

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FAN8035

6－CH Motor Driver

Features

－5－CH Balanced Transformerless（BTL）Driver
－1－CH（Forward Reverse）Control DC Motor Driver
－Operating Supply Voltage（4．5 V～ 13.2 V ）
－Built in Thermal Shut Down Circuit（TSD）
－Built in Channel Mute Circuit
－Built in Power Save Mode Circuit
－Built in TSD Monitor Circuit
－Built in 2－OP AMPs

Typical Application

－Compact Disk Player
－Video Compact Disk Player
－Car Compact Disk Player
－Digital Video Disk Player

Description

The FAN8035 is a monolithic integrated circuit suitable for a 6－CH motor driver which drives the tracking actuator， focus actuator，sled motor，spindle motor，and tray motor of the CDP／CAR－CD／DVDP systems．

Ordering Information

Device	Package	Operating Temperature
FAN8035	$48-$ QFPH－1414	$-35^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
FAN8035L	$48-$ QFPH－1414	$-35^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
FAN8035＿NL $^{\text {note }}$	$48-$ QFPH－1414	$-35^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$

Note：

NL ：Lead free Type

Pin Assignments

Pin Definitions

Pin Number	Pin Name	1/0	Pin Function Description
1	IN1-	1	CH1 OP-AMP Input (-)
2	OUT1	O	CH1 OP-AMP Output
3	IN2+	1	CH2 OP-AMP Input (+)
4	IN2-	1	CH2 OP-AMP Input (-)
5	OUT2	O	CH2 OP-AMP Output
6	IN3+	I	CH3 OP-AMP Input (+)
7	IN3-	I	CH3 OP-AMP Input (-)
8	OUT3	O	CH3 OP-AMP Output
9	IN4+	1	CH4 OP-AMP Input (+)
10	IN4-	1	CH4 OP-AMP Input (-)
11	OUT4	O	CH4 OP-AMP Output
12	IN5+	1	CH5 OP-AMP Input (+)
13	IN5-	1	CH5 OP-AMP Input (-)
14	OUT5	O	CH5 OP-AMP Output
15	CTL	I	CH6 Motor Speed Control
16	FWD	I	CH6 Forward Input
17	REV	I	CH6 Reverse Input
18	SGND	-	Signal Ground
19	MUTE12	I	Mute For $\mathrm{CH} 1,2$
20	MUTE34	I	Mute For CH3,4
21	MUTE5	I	Mute For CH5
22	TSD-M	O	TSD Monitor
23	PVCC2	-	Power Supply Voltage 2 (For CH5, CH6)
24	DO6-	O	CH6 Drive Ouptut (-)
25	DO6+	O	CH6 Drive Output (+)
26	PGND2	-	Power Ground 2 (FOR CH5, CH6)
27	DO5-	O	CH5 Drive Ouptut (-)
28	DO5+	O	CH5 Drive Output (+)
29	DO4-	O	CH4 Drive Ouptut (-)
30	DO4+	O	CH4 Drive Output (+)
31	DO3-	O	CH3 Drive Ouptut (-)
32	DO3+	O	CH3 Drive Output (+)

Pin Definitions (Continued)

Pin Number	Pin Name	I/O	Pin Function Description
33	PGND1	-	Power Ground 1 (FOR CH1, CH2, CH3, CH4)
34	DO2-	O	CH2 Drive Ouptut (-)
35	DO2+	O	CH2 Drive Output (+)
36	DO1-	O	CH1 Drive Ouptut (-)
37	DO1+	O	CH1 Drive Output (+)
38	PVCC1	-	Power Supply Voltage 1 (FOR CH1, CH2, CH3, CH4)
39	PS	I	Power Save
40	OPOUT2	O	Normal OP-AMP2 output
41	OPIN2-	I	Normal OP-AMP2 Input (-)
42	OPIN2+	I	Normal OP-AMP2 Input (+)
43	VREF	I	Bias Voltage Input
44	SVCC	-	Signal \& OPAMPs Supply Voltage
45	OPOUT1	O	Normal OP-AMP1 Output
46	OPIN1-	I	Normal OP-AMP1 Input (-)
47	OPIN1+	I	Normal OP-AMP1 Input (+)
48	IN1+	I	CH1 OP-AMP Intput (+)

Internal Block Diagram

Note. Detailed circuit of the output power amp

Pref1 is almost PVCC1 / 2
Pref2 is almost PVCC2 / 2

Equivalent Circuits

Description	Pin No	Internal Circuit
$\begin{gathered} \text { BTL INPUT } \\ \& \\ \text { OP-AMP1 INPUT } \end{gathered}$	$\begin{array}{r} 1,4,7,10,13,46 \\ 3,6,9,12,47,48 \end{array}$	
OP-AMP2 INPUT	41,42	
VREF	43	
$\begin{gathered} \text { BTL OP-AMP OUT } \\ \& \\ \text { OP-AMP1 OUT } \end{gathered}$	2,5,8,11,14,45	

