{\mathrm{VD}}=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$C_{L}=100 \mathrm{pF}$		10		V/us
V_{n}	Equivalent input noise voltage (see Figure 2)	$\mathrm{R}_{\mathrm{S}}=20 \Omega$,	$\mathrm{f}=10 \mathrm{~Hz}$			59		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$			
		$\mathrm{R}_{\mathrm{S}}=20 \Omega$,	$\mathrm{f}=1 \mathrm{kHz}$			43					
$\mathrm{V}_{\mathrm{n} \text { (PP) }}$	Peak-to-peak equivalent input noise voltage	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz				1.1		$\mu \mathrm{V}$			
In^{\prime}	Equivalent input noise current	$\mathrm{f}=1 \mathrm{kHz}$				1		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$			
THD	Total harmonic distortion	$\begin{aligned} & A_{V D}=5, \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$	$\mathrm{V}_{\mathrm{O}(\mathrm{PP})}=2 \mathrm{~V},$	$\mathrm{f}=10 \mathrm{kHz},$		0.025\%					
	Gain-bandwidth product (see Figure 3)	$\mathrm{f}=100 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		5.8		MHz			
		$\mathrm{f}=100 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{L}}=600 \mathrm{k} \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		4.3					
$\mathrm{t}_{\text {s }}$	Settling time	$\varepsilon=0.1 \%$ $\varepsilon=0.01 \%$				5		$\mu \mathrm{s}$			
						10					
BOM	Maximum output-swing bandwidth	AVD $=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			420		kHz			
ϕ_{m}	Phase margin (see Figure 3)	$\mathrm{A}_{\mathrm{VD}}=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$		70°					
		$\mathrm{A}_{\mathrm{V} D}=5$,	$\mathrm{R}_{\mathrm{L}}=600 \Omega$,	$\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$		84°					

electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC} \pm} \pm \pm 15 \mathrm{~V}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}{ }^{\text {t }}$	TL TL TL	$\begin{aligned} & \text { E2161N } \\ & \text { E2161A } \\ & \text { E2161BI } \end{aligned}$		UNIT		
			MIN	TYP		MAX					
VIO	Input offset voltage	TLE2161M			$V_{I C}=0$,	$\mathrm{R}_{\mathrm{S}}=50 \Omega$	$25^{\circ} \mathrm{C}$		0.6	3	mV
			Full range					6			
		TLE2161AM	$25^{\circ} \mathrm{C}$				0.5	1.5			
			Full range					3.6			
		TLE2161BM	$25^{\circ} \mathrm{C}$				0.3	0.5			
			Full range					1.7			
$\alpha^{\text {VIO }}$	Temperature coefficient of input offset voltage		Full range				6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
	Input offset voltage long-term drift (see Note 4)		$25^{\circ} \mathrm{C}$				0.04		$\mu \mathrm{V} / \mathrm{mo}$		
${ }^{1} \mathrm{O}$	Input offset current		$25^{\circ} \mathrm{C}$				2		pA		
			Full range					20	nA		
IIB	Input bias current		$25^{\circ} \mathrm{C}$				4		pA		
			Full range					40	nA		
VICR	Common-mode input voltage range				$25^{\circ} \mathrm{C}$	$\begin{array}{r} -11 \\ \text { to } 13 \\ \hline \end{array}$	$\begin{array}{r} -12 \\ \text { to } 16 \\ \hline \end{array}$		V		
					Full range	$\begin{array}{r} -11 \\ \text { to } 13 \end{array}$			V		
VOM +	Maximum positive pe		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	13.2	13.7		V		
					Full range	12.5					
		output voitage swing	$R_{L}=600 \Omega$		$25^{\circ} \mathrm{C}$	12.5	13.2				
					Full range	12					
VOM -	Maximum negative p		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	-13.2	-13.7		V		
		output voltage swing			Full range	-12.5					
		output volage swing	$\mathrm{R}_{\mathrm{L}}=600 \Omega$		$25^{\circ} \mathrm{C}$	-12.5	-13				
					Full range	-12					
AVD	Large-signal differen		$\mathrm{V}_{\mathrm{O}}= \pm 10$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	30	230		V / mV		
					Full range	20					
			$\mathrm{V}_{\mathrm{O}}=0$ to $8 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=600 \Omega$		$25^{\circ} \mathrm{C}$	25	100				
		voltage amplification			Full range	7					
			$\mathrm{V}_{\mathrm{O}}=0$ to $-8 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=600 \Omega$		$25^{\circ} \mathrm{C}$	3	25				
					Full range	1					
r_{i}	Input resistance				$25^{\circ} \mathrm{C}$		10^{12}		Ω		
c_{i}	Input capacitance				$25^{\circ} \mathrm{C}$		4		pF		
z_{0}	Open-loop output im	ance	$\mathrm{I}=0$		$25^{\circ} \mathrm{C}$		280		Ω		
CMRR	Common-mode rejection ratio		$V_{\text {IC }}=V_{\text {ICR }}$ min, $\quad R_{S}=50 \Omega$		$25^{\circ} \mathrm{C}$	72	90		dB		
			Full range	65							
kSVR	Supply-voltage rejection ratio ($\Delta \mathrm{V}_{\mathrm{CC} \pm} / \Delta \mathrm{V}_{\mathrm{IO}}$)				$\begin{aligned} & \mathrm{V} \mathrm{CC} \pm= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V}, \\ & \mathrm{RS}=50 \Omega \end{aligned}$		$25^{\circ} \mathrm{C}$	75	93		dB
			Full range	65							
ICC	Supply current		$\mathrm{V}_{\mathrm{O}}=0$,	No load	$25^{\circ} \mathrm{C}$		290	350	$\mu \mathrm{A}$		
			Full range				375				
${ }^{\Delta l} \mathrm{CC}$	Supply-current change over operating temperature range				Full range		46		$\mu \mathrm{A}$		

