

CC2430DB Demonstration Board User Manual

SWRU125

Page 1

Table of content

1 Introduction	3
2 Definitions	3
3 Kit content	3
3.1 Hardware	3
4 Getting started	3
5 Hardware description CC2430DB	4
5.1 Powering CC2430DB	4
5.2 USB Interface	5
5.3 User interface	5
5.4 EEPROM	5
5.5 Accelerometer	5
5.6 Potentiometer	5
5.7 Light sensor	6
5.8 I/O connectors	6
5.9 Jumper settings	7
5.9.1 P3 Jumpers	7
5.9.2 P5 Jumpers	8
5.10 Signal flow	9
6 Using CC2430DB for prototyping	10
6.1 Debugging using the USB interface	10
6.2 Debugging CC2430DB with the CC2430 debug connector	10
6.3 Low power operation	11
6.4 Using the UART interface on the CC2430DB	13
7 Programming CC2430 with a HEX file	14
8 Schematics	14
9 Bill of Materials (BOM)	15
10 Document History	17

1 Introduction

This manual contains reference information for the CC2430 DB hardware. The following tools, which can be used with the kit, have their own user manual that can be downloaded from the TI website:

- SmartRF[®] Studio
- Chipcon general packet sniffer
- IAR EW8051 C-compiler and C-Spy debugger (www.IAR.se)

The CC2430DB demonstration board includes a number of functions and applications that allows quick testing of the RF interface and peripherals of the CC2430. It can for example be used for:

- Evaluation of SmartRF[®]04 products.
- Measurement of current consumption. The kit is designed for low power operation, and with an ampere meter the current consumption can be measured for all operating modes.
- Prototype development. The CC2430DB includes a USB interface that can be used as emulator interface for the CC2430. Additionally, all I/O ports are available on pin connector on the board to allow easy access for external applications.

2 Definitions

CC2430DB	CC2430 Demonstration Board; described in this user manual
USB MCU	The Silicon Labs C8051F320 MCU used to provide a USB interface
	on the CC2430DB
Factory firmware	The firmware that is supplied programmed into the USB MCU from
	the factory. This firmware supports SmartRF [®] Studio operation.
SoC	System on a Chip. A collective term used to refer to Chipcon ICs with
	on-chip MCU and RF transceiver
ICE	In Circuit Emulator

3 Kit content

3.1 Hardware

The CC2430DB kit contains the following:

- 1 CC2430DB demonstration board
- 1 USB cable
- Quick start guide
- This document

4 Getting started

Make sure to install SmartRF[®] Studio **before** connecting the CC2430DB to a PC, as it installs the required hardware drivers on the PC. SmartRF[®] Studio can be downloaded from the TI web pages:

http://focus.ti.com/docs/toolsw/folders/print/smartrftm-studio.html

Chipcon Products from Texas Instruments 5 Hardware description CC2430DB

Figure 1: CC2430DB overview

5.1 Powering CC2430DB

The CC2430DB can be powered in three different ways:

- 2.5 mm DC jack connector. This connector is placed under the board. The centre pin is used for the positive voltage. A 4-10V DC power supply should be used. The onboard voltage regulator supplies 3.3V to the board.
- USB power. If the CC2430DB is connected to a USB socket on a PC, it will draw power from the USB bus. The onboard voltage regulator supplies 3.3V to the board.
- Battery power. The CC2430DB includes a battery clip for two AA type batteries

If several power sources are connected, the CC2430DB will be powered from the supply that supplies the highest voltage. The USB MCU is only powered when USB or DC jack power is used.

Figure 2: Power switch setting

The Power Switch S3 must be set according to what power source is used. If DC jack or USB power is applied, the switch should be set to the USB position. If the board is powered from batteries, the switch should be set to the BATT position as shown in Figure 2. When either DC power or batteries are used to power the board, the switch can be used as an on/off switch.

When powering the CC2430DB from batteries, the CC2430 will work down to 1.8V. Please note that when using USB, the voltage range is limited to 3.0V - 3.6V. The CC2430DB has been designed for a temperature range of -40° C to $+85^{\circ}$ C.