Equivalent Circuits (Continued)

Description	Pin No	Internal Circuit
OP-AMP2 OUT	40	
MUTE12,34,5	19,20,21	
CTL	15	
TSD-M	22	

Equivalent Circuits (Continued)

Description	Pin No	Internal Circuit
PS	39	
FWD,REV	16,17	
BTL CH1,2,3,4,5 OUTPUT	$\begin{aligned} & 27,28,29,30,31 \\ & 32,34,35,36,37 \end{aligned}$	freewheeling diode
BTL CH6 OUTPUT	24,25	freewheeling diode

Absolute Maximum Ratings ($\mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Value	Unit
Maximum Supply Voltage	SVCCMAX	18	V
	PVCC1	18	V
	PVCC2	18	V
Power Dissipation	PD	$3^{\text {note }}$	W
Operating Temperature	TOPR	$-35 \sim+85$	${ }^{\circ} \mathrm{C}$
Storge Temperature	TSTG	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$
Maximum Output Current	IOMAX	1	A

Notes:

1. When mounted on $70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ PCB.
2. Power dissipation is derated with the rate of $-24 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{TA} \geq 25^{\circ} \mathrm{C}$.
3. Do not exceed PD and SOA.

Recommended Operating Conditions ($\mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Operating Supply Voltage	SVCC	4.5	-	13.2	V
	PVCC1	4.5	-	13.2	V
	PVCC2	4.5	-	13.2	V

Electrical Characteristics

$\left(S V_{C C}=5 \mathrm{~V}, \mathrm{PVCC}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{PVCC}^{2}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified $)$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Quiescent Circuit Current	ICC	Under no-load	-	30	-	mA
Power Save On Current	IPS ${ }^{\text {note1 }}$	Under no-load	-	-	1	mA
Power Save On Voltage	VPSON	Pin39 = Variation	-	-	0.5	V
Power Save Off Voltage	VPSOFF	Pin39 = Variation	2	-	-	V
Mute12 On Voltage	VMON12	Pin19 = Variation	-	-	0.5	V
Mute12 Off Voltage	VmOFF12	Pin19 = Variation	2	-	-	V
Mute34 On Voltage	VmON34	Pin20 = Variation	-	-	0.5	V
Mute34 Off Voltage	VmOFF34	Pin20 = Variation	2	-	-	V
Mute5 On Voltage	VmON5	Pin21 = Variation	-	-	0.5	V
Mute5 Off Voltage	VMOFF5	Pin21 = Variation	2	-	-	V
BTL DRIVER CIRCUIT						
Output Offset Voltage	Voo	$\mathrm{VIN}=2.5 \mathrm{~V}$	-100	-	+100	mV
Maximum Output Voltage1	Vom1	RL $=10 \Omega$, CH1,2	2.5	3.5	-	V
Maximum Output Voltage2	VOM2	$\mathrm{R}_{\mathrm{L}}=18 \Omega, \mathrm{CH} 3,4,5$	8.5	10.0	-	V
Closed-loop Voltage Gain	AVF	$\mathrm{VIN}=0.1 \mathrm{Vrms}$	16.8	18	19.2	dB
Ripple Rejection Ratio ${ }^{\text {note2 }}$	RR	VIN $=0.1 \mathrm{Vrms}, \mathrm{f}=120 \mathrm{~Hz}$	-	60	-	dB
Slew Rate ${ }^{\text {note2 }}$	SR	Square, Vout $=4 \mathrm{Vp}-\mathrm{p}$	1	2	-	$\mathrm{V} / \mu \mathrm{s}$
INPUT OPAMP CIRCUIT						
Input Offset Voltage1	VoF1	-	-10	-	+10	mV
Input Bias Current1	IB1	-	-	-	400	nA
High Level Output Voltage1	VOH1	-	4.4	4.7	-	V
Low Level Output Voltage1	VOL1	-	-	0.2	0.5	V
Output Sink Current1	ISINK1	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	1	2	-	mA
Output Source Current1	ISOU1	$R \mathrm{~L}=50 \Omega$	1	2	-	mA
Common Mode Input Range1 ${ }^{\text {note2 }}$	Vicm1	-	-0.3	-	4.0	V
Open Loop Voltage Gain1 ${ }^{\text {note2 }}$	GVO1	VIN $=-75 \mathrm{~dB}$	-	80	-	dB
Ripple Rejection Ratio1 ${ }^{\text {note2 }}$	RR1	V IN $=-20 \mathrm{~dB}, \mathrm{f}=120 \mathrm{~Hz}$	-	65	-	dB
Common Mode Rejection Ratio1 ${ }^{\text {note2 }}$	CMRR1	$\mathrm{VIN}=-20 \mathrm{~dB}$	-	80	-	dB
Slew Rate1 ${ }^{\text {note2 }}$	SR1	Square, Vout $=3 \mathrm{Vp}-\mathrm{p}$	-	1.5	-	$\mathrm{V} / \mu \mathrm{s}$