[^1]NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_{A}=150^{\circ} \mathrm{C}$ extrapolated to $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ using the Arrhenius equation and assuming an activation energy of 0.96 eV .

TLE2161, TLE2161A, TLE2161B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE μ POWER OPERATIONAL AMPLIFIERS
 SLOS049D - NOVEMBER 1989 - REVISED MAY 1996

operating characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC}} \pm= \pm 15 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}{ }^{\dagger}$		$\begin{array}{r} \text { LE2161N } \\ - \text { E2161A } \\ - \text { E2161B } \end{array}$		UNIT			
		MIN	TYP	MAX								
SR	Slew rate (see Figure 1)				$A_{V D}=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$C_{L}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$	7	10		V/us
		Full range	5									
V_{n}	Equivalent input noise voltage (see Figure 2)	RS $=20 \Omega$,	$\mathrm{f}=10 \mathrm{~Hz}$		$25^{\circ} \mathrm{C}$		70		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$			
		RS $=20 \Omega$,	$\mathrm{f}=1 \mathrm{kHz}$				40					
$\mathrm{V}_{\mathrm{N}(\mathrm{PP})}$	Peak-to-peak equivalent input noise voltage	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			$25^{\circ} \mathrm{C}$		1.1		$\mu \mathrm{V}$			
In	Equivalent input noise current	$\mathrm{f}=1 \mathrm{~Hz}$			$25^{\circ} \mathrm{C}$		1.1		fA $/ \sqrt{\mathrm{Hz}}$			
THD	Total harmonic distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{O}(\mathrm{PP})}=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\mathrm{AVD}=5,$	$\mathrm{f}=10 \mathrm{kHz},$	$25^{\circ} \mathrm{C}$		0.025\%					
	Gain-bandwidth product (see Figure 3)	$\mathrm{f}=100 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		6.4		MHz			
		$\mathrm{f}=100 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{L}}=600 \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			5.6					
$\mathrm{ts}_{\text {s }}$	Settling time	$\varepsilon=0.1 \%$			$25^{\circ} \mathrm{C}$		5		$\mu \mathrm{s}$			
		$\varepsilon=0.01 \%$					10					
BOM	Maximum output-swing bandwidth	$A_{V D}=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$		116		kHz			
ϕ_{m}	Phase margin (see Figure 3)	$\mathrm{A}_{\mathrm{V} D}=5$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		72°					
		$\mathrm{AVD}=5$,	$\mathrm{R}_{\mathrm{L}}=600 \Omega$,	$\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$			78°					

\dagger Full range is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

PARAMETER MEASUREMENT INFORMATION

NOTE A: C_{L} includes fixture capacitance.
Figure 1. Slew-Rate Test Circuit

Figure 2. Noise-Voltage Test Circuit

NOTE A: C_{L} includes fixture capacitance.
Figure 3. Gain-Bandwidth Product and Phase-Margin Test Circuit

typical values

Typical values presented in this data sheet represent the median (50% point) of device parametric performance.