5.2 USB Interface

The USB interface is used to interface to a PC to run the In-Circuit Emulator in the IAR Embedded Workbench (IAR EW) and using SmartRF[®] Studio. The IAR EW can also be used to reprogram the CC2430DB (see the IAR EW manual for more details). Furthermore, it is also possible to reprogram the CC2430DB via the USB interface with the Chipcon programming software, or to use the board for the Chipcon packet sniffer.

When connected to the USB port the CC2430DB is powered from the USB and no other voltage supplies are required.

Please refer to the Chipcon Flash Programmer User Manual installed with SmartRF[®] Studio for a detailed description of how to reprogram the CC2430DB.

5.3 User interface

The CC2430DB includes a joystick and a push button as user input devices, and two LEDs as user output devices.

5.4 EEPROM

A 32Kbit EEPROM is included for non volatile storage of data that is frequently updated. The EEPROM has 1 Million guaranteed write cycles.

5.5 Accelerometer

The accelerometer can be used to measure movements in 2 axes. It can also be used for tilt measurements by measuring the earth's gravitation. The accelerometer has a 20 ms start-up time after power on. See the Analog Devices ADXL321 datasheet for details about the accelerometer.

5.6 Potentiometer

The potentiometer controls the voltage on the analog input pin P0_7 of the CC2430. The voltage, and thus the potentiometer position, can be measured with the CC2430 A/D converter.

Chipcon Products from Texas Instruments

5.7 Light sensor

A light dependent resistor (LDR) measures light level and gives an analog signal that is measured by the CC2430 A/D converter. The light sensor resistance ranges from 5K Ω (light) to 20M Ω (dark).

5.8 I/O connectors

The I/O connectors bring out all the signals from CC2430. These connectors allow easy access to all CC2430 I/O pins. External circuitry can be connected to these connectors for prototyping.

Pin	Function
1	VDD
2	VDD_SW_CONTROLLED ¹
3	P0_0/LDR
4	RESET_N
5	P0_1/BUTTON PUSH
6	P1_7/SO/MISO/UART_RD
7	P0_2/EE_SDA
8	P1_6/SI/MOSI/UART_TD
9	P0_3/EE_SCL
10	P1_5/SCLK/RTS
11	P2_1/DD
12	P1_4/CSN/SS/CTS
13	P2_2/DC
14	P2_0/JOY PUSH
15	P0_6/JOY
16	P1_2/VDD_SW_CTRL
17	P0_7/POT
18	P1_1/LED2
19	P1_0/LED1
20	GND

Table 1: I/O connector A (P6) pin-out

Pin	Function
1	P1_3/GPIO
2	DC_JACK_PWR
3	P0_4/ACC_X
4	VDD
5	P0_5/ACC_Y
6	GND

Table 2: I/O connector B (P7) pin-out

¹ VDD_SW_CONTROLLED is controlled by the signal named VDD_SW_CTRL

Chipcon Products from Texas Instruments

5.9 Jumper settings

Figure 3: CC2430DB Jumper settings

Header	Pin	Description	Default setting
P3	1-2	Replace with ampere meter to measure current consumption of CC2430	Mounted
P3	3-4	SW controlled power. Can be removed when performing current measurement to reduce leakage current	Mounted
P3	5-6	Accelerometer self test. Mount to perform accelerometer self test function. See also section 5.9.1.	Not mounted
P4	7-9	Manual reset of USB MCU	Not mounted
P4	9-10	Mount during power on to force USB MCU into boot loader	Not mounted
P5	1-2	Connects DD (Debug Data) between USB MCU and CC2430. Should be removed when connecting ICE to P8 "2430deb" connector	Mounted
P5	3-4	Connects DC (Debug Clock) between USB MCU and CC2430. Should be removed when connecting ICE to P8 "2430deb" connector	Mounted
P5	5-6	Connects RESET_N signal between USB MCU and CC2430. Can be removed when performing current measurement to reduce leakage current	Mounted

Table 3: Jumper settings summary

5.9.1 P3 Jumpers

The jumper between pin 1-2 on P3 can be replaced with an ampere meter to measure current consumption of CC2430. The jumper must be mounted for normal operation.

The jumper between pin 3-4 can be removed when performing current measurement to reduce leakage current of the peripheral devices connected to the CC2430. The jumper must be mounted for normal operation

The jumper between pin 5-6 can be mounted to perform accelerometer self test function. By mounting this jumper, a voltage is applied to the accelerometer outputs. See the Analog Devices ADXL321 datasheet for details about the accelerometer self test. The jumper must be removed for normal operation.