Note :

1. When the voltage at pin39 goes below 0.5 V , the power save circuit makes the main bias current sources stop operating. As a result, the whole circuits are disable. (The whole circuits mean the driver circuit, the input Op-amp circuit, and the normal Op-amp circuit.)
2. Guaranteed field.(No EDS/Final test)

Electrical Characteristics (Continued)
$\left(S V_{C C}=5 \mathrm{~V}, \mathrm{PVCC}_{C 1}=5 \mathrm{~V}, \mathrm{PVCC} 2=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified $)$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
NORMAL OP AMP CIRCUIT 1						
Input Offset Voltage2	VOF2	-	-10	-	+10	mV
Input Bias Current2	IB2	-	-	-	400	nA
High Level Output Voltage2	VOH2	-	4.4	4.7	-	V
Low Level Output Voltage2	VOL2	-	-	0.2	0.5	V
Output Sink Current2	ISINK2	$\mathrm{RL}=50 \Omega$	2	4	-	mA
Output Source Current2	ISOU2	$\mathrm{RL}=50 \Omega$	2	4	-	mA
Common Mode Input Range2*note	Vicm2	-	-0.3	-	4.0	V
Open Loop Voltage Gain2*note	GVO2	VIN $=-75 \mathrm{~dB}$	-	80	-	dB
Ripple Rejection Ratio2*note	RR2	V IN $=-20 \mathrm{~dB}, \mathrm{f}=120 \mathrm{~Hz}$	-	65	-	dB
Common Mode Rejection Ratio2*note	CMRR2	$\mathrm{VIN}=-20 \mathrm{~dB}$	-	80	-	dB
Slew Rate2*note	SR2	Square, Vout $=3 \mathrm{Vp}-\mathrm{p}$	-	1.5	-	V/ $/ \mathrm{s}$
NORMAL OP AMP CIRCUIT 2						
Input Offset Voltage3	VOF3	-	-15	-	+15	mV
Input Bias Current3	IB3	-	-	-	400	nA
High Level Output Voltage3	VOH3	-	3	3.8	-	V
Low Level Output Voltage3	VOL3	-	-	1.0	1.5	V
Output Sink Current3	ISINK3	$\mathrm{RL}_{\mathrm{L}}=50 \Omega$	10	-	-	mA
Output Source Current3	ISOU3	RL $=50 \Omega$	10	-	-	mA
Open Loop Voltage Gain3*note	GVO3	VIN $=-75 \mathrm{~dB}$	-	80	-	dB
Ripple Rejection Ratio3*note	RR3	VIN $=-20 \mathrm{~dB}, \mathrm{f}=120 \mathrm{~Hz}$	-	65	-	dB
Common Mode Rejection Ratio3*note	CMRR3	VIN $=-20 \mathrm{~dB}$	-	80	-	dB
Slew Rate3*note	SR3	Square, Vout = 3Vp-p	-	1.5	-	$\mathrm{V} / \mu \mathrm{s}$
TRAY DRIVE CIRTUIT						
Input High Level Voltage	VIH	-	2	-	-	V
Input Low Level Voltage	VIL	-	-	-	0.5	V
Output Voltage1	Vo1	$\begin{aligned} & \mathrm{PVCC} 2=11 \mathrm{~V}, \mathrm{VCTL}=3 \mathrm{~V} \\ & \mathrm{RL}=45 \Omega \end{aligned}$	-	6	-	V
Output Voltage2	Vo2	$\begin{aligned} & \mathrm{PVCC} 2=13 \mathrm{~V}, \mathrm{VCTL}=4.5 \mathrm{~V}, \\ & \mathrm{RL}=45 \Omega \end{aligned}$	-	9	-	V
Output Voltage3	Vo3	$\begin{aligned} & \mathrm{PVCC2}=11 \mathrm{~V}, \mathrm{~V} C T L=1.5 \mathrm{~V} \\ & \mathrm{RL}=10 \Omega \end{aligned}$	2.5	3	3.5	V
Output Load Regulation	$\Delta \mathrm{V}_{\mathrm{RL}}$	$\begin{aligned} & \mathrm{VCTL}=3 \mathrm{~V}, \mathrm{IL}=100 \mathrm{~mA} \rightarrow \\ & 400 \mathrm{~mA} \end{aligned}$	-	300	700	mV
Output Offset Voltage1	Voo1	$\mathrm{VIN}=5 \mathrm{~V}, 5 \mathrm{~V}$	-40	-	+40	mV
Output Offset Voltage2	VOO2	VIN $=0 \mathrm{~V}, 0 \mathrm{~V}$	-40	-	+40	mV

Note: Guaranteed field.(No EDS/Final test)

Application Information

1. Thermal Shutdown

- The TSD circuit is activated at the junction temperature of $160^{\circ} \mathrm{C}$ and deactivated at $135^{\circ} \mathrm{C}$ with the hysteresis of $25^{\circ} \mathrm{C}$. During the thermal shutdown, the TSD circuit keeps all the output driver off.

2. CH Mute Function

- When the mute pin is high, the TR Q1 is on and Q2 is off, so the bias circuit is enabled. When the mute pin is low (GND), the TR Q1 is off and Q2 is on, so the bias circuit is disabled.
- During the mute on state, all the circuit blocks except for the variable regulator remain off, and the low power quiescent state is established.
- Truth table is as follows;

Pin 19, 20, 21	Mute
High	Mute-Off
Low	Mute-On

3. Power Save Function

- When the pin39 is high, the TR Q3 becomes on and Q4 off, so the bias circuit is enabled. When the pin39 is low (GND), the TR Q3 becomes off and Q4 is on, so the bias circuit is disabled.
- During the power save on state, this function keeps all the circuit blocks off, and the low power quiescent state is established.
- Truth table is as follows;

Pin39	Power Save
High	Power Save Off
Low	Power Save On

4. TDS Monitor Function

- Pin22 is TSD monitor pin, which detects the state of the TSD block and generates the TSD-monitor signal.
- In the normal state Q5 is on, and Q6 is off. When the TSD block is activated Q5 becomes off, and thus the voltage of pin22 keeps low.
- Truth table is as follows;

TSD	Pin22
TSD Off	High
TSD On	Low

5. Focus, Tracking Actuator, Spindle, Sled Motor Drive Part

- The Vref at pin 43 is for eliminating the dc components from the input signals and can set by an exteranl circuit.
- The voltage gain from Vin to output is as follows ;

$$
\begin{aligned}
& \text { Vin }=V r e f+\Delta V \\
& D O P=V_{D}+4 \Delta V \\
& D O N=V_{D}-4 \Delta V \\
& \text { Vout }=D O P-D O N=8 \Delta V \\
& \text { Gain }=20 \log \frac{\text { Vout }}{\Delta V}=20 \log 8=18 \mathrm{~dB}
\end{aligned}
$$

- Where $\Delta \mathrm{V}$ means just ac component.
- The total input to output voltage gain is the sum of the input OP amp network gain and 18 dB .
- The output stage is the balanced transformerless (BTL) driver.
- The bias voltage Vp is expressed as ;

$$
\begin{align*}
V_{P} & =\left(P V C C 1-V_{D P}-V_{C E S A T} Q_{P}\right) \times \frac{62 k}{60 k+62 k}+V_{C E S A T} Q_{P} \\
& =\frac{P V C C 1-V_{D P}-V_{\text {CESAT }} Q_{P}}{1.97}+V_{C E S A T} Q_{P} \tag{1}
\end{align*}
$$

6. Tray, Changer, panel Motor Drive Part

- Rotational direction control

The forward and reverse rotational direction is controlled by FWD (pin16) and REV (pin17) and the input conditions are as follows;

INPUT		OUTPUT		
FWD	REV	OUT 1	OUT 2	State
H	H	Vp	Vp	Brake
H	L	H	L	Forward
L	H	L	H	Reverse
L	L	-	-	Hign impedance

- Where Vp (Power reference voltage) is approximately 3.75 V at $\mathrm{PVCC}_{\mathrm{C}} 2=8 \mathrm{~V}$ according to equation (1).
- Motor speed control (When $\mathrm{SV}_{\mathrm{CC}}=\mathrm{PV} \mathrm{CC} 2=8 \mathrm{~V}$)
- The maximum torque is obtained when the pin15(CTL) is open.
- If the voltage of the pin15 (CTL) is 0 V , the motor will not operate.
- When the control voltage (pin15) is between 0 and 3.25 V , the differential output voltage V (out1,out2) is about two times of control voltage. The output gain is 6 dB .
- When the control voltage is greater than 3.25 V , the output voltage is saturated at the 6.5 V because of the output swing limitation.

Test Circuits

Typical Application Circuits 1

[Voltage control mode]

Typical Application Circuits 2

[Differential PWM control mode]

Note:

Radiation pin is connected to the internal GND of the package.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