Input bias and offset current

At the picoampere bias-current level typical of the TLE2161, TLE2161A, and TLE2161B, accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted into the socket, and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device.

TLE2161, TLE2161A, TLE2161B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE μ POWER OPERATIONAL AMPLIFIERS
 SLOS049D - NOVEMBER 1989 - REVISED MAY 1996

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
V_{10}	Input offset voltage	Distribution	4
IIB	Input bias current	vs Common-mode input voltage vs Free-air temperature	$\begin{aligned} & 5 \\ & 6 \end{aligned}$
IIO	Input offset current	vs Free-air temperature	6
VICR	Common-mode input voltage range limits	vs Free-air temperature	7
$\mathrm{V}_{\text {OM }}$	Maximum positive peak output voltage	vs Output current	8
V_{OM}	Maximum negative peak output voltage	vs Output current	9
VOM	Maximum peak output voltage	vs Supply voltage	10, 11, 12
V_{O} (PP)	Maximum peak-to-peak output voltage	vs Frequency	13, 14, 15
AVD	Large-signal differential voltage amplification	vs Frequency vs Free-air temperature	$\begin{aligned} & 16 \\ & 17 \end{aligned}$
los	Short-circuit output current	vs Elapsed time	18
	Large-signal voltage amplification	vs Free-air temperature	19
z_{0}	Output impedance	vs Frequency	20
CMRR	Common-mode rejection ratio	vs Frequency	21
ICC	Supply current	vs Supply voltage vs Free-air temperature	$\begin{aligned} & 22 \\ & 23 \end{aligned}$
	Pulse response	Small signal Large signal	$\begin{aligned} & 24,25 \\ & 26,27 \end{aligned}$
	Noise voltage (referred to input)	0.1 to 10 Hz	28
V_{n}	Equivalent input noise voltage	vs Frequency	29
THD	Total harmonic distortion	vs Frequency	30, 31
	Gain-bandwidth product	vs Supply voltage vs Free-air temperature	$\begin{aligned} & 32 \\ & 33 \end{aligned}$
$\phi_{\text {m }}$	Phase margin	vs Supply voltage vs Free-air temperature	$\begin{aligned} & 34 \\ & 35 \end{aligned}$
	Phase shift	vs Frequency	16

TYPICAL CHARACTERISTICS \dagger

Figure 4

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs
FREE-AIR TEMPERATURE

Figure 6

INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE

Figure 5

COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
vs
FREE-AIR TEMPERATURE

Figure 7

[^2]
TYPICAL CHARACTERISTICS

Figure 8

MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE

Figure 10

MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE
vs OUTPUT CURRENT

Figure 9

MAXIMUM PEAK OUTPUT VOLTAGE vS SUPPLY VOLTAGE

Figure 11

Figure 12

Figure 14

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY

Figure 13

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
 vs
 FREQUENCY

Figure 15

TYPICAL CHARACTERISTICS \dagger

Figure 16

SHORT-CIRCUIT OUTPUT CURRENT vs
ELAPSED TIME

Figure 18

LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE

Figure 17

LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE

Figure 19
\dagger Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS \dagger

Figure 20

Figure 22

Figure 21

SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE

Figure 23

[^3]
TYPICAL CHARACTERISTICS

Figure 24

Figure 26

Figure 25

Figure 27

TYPICAL CHARACTERISTICS

Figure 28

TOTAL HARMONIC DISTORTION
vs
FREQUENCY

Figure 30

Figure 29

TOTAL HARMONIC DISTORTION vS

Figure 31

TYPICAL CHARACTERISTICS

Figure 32

Figure 34

GAIN-BANDWIDTH PRODUCT
VS
FREE-AIR TEMPERATURE

Figure 33

PHASE MARGIN
vs
FREE-AIR TEMPERATURE

Figure 35

macromodel information

Macromodel information provided was derived using Microsim Parts ${ }^{T M}$, the model generation software used with Microsim PSpice ${ }^{T M}$. The Boyle macromodel (see Note 5) and subcircuit in Figure 36 and Figure 37 were generated using the TLE2161 typical electrical and operating characteristics at $25^{\circ} \mathrm{C}$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification
- Gain-bandwidth product
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

Figure 36. Boyle Macromodel
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", IEEE Journal of Solid-State Circuits, SC-9, 353 (1974).