Figure 4: Default P3 jumper settings

5.9.2 P5 Jumpers

All jumpers on header P5 must be mounted for normal operation.

The jumper between pin 1-2 on P5 connects DD (Debug Data) between USB MCU and CC2430.

The jumper between pin 3-4 on P5 connects DC (Debug Clock) between USB MCU and CC2430DB.

When the CC2430DB is used with emulator connected to the USB port, both the DD and DC jumpers must be mounted. They should only be removed if an external emulator is used. Chapter 6.2 gives instructions on how to connect the external emulator to the CC2430DB.

The jumper between pin 5-6 on P5 connects RESET_N signal between USB MCU and CC2430. The jumper can be removed when performing current measurement to reduce leakage current for the circuits connected to the RESET pin. The jumper must be mounted for normal operation.

Figure 5: P5 default jumper settings

SWRU125

5.10 Signal flow

The signal lines from the I/O connectors and the CC2430 run via 0 Ω resistors to the various peripherals on the CC2430DB. The peripherals can be disconnected from the CC2430 signal pins by removing the 0 Ω resistors. Please refer to Table 6 for a list of what resistors correspond to which signals.

Figure 6: CC2430DB Signal flow

6 Using CC2430DB for prototyping

The CC2430DB can be used for prototyping by programming the CC2430 with custom applications. All I/O ports on the CC2430 are available on pin row header at the edge of the board, and the USB interface can be used as In Circuit Emulator (ICE) interface allowing real time in circuit emulation of the CC2430.

Table 6 on page 13 shows what pins on the MCU are used for various functions.

P6 and P7 pin-row connectors can be used to connect the CC2430DB to other PCB or prototyping boards. See page 6 for the pin-out of these connectors.

 0Ω resistors are included to isolate the CC2430 from the external components on the CC2430DB. By removing these resistors, signals can be accessed on the pin headers. Refer to section 5.10 and Table 6 for information about which pin corresponds to which resistor.

6.1 Debugging using the USB interface

The most common way to use the CC2430DB for development is to use the USB interface to control the CC2430 on-chip In-Circuit Emulator. The USB interface supplies power to the board, so there is no need for additional DC power or batteries. The USB interface can also be used to program the CC2430 in circuit using the Chipcon programming software.

6.2 Debugging CC2430DB with the CC2430 debug connector

The CC2430DB can be used with the Chipcon packet sniffer or other applications that require USB interface for communication with PC and debugging with an emulator simultaneously. In these cases the SoC debug connector can be used for connecting the ICE. The SmartRF04EB can be used as emulator interface with a cable from P14 "SoC debug/flash" on SmartRF04EB to P8 "2430deb" on CC2430DB. See Figure 7 below. The jumpers between pin 1-2, 3-4 and 4-5 on header P5 must be removed.

CC2430DB must be powered from battery, USB or DC jack when debugged from SmartRF04EB.

Figure 7: CC2430 Debug Connector

6.3 Low power operation

CC2430DB is designed for low power operation when running from batteries. Only the CC2430 is powered in this mode, the USB MCU is not powered. The voltage to the peripheral functions connected to the CC2430 is controlled by an I/O pin P1.2 (VDD_SW_CTRL) on the CC2430. Table 4 lists the current consumption for each of the peripherals.

To obtain minimum current consumption with the CC2430DB, the VDD_SW_CTRL (P1.2) output must be configured as output.

Figure 8: Voltage supply distribution

Table 4 below shows the current consumption for all modules and operation modes with 3.3V supply voltage

Device	Active mode (mA)		Power down mode (µA)	
Device	Typical	Max	32KHz	Sleep
CC2430	7,2	27	1µA	0.3µA
EEPROM	1	3	0	
Accelerometer	0,49		0	
Potentiometer	0,33		0	
Light sensor	0,001	0.015	0	
LEDs		24	0	
Total	9mA	54mA	1µA	

Table 4: Current consumption summary

To accurately measure the current consumption of the chip the jumpers listed in Table 5 should be removed.

Header	Pin	Description	Low power setting
P3	1-2	Replace with ampere meter to measure current consumption of CC2430	Mounted, or connect ampere meter
P3	3-4	SW controlled power. Can be removed when performing current measurement to reduce leakage current	Not mounted
P5	5-6	Connects RESET_N signal between USB MCU and CC2430. Can be removed when performing current measurement to reduce leakage current	Not mounted

Table 5: Jumper setting for low power measurements

In order to achieve lowest possible current consumption, the I/O ports of the CC2430 should be configured as listed in Power down state in Table 6 below.

2430 pin	Name	Schematic Name	Description	Active state ²	Power down state	0Ω ohm resistor
11	P0_0	P0_0/LDR	Light dependent resistor analog input	IN ANALOG	OUT LOW	R506
12	P0_1	P0_1/BUTTON PUSH	Push button interrupt active low	IN PULL- UP	IN	
13	P0_2	P0_2/EE_SDA	EEPROM SDA	OUT HIGH	OUT LOW	R505
14	P0_3	P0_3/EE_SCL	EEPROM SCL	OUT HIGH	OUT LOW	R504
15	P0_4	P0_4/ACC_X	Accelerometer x-axis	IN ANALOG	OUT LOW	R507
16	P0_5	P0_5/ACC_Y	Accelerometer y-axis	IN ANALOG	OUT LOW	R508
17	P0_6	P0_6/JOY	Joystick analog signal	IN ANALOG	OUT LOW	R416
18	P0_7	P0_7/POT	Potentiometer analog input	IN ANALOG	OUT LOW	R430
9	P1_0	P1_0/LED1	Green LED	OUT HIGH	OUT HIGH	
8	P1_1	P1_1/LED2	Red LED	OUT HIGH	OUT HIGH	

 $^{2}\mbox{Active state means that Software controlled VDD is on, this should only be enabled when required by an I/O module$

Chipcon Products from Texas Instruments						
6	P1_2	P1_2/VDD_SW CTRL	Voltage control for I/O modules	OUT HIGH	OUT LOW	
5	P1_3	P1_3/GPIO	Free I/O for controlling external signal	OUT LOW	OUT LOW	
4	P1_4	P1_4/CSn/SS/ CTS		OUT LOW	OUT LOW	R305
3	P1.5	P1_5/SCLK/RT S		OUT LOW	OUT LOW	R308
2	P1_6	P1_6/SI/MOSI/ UART_TD		OUT LOW	OUT LOW	R306
1	P1_7	P1_7/SO/MISO /UART_RD		OUT LOW	OUT LOW	R307
48	P2_0	P2_0/Joy_push	Joystick push interrupt active high	IN	IN	
46	P2_1	P2_1/DD	Debug Data	IN		Jumper P5
45	P2_2	P2_2/DC	Debug Clock	IN		Jumper P5
10	RESET	RESET_N	Reset			Jumper P5

Table 6: Pinout CC2430

The joystick output is coded as an analog voltage. This has been done in order to save the number of pins required on the MCU to interface with the joystick. The push function of the joystick is connected to a digital input pin.

6.4 Using the UART interface on the CC2430DB

The CC2430 UART interface port is accessible on the header connectors as 3.3V signals. An RS232 driver circuit is required to connect the UART interface on CC2430DB to a serial port on a PC. The RS232 port on a SmartRF04EB can be connected to the CC2430DB to allow applications to interface to a PC serial port.

Table 7 shows the connection between the CC2430DB and the SmartRF04EB. Both the P8 (10-pin) connector and the P6 (20-pin) connector on the CC2430DB can be used, but only one of them should be connected at the same time.

Signal Name	SmartRF04EB P10	CC2430DB P8, "2430deb"	CC2430DB P6, "I/O A"
RD	9	10	6
TD	11	8	8
RTS	13	6	10
CTS	15	5	12
GND	20	1	20

Table 7: CC2430ZDK to SmartRF04EB serial port connections

A jumper must be placed between pin 7 and pin 9 on the USB MCU debug connector P301 on the SmartRF04EB board. This will ensure that the Silabs USB controller does not force any pins to erroneous levels.

To use the serial port on CC2430DB USART1 must be used on alternative location 2 in the CC2430. Please see the CC2430 datasheet for instructions how to select serial port and location. Using the SmartRF04EB will only work if the Silabs USB controller on the CC2430DB is powered, i.e. the CC2430DB must be powered from a USB or DC jack.