APPLICATION INFORMATION

macromodel information (continued)

c1	11	12	125.4E-14
c2	6	7	$5.000 \mathrm{E}-12$
dc	5	53	dx
de	54	5 d	x
dlp	90	91	dx
dln	92	90	dx
dp	4	3	dx
egnd	99	0	poly (2) (3)
fb	7	99	poly (5) vb
ga	6	0	1112201
gcm	0	6	10993.5
iss	3	10	dc 45.00E
hlim	90	0	vlim 1K
j1	11	2	10 jx
j2	12	1	10 jx
r2	6	9	100.0E3
rd1	4	11	4.973 E 3
rd2	4	12	4.973E3
ro1	8	5	280
ro2	7	99	280
rp	3	4	113.2E3
rss	10	99	4.444 E 6
vb	9	0	dc 0
vc	3	53	dc 2
ve	54	4	dc 2
vlim	7	8	dc 0
vlp	91	0	dc 50
vln	0	92	dc 50
. model	dx	D	(Is = 800.0 E
. model	jx	PJF	(Is = 1.000 F
ends			

Figure 37. Macromodel Subcircuit

input characteristics

The TLE2161, TLE2161A and TLE2161B are specified with a minimum and a maximum input voltage that if exceeded at either input could cause the device to malfunction.

Because of the extremely high input impedance and resulting low bias-current requirements, the TLE2161, TLE2161A, and TLE2161B are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias-current requirements and cause degradation in system performance. It is a good practice to include guard rings around inputs (see Figure 38). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input.

Figure 38. Use of Guard Rings

input offset voltage nulling

The TLE2161 series offers external null pins that can further reduce the input offset voltage. The circuit in Figure 39 can be connected as shown if the feature is desired. When external nulling is not needed, the null pins may be left disconnected.

Figure 39. Input Offset Voltage Nulling INSTRUMENTS
www.ti.com
17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
5962-9095801QPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 9095801QPA } \\ & \text { TLE2161M } \end{aligned}$	Samples
5962-9095802QPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 9095802QPA } \\ & \text { TLE2161AM } \end{aligned}$	Samples
5962-9095803QPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N/A for Pkg Type	-55 to 125	9095803QPA TLE2161BM	Samples
TLE2161ACD	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	2161AC	Samples
TLE2161AID	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		2161AI	Samples
TLE2161AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM		2161AI	Samples
TLE2161AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM		2161AI	Samples
TLE2161AMJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 9095802QPA } \\ & \text { TLE2161AM } \end{aligned}$	Samples
TLE2161BMJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 9095803QPA } \\ & \text { TLE2161BM } \end{aligned}$	Samples
TLE2161CD	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	2161C	Samples
TLE2161CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	2161C	Samples
TLE2161ID	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		21611	Samples
TLE2161IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM		21611	Samples
TLE2161IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM		21611	Samples
TLE2161IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		21611	Samples
TLE2161MJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 9095801QPA } \\ & \text { TLE2161M } \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLE2161, TLE2161A, TLE2161AM, TLE2161M :

- Catalog: TLE2161A, TLE2161
- Military: TLE2161M, TLE2161AM

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications

TAPE AND REEL INFORMATION

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 $\mathbf{W 1}(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TLE2161AIDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| TLE2161IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| TLE2161IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLE2161AIDR	SOIC	D	8	2500	340.5	338.1	20.6
TLE2161IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLE2161IDR	SOIC	D	8	2500	367.0	367.0	38.0

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Tl's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.
Tl's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate Tl products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.
Tl's provision of TI Resources does not expand or otherwise alter Tl's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such Tl Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify Tl and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

[^0]: \dagger Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
 NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ extrapolated to $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ using the Arrhenius equation and assuming an activation energy of 0.96 eV .

[^1]: \dagger Full range is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

[^2]: † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[^3]: † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