7 Programming CC2430 with a HEX file

The CC2430 can be programmed from the USB interface using the Chipcon programming software. Figure 9 shows the flash programming interface. For additional information regarding Chipcon Flash Programmer please refer to Chipcon Flash Programmer User Manual.

Chipcon SmartRF®04 Flash	Programmer	
Chipcon	System-on-Chip EB application (U: Device list: EB ID Chip type 0004 CC2431 Interface:	SB) EB application (serial) EB bootloader EB type EB firmware ID EB firmware rev SmartRF04EB 0400 0031
	Flash image: E:\SVN_WORK\Pro Read IEEE Write IEEE F-128 (adr Retain IEEE address when repro	ijects\02576_CC2431_Location_Engine\3 ▼ : 0x1FFF8) ▼ IEEE 0x gramming the chip
	Actions: C Erase and program Erase, program and verify C Append and verify C Verify against hex-file C Read flash into hex-file	Plash lock (effective after program/append): Write protect: No upper pages Write protect boot block Block debug commands (incl. read access) NB: Cannot "Append and verify" when set! Perform actions

Figure 9: Chipcon Flash programmer software

8 Schematics

See the CC2430DB Reference Design for CC2430DB schematics. The CC2430DB reference design can be downloaded from the product page for CC2430DB on TI's websites.

9 Bill of Materials (BOM)

		Pcs/			
Ref.	Part name	unit	Description Mounting alin for ano	Manufacturer	Part number
B1-2	1XAA 1 5V	2	AA battery cell	Keystone	
U500	 24AA32A/SN	1	4 KB I2C EEPROM	Microchip	24AA32A/SN
				Analog	
U401	AD8544	1	Rail-to-rail quad opamp	Devices	AD8544AR
U501	ADXL321	1	accelerometer	Devices	ADXL321
D100-101	BAT254	2	Diode, Si, Schottkey	Philips	BAT254
0000	D0040	4	BJT, Si, NPN, small-	Dhilling	DODAD
Q300	BC840	I	Signal Silicon Labs 8051 USB	Philips	BC840B
U300	C8051F320	1	Microcontroller	Silicon Labs	C8051F320
111	CC2430	1	Single-chip transceiver	Chincon	CC2430
01	C_1U_0402_	'	Capacitor 1uF, 0402,	ompeon	GRM155R60
C71	X5R_K_6P3	1	X5R,10%, 6.3V	Murata	J105KE19D
C207;C281;C300;	C 100N 0402		Capacitor 100n 0402		
C503	X5R K 10	7	X5R 10% 10V		
0000	C 100P 0402	,	Capacitor, 100p, 0402.		
C401	_NP0_J_50	1	NP0, 5% 50V		
C101;C351;	C_10N_0402		Capacitor, 10n, 0402,		
C501-502	_X7R_K_25	4	X7R, 10%, 25V		
	C_10U_0805		Capacitor, 10u, 0805,		
C102	_X5R_L_25	1	XR5, 15% 25V	murata	GRM21BR61A106K
0404-0444	C_15P_0402	0	Capacitor, 15p, 0402,		
0431,0441	_INPU_J_50	2	NPU, 5%, 50V		
C231·C411·C421	X5R K 10	З	X5R 10% 10V		
0201,0411,0421	C 220N 0603	0	Capacitor 220n 0603		
C241	X7R K 50	1	X7R, 10%, 50V		
	C 33P 0402		Capacitor, 33p, 0402,		
C191;C211	_NP0_J_50	2	NP0, 5%, 50V		
	C_2U2_0603		Capacitor, 2u2, 0603,		
C103	_X5R_K_10	1	X5R, 10%, 10V		
C104	C_33N_0402	4			
C104	_X/K_K_20	I	A/R, 10%, 25V Capacitor 4117, 0802		
C100	X5R K 6	1	X5R 10% 6.3V	Murata	GRM21
0100	C 5P6 0402		Capacitor, 5p6, 0402.	Marata	Granz I
C341	NP0 J 50	1	NP0, 5%, 50V		
	C_68P_0402		Capacitor, 68p, 0402,		
C251;C271;C381	_NP0_J_50	3	NP0, 5% 50V		
			DC jack, 2.5mm center		
P2	DC_JACK_2.5	1	pin		
			brown-out detector,		
			SOT23-3 "beta" ninout	EM	
U101	EM6353 1 8V	1	1.8V	Microelectronic	EM6353
D1	LED CL150GCD	1	LED, green, 1206	Citizen	CL150GCD
D2	LED CL150URCD	1	LED, red, 1206	Citizen	CL150URCD
	-		Voltage regulator, low	National	
U100	LP2985-3.3V	1	noise, 3.3 V	Semiconductor	LP2985AIM5-3.3
			Inductor, 1n8, 0402, Manalithia turna		
1 341	1 1N8 0402 S	1	$\pm 1/-0.3 \text{ nH}$	Murata	LOG15-series
1004				Murata	
L331	L_22N_0402_J	1	Inductor, 220, 0402, 5%	Murata	LQG15-series
L321	L 6N8 0402 J	1	Monolithic type, +/-5%	Murata	LQG15-series
		-	Silonix CdS		
			photoconductive cell		
			5 kOhm (light) to 20 M		
RP1	NSL_19M51	1	Ohm (dark)	Silonix	NSL-19M51
De		4	2x10 pinrow, 2.54mm		E 0006600 0
r0	PINKOW_2X10	1	pitch, through-noie	AIVIP	J-7599720

Chipcon Products from Texas Instruments

P3;P5;P7	PINROW_2X3	3	2x3 pinrow, 2.54mm pitch, through-hole	AMP	0-0826632-3
P4;P8	PINROW_2X5	2	pitch, through-hole	AMP	0-0826632-5
S1-2	PUSH_BUTTON	2	button, SMD	Alps	SKHUAF
RT1 R303-304:	R_0-10K_TRIM	1	knob Resistor, general, 0603:	Technologies	72PTR10K
R311-312 R100;R305;R306- 307	R_0603	4	Do not mount		
R308;R416;R430; R504-508	R_0_0603	12	Resistor, 0 ohms, 0603 Resistor, 100k, 0402.	Коа	
R405;R410-412	R_100K_0402_F	4	1%	Koa	
R413-415	R_10K_0402_F	3	Resistor, 10k, 0402, 1%	Koa	
R300-302 R403-404;R407;	R_1K0_0402_J	3	Resistor, 1k, 0402, 5% Resistor, 200k, 0402,	Коа	
R501	R_200K_0402_F	4	1% Resistor, 220k, 0402,	Коа	
R409	R_220K_0402_F	1	1% Resistor, 270 ohm,	Koa	
R400;R440-441	R_270_0402_F	3	0402, 1%	Koa	
R502-503	R_2K2_0402_G	2	Resistor, 2k2, 0402, 2% Resistor, 2 ohm, 0402,	Коа	
R241	R_2_0402_F	1	1% Resistor, 330k, 0402,	Коа	
R406 R101;R261;R310;	R_330K_0402_F	1	1% Resistor, 43K, 0402,	Коа	
R401;R420	R_43K_0402_F	5	1% Resistor, 470k, 0402,	Коа	
R402	R_470K_0402_F	1	1% Resistor, 4.7k, 0402,	Коа	
R102;R309;R509	R_4K7_0402_G	3	2% Resistor, 56K, 0402,	Коа	
R221	R_56K_0402_F	1	1%	Koa	
Q100	SI9424DY	1	MOS-FET, p-channel Double switch, ALPS	Siliconix	SI9424DY
S3	SWITCH_6PIN	1	SSSS222700 USB B-style PCB-	ALPS	SSSS222700
P1	USB_B	1	mount socket Crystal, 32.000MHz,NX3225DA, 10/15ppm, 16 pF !	AMP	787780-1
X1	X_32.000/ 10/15/30/16	1	Temp range -30 - +85 deg C ! Crystal, 32.768 kHz, 12.5pF,	NDK	NX3225DA
X2	x_32.768/ 20/50/40/12	1	20/50 ppm,SMD package	Epson	MC-306
U400	skrhab_e010	1	a centre push	Alps	skrhab_e010

SWRU125

10 Document History

Revision	Date	Description/Changes		
1.0	2007-04-16	Initial release		

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	<u>dsp.ti.com</u>	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated