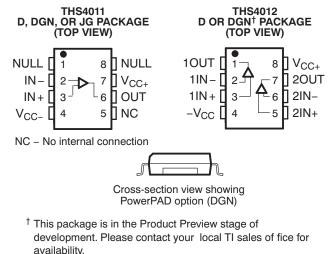
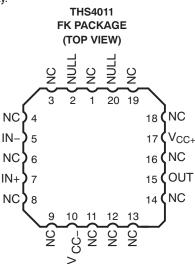


THS4011 THS4012

SLOS216E - JUNE 1999-REVISED APRIL 2010

290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS


Check for Samples: THS4011, THS4012

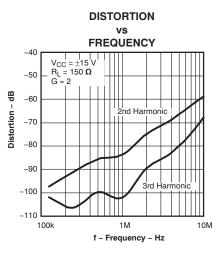

FEATURES

- High Speed
 - 290-MHz Bandwidth (G = 1, –3 dB)
 - 310-V/ms Slew Rate
 - 37-ns Settling Time (0.1%)
- Low Distortion .
 - THD = -80 dBc (f = 1 MHz, R_1 = 150 Ω)
- 110-mA Output Current Drive (Typical)
- 7.5-nV/VHz Voltage Noise
- **Excellent Video Performance**
 - 70-MHz Bandwidth (0.1 dB, G = 1)
 - 0.006% Differential Gain Error
 - 0.01° Differential Phase Error
- ±5-V to ±15-V Supply Voltage
- Available in Standard SOIC, MSOP PowerPAD™, JG, or FK Packages
- **Evaluation Module Available**

DESCRIPTION

The THS4011 and THS4012 are high-speed, single/dual, voltage feedback amplifiers ideal for a wide range of applications. The devices offer good ac performance, with 290-MHz bandwidth, 310-V/µs slew rate, and 37-ns settling time (0.1%). These amplifiers have a high output drive capability of 110 mA and draw only 7.8-mA supply current per channel. For applications requiring low distortion, the THS4011/4012 operate with a total harmonic distortion (THD) of -80 dBc at f = 1 MHz. For video applications, the THS4011/4012 offer 0.1-dB gain flatness to 70 MHz, 0.006% differential gain error, and 0.01° differential phase error.

	RELATED DEVICES								
DEVICE	DESCRIPTION								
THS4011/4012	290-MHz low-distortion high-speed amplifiers								
THS4031/4032	100-MHz low-noise high-speed-amplifiers								
THS4061/4062	180-MHz high-speed amplifiers								


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerPAD is a trademark of Texas Instruments.

THS4011 THS4012 SLOS216E – JUNE 1999–REVISED APRIL 2010

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

AVAILABLE OPTIONS

	NUMBER OF	PACKAGE	D DEVICES ⁽¹⁾	MSOP	PACKAGE	EVALUATION	
T _A	CHANNELS	PLASTIC SMALL OUTLINE ⁽²⁾ (D)	ALL PLASTIC MSOP ⁽²⁾ SYMBOL CERAMIC DIP CHIP CARRIER		CHIP CARRIER (FK)	MODULE	
0°C to	1	THS4011CD	THS4011CDGN	TIACI	—	_	THS4011EVM
70°C	70°C 2		THS4012CDGN ⁽³⁾	TIABY	—	_	THS4012EVM
-40°C to	1	THS4011ID	THS4011DGN	TIACJ	—	_	-
85°C	2	THS4012ID	THS4012IDGN ⁽³⁾	TIABZ	—	_	-
–55°C to 125°C	1	_	_	—	THS4011MJG	THS4011MFK	_

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

(2) The D and DGN packages are available taped and reeled. Add an R suffix to the device type (i.e., THS4011CDGNR).

(3) This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.

Copyright © 1999–2010, Texas Instruments Incorporated

FUNCTIONAL BLOCK DIAGRAM

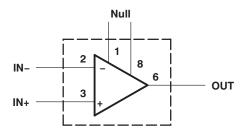


Figure 1. THS4011 – Single Channel

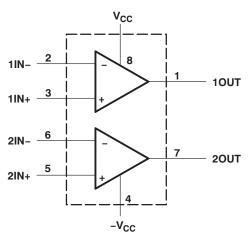


Figure 2. THS4012 – Dual Channel

TEXAS INSTRUMENTS

www.ti.com

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)

			VALUE	UNIT
V_{CC}	Supply voltage		±16.5	V
VI	Input voltage		±V _{CC}	
I _O	Output current		175	mA
V_{ID}	Differential input voltage	erential input voltage		V
	Continuous total power dissipation	See Dissipation Rating Table		
TJ	Maximum junction temperature		150	°C
		THS401xC	0 to 70	°C
T _A	Operation free-air temperature range	THS401xl	-40 to 85	°C
		THS4011M	-55 to 125	°C
T _{stg}	Storage temperature range		-65 to 150	°C

DISSIPATION RATINGS

PACKAGE	θ _{JA} (°C/W)	^θ ιc (°C/W)	T _A = 25°C POWER RATING
D	167 ⁽¹⁾	38.3	740 mW
DGN ⁽²⁾	58.4	4.7	2.14 W
JG	119	28	1050 mW
FK	87.7	20	1375 mW

(1) This data was taken using the JEDEC standard Low-K test PCB. For the JEDEC-proposed High-K test PCB, the θ_{JA} is 95°C/W with a power rating at 1.32 W at $T_A = 25^{\circ}C$.

(2) This data was taken using 2-oz trace and copper pad that is soldered directly to a 3-in × 3-in PC. For further information, refer to the Application Information section of this data sheet.

RECOMMENDED OPERATING CONDITIONS

			MIN	MAX	UNIT
V 6.	Split supply		±4.5	±16	V
V _{CC}	Supply voltage	Single supply	9	32	v
		C suffix	0	70	
T _A	T _A Operating free-air temperature	I suffix	-40	85	°C
		M suffix	-55	125	

ELECTRICAL CHARACTERISTICS

 V_{CC} = ±15 V, R_L = 150 $\Omega,\,T_A$ = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIO	NS ⁽¹⁾	THS4011C/I THS4012C/I	UNIT
				ТҮР	
DYNA	MIC PERFORMANCE				
	Unity agin bondwidth (2 dD)	Gain = 1	$V_{CC} = \pm 15 V$	290	MHz
	Unity-gain bandwidth (-3 dB)	Gall = 1	$V_{CC} = \pm 5 V$	270	IVIEZ
BW	Bandwidth for 0.1-dB flatness	Gain = 1	$V_{CC} = \pm 15 V$	70	MHz
DVV	Bandwidth for 0.1-dB hatness	Gain = 1	$V_{CC} = \pm 5 V$	35	IVIEZ
	Full nower bandwidth ⁽²⁾	$V_{CC} = \pm 15 \text{ V}, \text{ R}_{L} = 150 \Omega$	V _{O(PP)} = 20 V	4.9	MHz
	Full-power bandwidth ⁽²⁾	$V_{CC} = \pm 5 \text{ V}, \text{ R}_{L} = 150 \Omega$	V _{O(PP)} = 5 V	16	MHz
SR	Slow roto		$V_{CC} = \pm 15 V$	310	Mag
SK	R Slew rate	Gain = −1, R _L = 150 Ω	$V_{CC} = \pm 5 V$	260	V/μs
	Sottling time to 0.19/	$V_1 = -2.5$ V to 2.5 V, Gain = -12	$V_{CC} = \pm 15 V$	37	
	Settling time to 0.1%	$v_1 = -2.5 v \text{ to } 2.5 v \text{, Gall} = -12$	$V_{CC} = \pm 5 V$	35	ns
t _s			$V_{CC} = \pm 15 V$	90	
	Settling time to 0.01%	$V_1 = -2.5$ V to 2.5 V, Gain = -12	$V_{CC} = \pm 5 V$	70	ns
NOIS	E/DISTORTION PERFORMANCE				
THD	Total harmonic distortion	$V_{CC} = \pm 15 V$, $f_c = 1 MHz$,	$V_{O(PP)} = 2 V$	-80	dBc
Vn	Input voltage noise	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V},$	f = 10 kHz	7.5	nV/√Hz
l _n	Input current noise	$V_{CC} = \pm 5 V \text{ or } \pm 15 V,$	f = 10 kHz	1	pA/√Hz
	Differential gain error		$V_{CC} = \pm 15 V$	0.01%	
	Differential gain error	. Gain = 2, R _L = 150 Ω, NTSC	$V_{CC} = \pm 5 V$	0.01%	
	Differential alega arman		$V_{CC} = \pm 15 V$	0.01°	
	Differential phase error	. Gain = 2, R_L = 150 Ω , NTSC	$V_{CC} = \pm 5 V$	0.001°	

(1) Full range = 0° C to 70° C for the C suffix and -40° C to 85° C for the I suffix.

(2) Full-power bandwidth = Slew rate/ 2π V_O(peak)

ELECTRICAL CHARACTERISTICS (Continued)

 V_{CC} = ±15 V, R_L = 150 $\Omega,$ T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ⁽¹)		HS4011C/ HS4012C/		UNIT
				MIN	TYP	MAX	
DC PEF	RFORMANCE						
		$V_{CC} = \pm 15 \text{ V}, \text{ V}_{O} = \pm 10 \text{ V}, \text{ R}_{I} = 1 \text{ k}\Omega$	$T_A = 25^{\circ}C$	10	25		
	Open loop gain	$V_{CC} = \pm 13$ V, $V_{O} = \pm 10$ V, $N_{L} = 1$ KM	$T_A = Full range$	8			V/mV
	Open loop gain	$V_{CC} = \pm 5 \text{ V}, \text{ V}_{O} = \pm 2.5 \text{ V}, \text{ R}_{L} = 250 \Omega$	$T_A = 25^{\circ}C$	7	12		V/IIIV
		$v_{CC} = \pm 3 v$; $v_0 = \pm 2.5 v$; $R_L = 250 \Omega$	$T_A = Full range$	5			
V	Innut offect veltere		$T_A = 25^{\circ}C$		1	6	m)/
V _{IO}	Input offset voltage	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$	$T_A = Full range$			8	mV
	Input offset voltage drift					15	μV/°C
	lanut bing gumant		$T_A = 25^{\circ}C$		2	6	•
I _{IB}	Input bias current	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	T _A = Full range			8	μA
			$T_A = 25^{\circ}C$		25	250	
I _{IO}	Input offset current	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$	T _A = Full range			400	nA
	Offset current drift	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$			0.3		nA/°C
INPUT (CHARACTERISTICS						
	Common-mode input voltage	$V_{CC} = \pm 15 V$		±13	±14.1		
V _{ICR}	range	$V_{CC} = \pm 5 V$		±3.8	±4.3		V
			T _A = 25°C	82	110		
		$V_{CC} = \pm 15 \text{ V}, V_{IC} = \pm 12 \text{ V}$	T _A = Full range	77			dB
CMRR	Common-mode rejection ratio		$T_A = 25^{\circ}C$	90	95		
		$V_{CC} = \pm 5 \text{ V}, V_{IC} = \pm 2.5 \text{ V}$	T _A = Full range	83			
RI	Input resistance				2		MΩ
CI	Input capacitance				1.2		pF
OUTPU	T CHARACTERISTICS						
		$V_{CC} = \pm 15 V$		±13	±13.5		
		$V_{CC} = \pm 5 V$	$R_L = 1 k\Omega$	±3.4	±3.7		
Vo	Output voltage swing	$V_{CC} = \pm 15 V,$	R _L = 250 Ω	±12	±13		V
		$V_{CC} = \pm 5 V,$	R _L = 150 Ω	±3	±3.4		
	-	$V_{CC} = \pm 15 V$		70	110		
lo	Output current	$V_{CC} = \pm 5 V$	R _L = 20 Ω	50	75		mA
los	Short-circuit output current	$V_{CC} = \pm 15 \text{ V}$			150		mA
R _O	Output resistance	Open loop			12		Ω
	RSUPPLY						
		Dual supply		±4.5		±16.5	
V _{CC}	Supply voltage	Single supply		9		33	V
			$T_A = 25^{\circ}C$		7.8	9.5	
		$V_{CC} = \pm 15 V$	$T_A = Full range$			11	
I _{CC}	Supply current (each amplifier)				6.9	8.5	mA
		$V_{CC} = \pm 5 V$	$T_A = 25^{\circ}C$ $T_A = Full range$			10	
			$T_A = 25^{\circ}C$	75	83	-	
PSRR	Power-supply rejection ratio	$V_{CC} = \pm 5 V$ to $\pm 15 V$	$T_A = 20^{\circ} \text{O}$ $T_A = \text{Full range}$	68			dB
				00			

(1) Full range = 0° C to 70° C for the C suffix and -40° C to 85° C for the I suffix.

ELECTRICAL CHARACTERISTICS (Continued)

 V_{CC} = ±15 V, R_L = 150 $\Omega,\,T_A$ = 25°C (unless otherwise noted)

			TH	IS4011M			
	PARAMETER	TEST CONDITI	UNS ()	MIN	TYP	MAX	UNIT
DYNA	MIC PERFORMANCE			÷			
	Unit-gain bandwidth	Closed loop, $R_L = 1 k\Omega$,	$V_{CC} = \pm 15 V$	160 ⁽²⁾	200		
			$V_{CC} = \pm 15 V$		70		
	Bandwidth for 0.1-dB flatness	Gain = 1	$V_{CC} = \pm 5 V$		35		
BW			$V_{CC} = \pm 2.5 V$		30		MHz
1	Early a second base that dith (3)	$V_{CC} = \pm 15 \text{ V}, \text{ R}_{L} = 150 \Omega,$	V _{O(PP)} = 20 V		2.5		
	Full-power bandwidth ⁽³⁾	$V_{CC} = \pm 5 \text{ V}, \text{ R}_{L} = 150 \Omega,$	V _{O(PP)} = 20 V		8		
SR	Slew rate	$V_{CC} = \pm 15 \text{ V}, \text{ R}_{L} = 1 \text{ k}\Omega$		300 ⁽²⁾	400		V/µs
			$V_{CC} = \pm 15 V$		37		
	Settling time to 0.1%	V _I = −2.5 to 2.5 V, Gain = −1	$V_{CC} = \pm 5 V$		35		
t _s			$V_{CC} = \pm 15 V$		90		ns
	Settling time to 0.01%	V _I = −2.5 to 2.5 V, Gain = −1	$V_{CC} = \pm 5 V$		70		
NOISE	/DISTORTION PERFORMANCE						
THD	Total harmonic distortion	$V_{CC} = \pm 15 \text{ V}, \text{ f}_{c} = 1 \text{ MHz}, \text{ V}_{O(PP)} =$	= 1 V		-80		dBc
Vn	Input voltage noise	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V},$	f = 10 kHz		7.5		nV/√Hz
l _n	Input current noise	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V},$	f = 10 kHz		1		pA/√Hz
			$V_{CC} = \pm 15 V$		0.006%		
	Differential gain error	Gain = 2, R_L = 150 Ω , NTSC	$V_{CC} = \pm 5 V$		0.001%		
			$V_{CC} = \pm 15 V$		0.01°		
	Differential phase error	Gain = 2, R_L = 150 Ω , NTSC	$V_{CC} = \pm 5 V$		0.002°		

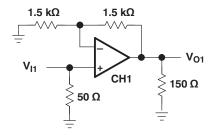
(1) Full range = -55° C to 125° C for the M suffix (2) This parameter is not tested. (3) Full-power bandwidth = Slew rate/ 2π V_O(peak)

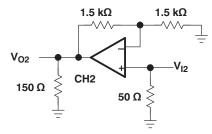
TEXAS INSTRUMENTS

www.ti.com

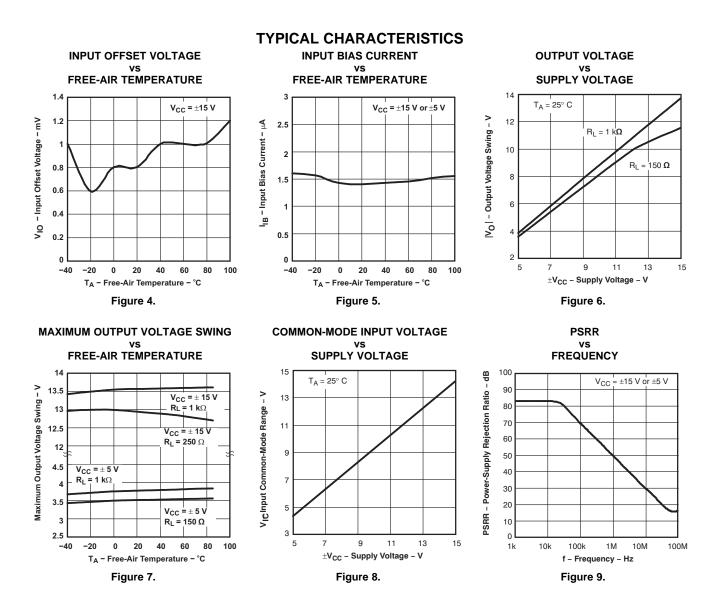
ELECTRICAL CHARACTERISTICS (Continued)

 $V_{CC} = \pm 15$ V, $R_L = 1$ k Ω , $T_A =$ full range (unless otherwise noted)

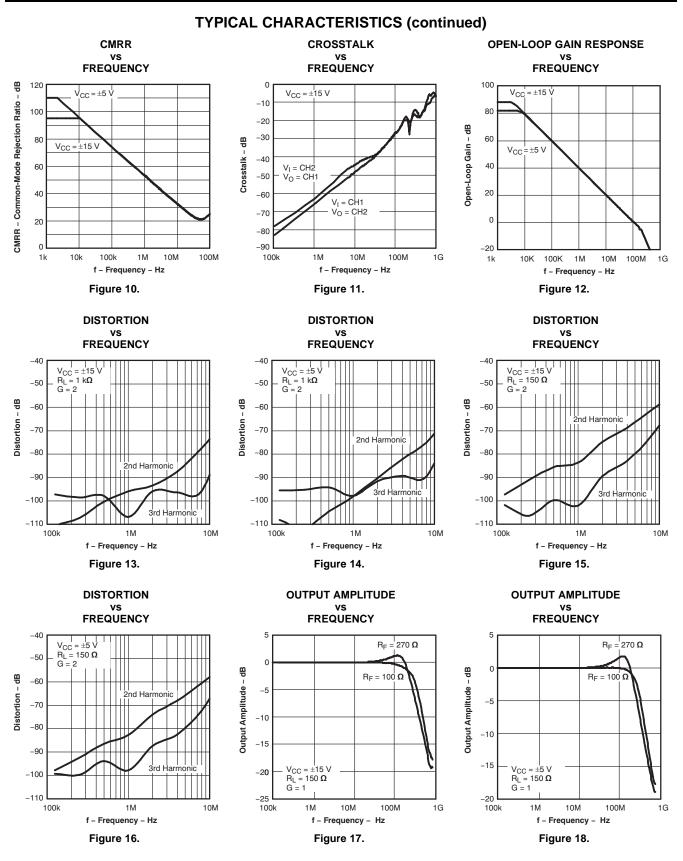

PARAMETER		TEST CONDITIONS ⁽⁷	D)	T	HS4011M		UNIT
	PARAMETER	TEST CONDITIONS.	,	MIN	TYP	MAX	UNIT
DC PER	FORMANCE						
		$V_{CC} = \pm 15 \text{ V}, \text{ V}_{O} = \pm 10 \text{ V}, \text{ R}_{L} = 1 \text{ k}\Omega$	T Full ran as	6	14		V/mV
	Open loop gain	$V_{CC} = \pm 5 \text{ V}, \text{ V}_{O} = \pm 2.5 \text{ V}, \text{ R}_{L} = 1 \text{ k}\Omega$	T _A = Full range	5	10		
V	Innut offect veltere	sage $V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$			2	6	mV
V _{IO}	Input offset voltage	$v_{CC} = \pm 5 \ v \ \text{or} \pm 15 \ v$	T _A = Full range		2	8	mv
	Input offset voltage drift	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$			15		μV/°C
	Innut hing ourrest	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	$T_A = 25^{\circ}C$		2	6	
I _{IB}	Input bias current	$v_{CC} = \pm 5$ v or ± 15 v	T _A = Full range		4	8	μA
I _{IO}	Input offset current	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$			25	250	nA
	Offset current drift	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	T _A = 25°C		0.3		nA/°C
INPUT (CHARACTERISTICS						
	Common-mode input voltage	$V_{CC} = \pm 15 V$		±13	±14.1		
VICR	range	$V_{CC} = \pm 5 V$		±3.8	±4.3		V
		$V_{CC} = \pm 15 \text{ V}, \text{ V}_{IC} = \pm 12 \text{ V}$		75	90		
CMRR	Common-mode rejection ratio	$V_{CC} = \pm 5 \text{ V}, V_{IC} = \pm 2.5 \text{ V}$		84	95		dB
RI	Input resistance				2		MΩ
CI	Input capacitance				1.2		pF
OUTPU	T CHARACTERISTICS						
		$V_{CC} = \pm 15 V$	R _L = 1 kΩ	±13	±13.5		
.,		$V_{CC} = \pm 5 V$		±3.4	±3.7		V
Vo	Output voltage swing	$V_{CC} = \pm 15 V$,	R _L = 250 Ω	±12	±13		V
		$V_{CC} = \pm 5 V,$	R _L = 150 Ω	±3	±3.4		
	2	$V_{CC} = \pm 15 V$		65	115		
lo	Output current	$V_{CC} = \pm 5 V$	$R_L = 20 \Omega$	40	75		mA
l _{os}	Short-circuit output current	$V_{CC} = \pm 15 V,$	T _A = 25°C		150		mA
R _O	Output resistance	Open loop			12		Ω
POWER	RSUPPLY						
		Dual supply		±4.5		±16.5	
V _{CC}	Supply voltage	Single supply		9		33	V
			T _A = 25°C		7.8	9.5	
	CC Quiescent current	$V_{CC} = \pm 15 V$	T _A = Full range			11	
Icc			$T_A = 25^{\circ}C$		6.9	8.5	mA
		$V_{CC} = \pm 5 V$	$T_A = Full range$			10	
			$T_A = 25^{\circ}C$	80	86	-	
PSRR	Power-supply rejection ratio	$V_{CC} = \pm 5 V$ to $\pm 15 V$	$T_A = Full range$	78	83		dB

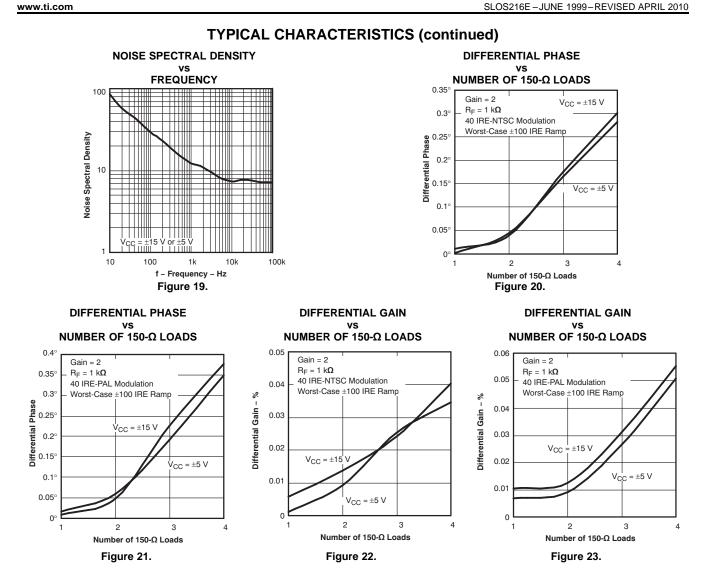

(1) Full range = 0° C to 70° C for the C suffix and -40° C to 85° C for the I suffix.

Copyright © 1999–2010, Texas Instruments Incorporated



PARAMETER MEASUREMENT INFORMATION

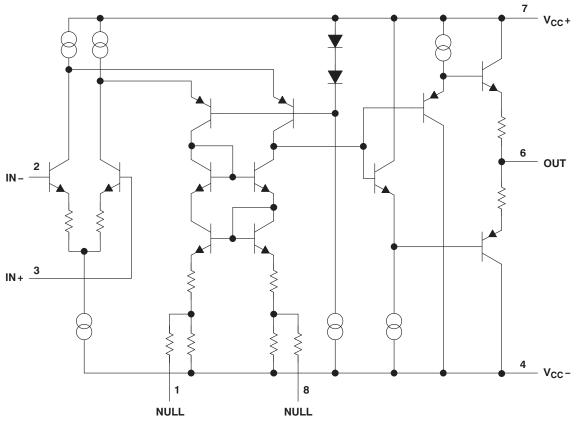




Copyright © 1999-2010, Texas Instruments Incorporated

Copyright © 1999–2010, Texas Instruments Incorporated

Texas


INSTRUMENTS

APPLICATION INFORMATION

THEORY OF OPERATION

The THS401x is a high-speed, operational amplifier configured in a voltage feedback architecture. It is built using a 30-V, dielectrically isolated, complementary bipolar process, with NPN and PNP transistors possessing f_Ts of several GHz. This results in an exceptionally high-performance amplifier that has a wide bandwidth, high slew rate, fast settling time, and low distortion. A simplified schematic is shown in Figure 24.

Pin numbers are for the D, DGN, and JG packages.

Figure 24. THS4011/4012 Simplified Schematic

Noise Calculations and Noise Figure (NF)

Noise can cause errors on very small signals. This is especially true when amplifying small signals. The noise model for the THS401x is shown in Figure 25. This model includes all of the noise sources as follows:

- $e_n = Amplifier$ internal voltage noise (nV/ \sqrt{Hz})
- IN+ = Noninverting current noise (pA/\sqrt{Hz})
- IN- = Inverting current noise (pA/ \sqrt{Hz})
- e_{Rx} = Thermal voltage noise associated with each resistor (e_{Rx} = 4 kTR_x)

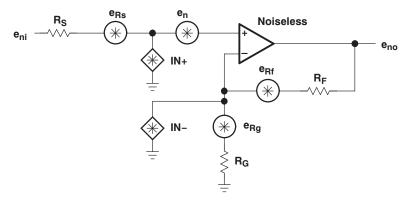


Figure 25. Noise Model

The total equivalent input noise density (e_{ni}) is calculated by using the following equation:

$$\mathbf{e}_{ni} = \sqrt{\left(\mathbf{e}_{n}\right)^{2} + \left(\mathbf{IN} + \mathbf{x}_{R}\right)^{2} + \left(\mathbf{IN} - \mathbf{x}\left(\mathbf{R}_{F} \| \mathbf{R}_{G}\right)\right)^{2} + 4 \, \mathbf{kTR}_{S} + 4 \, \mathbf{kT}\left(\mathbf{R}_{F} \| \mathbf{R}_{G}\right)}$$

Where:

- k = Boltzmann's constant = 1.380658×10^{-23}
- T = Temperature in degrees Kelvin (273 + °C)

 $R_F \parallel R_G$ = Parallel resistance of R_F and R_G

To get the equivalent output noise density of the amplifier, multiply the equivalent input noise density (e_{ni}) by the overall amplifier gain (A_V) :

$$e_{no} = e_{ni} A_{V} = e_{ni} \left(1 + \frac{R_{F}}{R_{G}} \right)$$
 (noninverting case)

As the previous equations show, to keep noise at a minimum, small-value resistors should be used. As the closed-loop gain is increased (by reducing R_G), the input noise is reduced considerably because of the parallel resistance term. This leads to the general conclusion that the most dominant noise sources are the source resistor (R_S) and the internal amplifier noise voltage (e_n). Because noise is summed in a root-mean-squares method, noise sources smaller than 25% of the largest noise source can be effectively ignored. This can greatly simplify the formula and make noise calculations much easier to calculate.

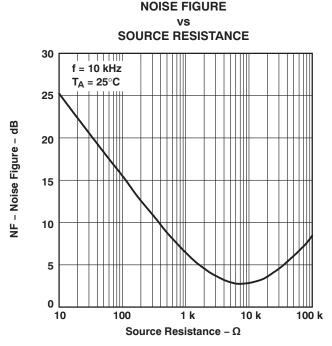
For more information on noise analysis, refer to the *Noise Analysis* section in the *Operational Amplifier Circuits Applications Report* (SLVA043).

This brings up another noise measurement usually preferred in RF applications — the noise figure (NF). NF is a measure of noise degradation caused by the amplifier. The value of the source resistance must be defined and is typically 50 Ω in RF applications.

$$NF = 10 \log \left[\frac{e_{ni}^2}{\left(e_{Rs}\right)^2} \right]$$

Π.

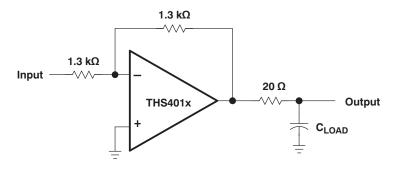
Because the dominant noise components are generally the source resistance and the internal amplifier noise voltage, approximate NF as:

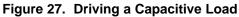

TEXAS INSTRUMENTS

www.ti.com

THS4011 THS4012 SLOS216E – JUNE 1999 – REVISED APRIL 2010

$$NF = 10log \left[1 + \frac{\left(\left(e_n \right)^2 + \left(IN + \times R_S \right)^2 \right)}{4 \text{ kTR}_S} \right]$$


Figure 26 shows the NF graph for the THS401x.



DRIVING A CAPACITIVE LOAD

Driving capacitive loads with high performance amplifiers is not a problem, as long as certain precautions are taken. The first precaution is to note that the THS401x has been internally compensated to maximize its bandwidth and slew-rate performance. When the amplifier is compensated in this manner, capacitive loading directly on the output decreases the device phase margin leading to high-frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series with the output of the amplifier, as shown in Figure 27. A minimum value of 20 Ω should work well for most applications. For example, in 75- Ω transmission systems, setting the series-resistor value to 75 Ω both isolates any capacitance loading and provides the proper line-impedance matching at the source end.

OFFSET NULLING

The THS401x has low input offset voltage for a high-speed amplifier. However, if additional correction is required, an offset nulling function has been provided on the THS4011/4012. The input offset can be adjusted by placing a potentiometer between terminals 1 and 8 of the device and tying the wiper to the negative supply (see Figure 28).

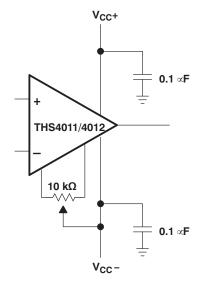


Figure 28. Offset Nulling Schematic

THS4011 THS4012 SLOS216E – JUNE 1999–REVISED APRIL 2010

OFFSET VOLTAGE

 \mathbf{R}_{G} \mathbf{R}_{F} \mathbf{V}_{OS} \mathbf{R}_{S} $\mathbf{V}_{OS} = \left(\pm V_{IO} \pm I_{IB+} R_{S}\right) \left(1 + \frac{R_{F}}{R_{G}}\right) \pm I_{IB-} R_{F}$

The output offset voltage (V_{OO}) is the sum of the input offset voltage (V_{IO}) and both input bias currents (I_{IB}) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:

Figure 29. Output Offset Voltage Model

OPTIMIZING UNITY GAIN RESPONSE

Internal frequency compensation of the THS401x was selected to provide very wideband performance, yet maintain stability when operating in a noninverting unity gain configuration. When amplifiers are compensated in this manner, there is usually peaking in the closed-loop response and some ringing in the step response for fast input edges, depending on the application. This is because a minimum phase margin is maintained for the G = +1 configuration. For optimum settling time and minimum ringing, a feedback resistor of 100 Ω should be used (see Figure 30). Additional capacitance can also be used in parallel with the feedback resistance if even finer optimization is required.

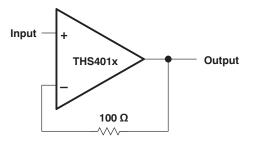


Figure 30. Noninverting Unity Gain Schematic

GENERAL CONFIGURATIONS

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 31).

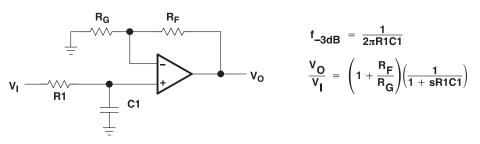


Figure 31. Single-Pole Low-Pass Filter

If even more attenuation is needed, a multiple-pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier.

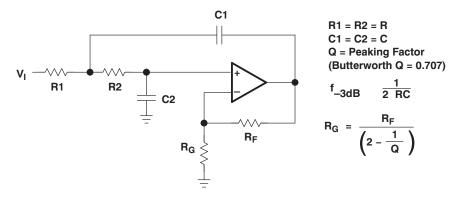


Figure 32. 2-Pole Low-Pass Sallen-Key Filter

CIRCUIT LAYOUT CONSIDERATIONS

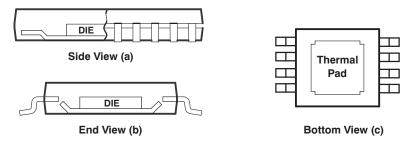
To achieve the high-frequency performance levels of the THS401x, follow proper printed circuit board (PCB) high-frequency design techniques. A general set of guidelines is given in the following paragraphs. In addition, a THS401x evaluation board is available to use as a guide for layout or for evaluating the device performance.

- Ground planes It is highly recommended that a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance.
- Proper power-supply decoupling Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-μF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-μF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 in between the device power terminals and the ceramic capacitors.
- Sockets Sockets are not recommended for high-speed operational amplifiers. The additional lead inductance in the socket pins often leads to stability problems. Surface-mount packages soldered directly to the PCB are the best implementation.
- Short trace runs/compact part placements Optimum high-frequency performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This minimizes stray capacitance at the input of the amplifier.
- Surface-mount passive components Using surface-mount passive components is recommended for high-frequency amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout, thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible.

GENERAL PowerPAD[™] DESIGN CONSIDERATIONS

The THS401x is available packaged in a thermally-enhanced DGN package, which is a member of the PowerPAD family of packages. This package is constructed using a downset leadframe upon which the die is mounted [see Figure 33(a) and Figure 33(b)]. This arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see Figure 33(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance can be achieved by providing a good thermal path away from the thermal pad.

Copyright © 1999–2010, Texas Instruments Incorporated


THS4011 THS4012 SLOS216E – JUNE 1999–REVISED APRIL 2010

www.ti.com

The PowerPAD package allows for both assembly and thermal management in one manufacturing operation. During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be soldered to a copper area underneath the package. Through the use of thermal paths within this copper area, heat can be conducted away from the package into either a ground plane or other heat-dissipating device.

The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of surface mount with the, heretofore, awkward mechanical methods of heatsinking.

NOTE: The thermal pad is electrically isolated from all terminals in the package.

Figure 33. Thermally-Enhanced DGN Package Views

Although there are many ways to properly heatsink this device, the following steps show the recommended approach:

- 1. Prepare the PCB with a top-side etch pattern as shown in Figure 34. There should be etch for the leads, as well as etch for the thermal pad.
- 2. Place five holes in the area of the thermal pad. These holes should be 13 mils in diameter. Keep them small so that solder wicking through the holes is not a problem during reflow.
- 3. Additional vias may be placed anywhere along the thermal plane outside of the thermal-pad area. This helps dissipate the heat generated by the THS401xDGN IC. These additional vias may be larger than the 13-mils diameter vias directly under the thermal pad. They can be larger because they are not in the thermal-pad area to be soldered so that wicking is not a problem.
- 4. Connect all holes to the internal ground plane.
- 5. When connecting these holes to the ground plane, **do not** use the typical web or spoke via connection methodology. Web connections have a high thermal-resistance connection that is useful for slowing the heat transfer during soldering operations. This makes the soldering of vias that have plane connections easier. In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the holes under the THS401xDGN package should make their connection to the internal ground plane with a complete connection around the entire circumference of the plated-through hole.
- 6. The top-side solder mask should leave the terminals of the package and the thermal-pad area with its five holes exposed. The bottom-side solder mask should cover the five holes of the thermal-pad area. This prevents solder from pulling away from the thermal-pad area during the reflow process.
- 7. Apply solder paste to the exposed thermal-pad area and all of the IC terminals.
- 8. With these preparatory steps in place, the THS401xDGN IC is simply placed in position and run through the solder reflow operation as any standard surface-mount component. This results in a part that is properly installed.

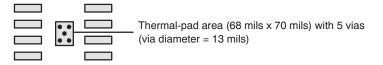
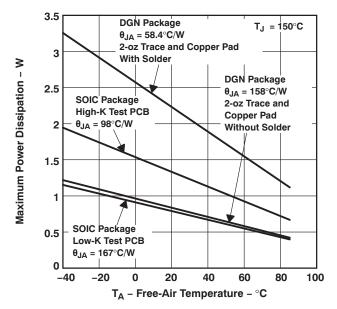


Figure 34. PowerPAD[™] PCB Etch and Via Pattern

The actual thermal performance achieved with the THS401xDGN in its PowerPAD package depends on the application. In the previous example, if the size of the internal ground plane is approximately 3 in x 3 in, the expected thermal coefficient, θ_{JA} , is approximately 58.4°C/W. For comparison, the non-PowerPAD version of the THS401x IC (SOIC) is shown. For a given θ_{JA} , the maximum power dissipation is shown in Figure 35 and is calculated by the following formula:


$$\mathsf{P}_{\mathsf{D}} = \left(\frac{\mathsf{T}_{\mathsf{MAX}} - \mathsf{T}_{\mathsf{A}}}{\theta_{\mathsf{JA}}}\right)$$

Where:

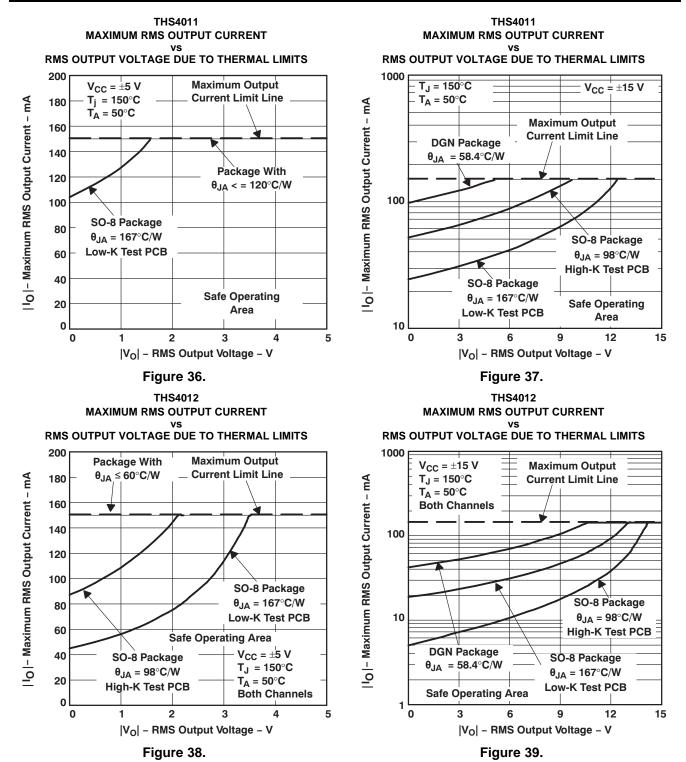
 $\begin{array}{l} \mathsf{P}_{\mathsf{D}} = \mathsf{Maximum power dissipation of THS401x IC (watts)} \\ \mathsf{T}_{\mathsf{MAX}} = \mathsf{Absolute maximum junction temperature (150°C)} \\ \mathsf{T}_{\mathsf{A}} = \mathsf{Free-ambient air temperature (°C)} \\ \theta_{\mathsf{JA}} = \theta_{\mathsf{JC}} + \theta_{\mathsf{CA}} \end{array}$

 θ_{JC} = Thermal coefficient from junction to case

 θ_{CA} = Thermal coefficient from case to ambient air (°C/W)

A. Results are with no airflow and PCB size = $3 \text{ in } \times 3 \text{ in}$

Figure 35. Maximum Power Dissipation vs Free-Air Temperature


More complete details of the PowerPAD installation process and thermal-management techniques can be found in the TI technical brief, *PowerPAD™ Thermally-Enhanced Package*. This document can be found at the TI web site (www.ti.com) by searching on the keyword PowerPAD. The document can also be ordered through your local TI sales office. Refer to literature number SLMA002 when ordering.

The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent power and output power. The designer should never forget about the quiescent heat generated within the device, especially multiple amplifier devices. Because these devices have linear output stages (Class A-B), most of the heat dissipation is at low output voltages with high output currents. Figure 36 to Figure 39 show this effect, along with the quiescent heat, with an ambient air temperature of 50°C. When using $V_{CC} = \pm 5$ V, there is generally not a heat problem, even with SOIC packages. But, when using $V_{CC} = \pm 15$ V, the SOIC package is severely limited in the amount of heat it can dissipate. The other key factor when looking at these graphs is how the devices are mounted on the PCB. The PowerPAD devices are extremely useful for heat dissipation. But, the device should always be soldered to a copper plane to fully use the heat-dissipation properties of the PowerPAD package. The SOIC package, on the other hand, is highly dependent on how it is mounted on the PCB. As more trace and copper area is placed around the device, θ_{JA} decreases and the heat dissipation capability increases. The currents and voltages shown in these graphs are for the total package. For the dual amplifier package (THS4012), the sum of the RMS output currents and voltages should be used to choose the proper package.

THS4011 THS4012 SLOS216E – JUNE <u>1999 – REVISED APRIL 2010</u>

www.ti.com

20 Submit Documentation Feedback

EVALUATION BOARD

An evaluation board is available for the THS4011 (literature number SLOP128) and THS4012 (literature number SLOP230). This board has been configured for low parasitic capacitance in order to realize the full performance of the amplifier. A schematic of the THS4011 evaluation board is shown in Figure 40. The circuitry has been designed so that the amplifier may be used in either an inverting or noninverting configuration. For more information, refer to the *THS4011 EVM User's Guide* (literature number SLOU028) or the *THS4012 EVM User's Guide* (literature number SLOU028) or the *THS4012 EVM User's Guide* (literature number SLOU028) or the *THS4012 EVM User's Guide* (literature number SLOU041) To order the evaluation board, contact your local TI sales office or distributor.

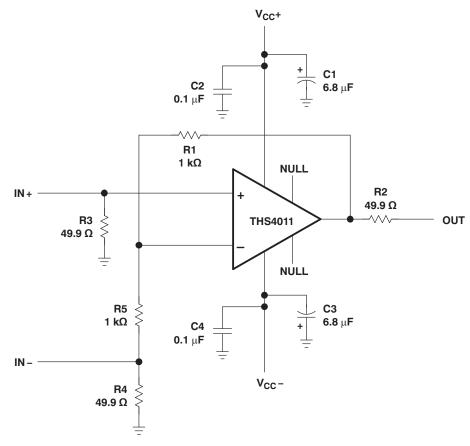


Figure 40. THS4011 Evaluation Board

Changes from Original (June 1999) to Revision A

REVISION HISTORY

Replaced the HIGH SPEED FAMILY of DEVICES table with the RELATED DEVICES table 1 Changes from Revision A (February 2000) to Revision B Page Changed Feature List item From: 0.01% Differential Gain Error To: 0.006% Differential Gain Error 1 Added THS4011M to the Abs Max table 4 Added the ELECTRICAL CHARACTERISTICS for device number THS4011M Changes from Revision B (February 2000) to Revision C Page Changes from Revision C (May 2006) to Revision D Page Changes from Revision D (June 2007) to Revision E Page

Changed Figure 5 label - From: Input Bias Current - A To: Input Bias Current - µA
 9

www.ti.com

Page

12-Aug-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
5962-9959301Q2A	(1) ACTIVE	LCCC	FK	20	1	(2) TBD	(6) POST-PLATE	⁽³⁾ N / A for Pkg Type	-55 to 125	(4/5) 5962- 9959301Q2A THS4011MFKB	Samples
5962-9959301QPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	9959301QPA THS4011M	Samples
THS4011CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	4011C	Samples
THS4011CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	4011C	Samples
THS4011CDGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	0 to 70	ACI	Samples
THS4011CDGNG4	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	0 to 70	ACI	Samples
THS4011CDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	0 to 70	ACI	Samples
THS4011CDGNRG4	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	0 to 70	ACI	Samples
THS4011CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	4011C	Samples
THS4011CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	4011C	Samples
THS4011ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	40111	Samples
THS4011IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	40111	Samples
THS4011IDGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ACJ	Samples
THS4011IDGNG4	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ACJ	Samples
THS4011IDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ACJ	Samples
THS4011IDGNRG4	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ACJ	Samples
THS4011MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962-	Samples

PACKAGE OPTION ADDENDUM

12-Aug-2017

Orderable Device	Status	Package Type	Package Drawing	Pins			Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5) 9959301Q2A THS4011MFKB	_
THS4011MJG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	THS4011MJG	Samples
THS4011MJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	9959301QPA THS4011M	Samples
THS4012CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	4012C	Samples
THS4012CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	4012C	Samples
THS4012CDGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ABY	Samples
THS4012CDGNG4	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ABY	Samples
THS4012CDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ABY	Samples
THS4012CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	4012C	Samples
THS4012ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	40121	Samples
THS4012IDGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABZ	Samples
THS4012IDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABZ	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

12-Aug-2017

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF THS4011, THS4011M :

Catalog: THS4011

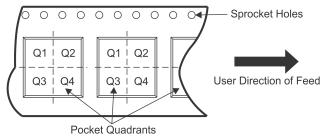
Military: THS4011M

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

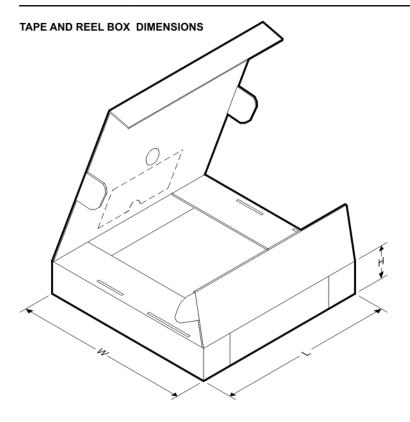

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

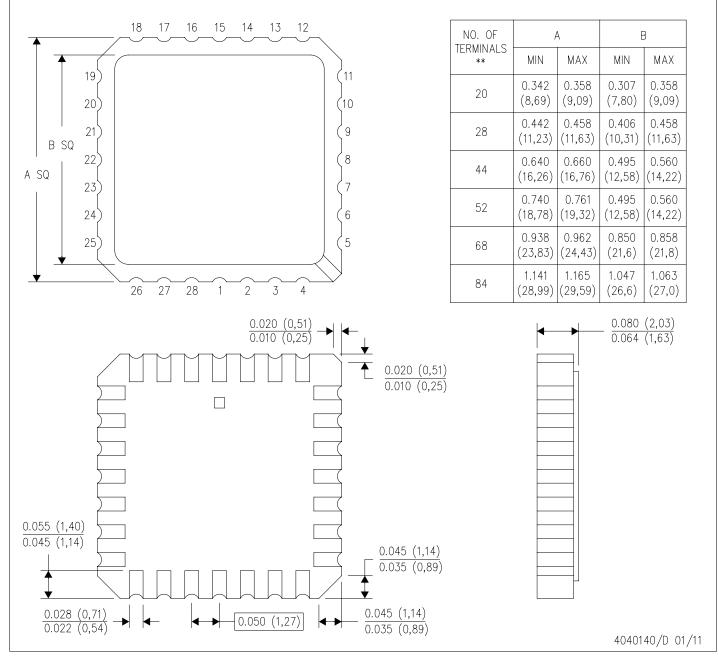

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
THS4011CDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
THS4011CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
THS4011IDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
THS4012CDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
THS4012CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
THS4012IDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

3-Aug-2017



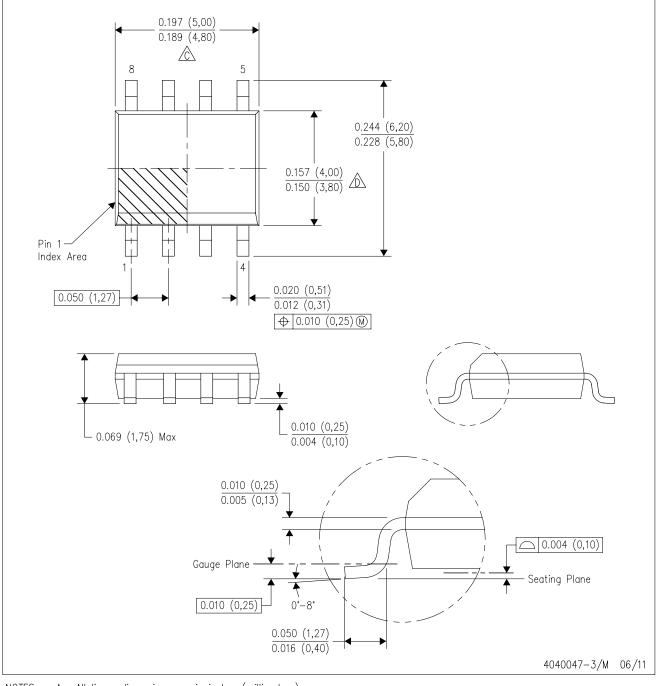
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
THS4011CDGNR	MSOP-PowerPAD	DGN	8	2500	364.0	364.0	27.0
THS4011CDR	SOIC	D	8	2500	367.0	367.0	38.0
THS4011IDGNR	MSOP-PowerPAD	DGN	8	2500	364.0	364.0	27.0
THS4012CDGNR	MSOP-PowerPAD	DGN	8	2500	358.0	335.0	35.0
THS4012CDR	SOIC	D	8	2500	367.0	367.0	38.0
THS4012IDGNR	MSOP-PowerPAD	DGN	8	2500	358.0	335.0	35.0

LEADLESS CERAMIC CHIP CARRIER

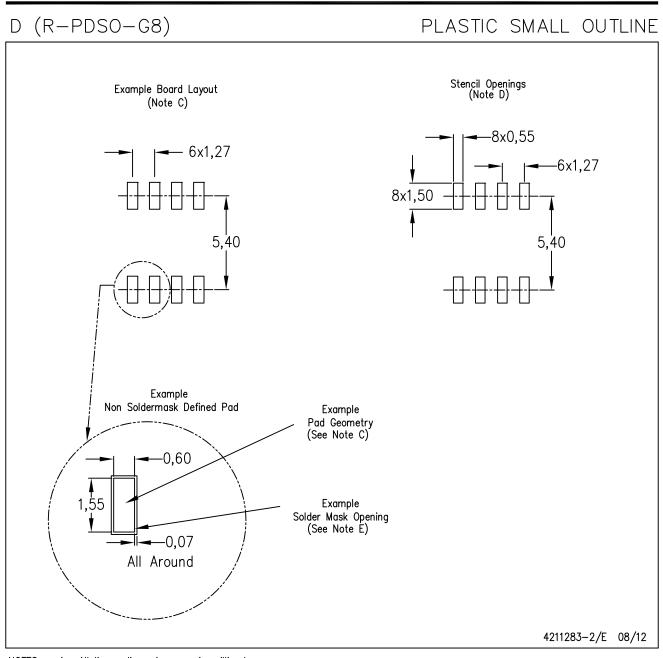
FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).


B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

D (R-PDSO-G8)

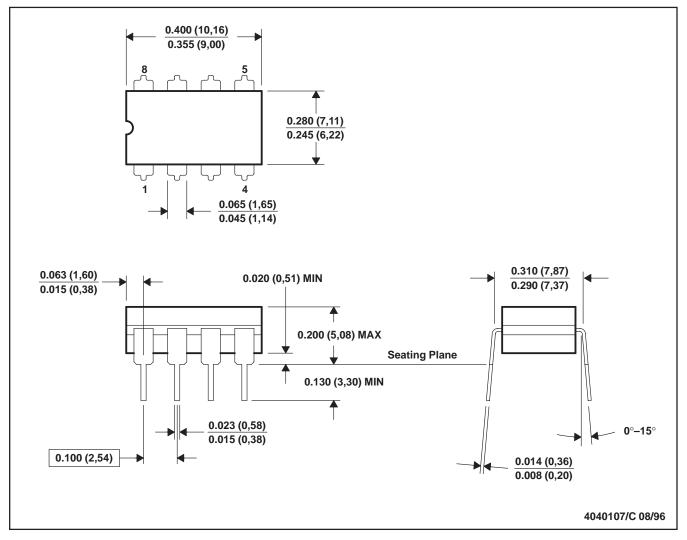

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

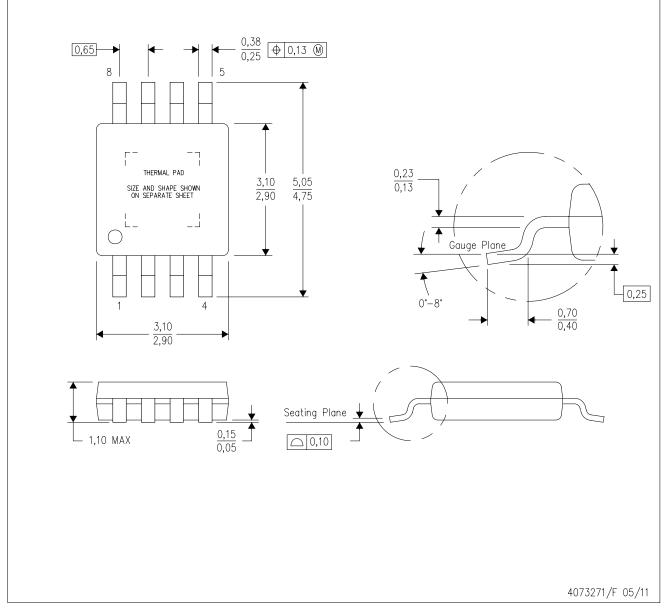
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



MECHANICAL DATA

MCER001A - JANUARY 1995 - REVISED JANUARY 1997

CERAMIC DUAL-IN-LINE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

DGN (S-PDSO-G8)

PowerPAD[™] PLASTIC SMALL OUTLINE

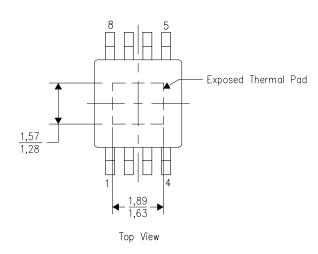
NOTES: A. All linear dimensions are in millimeters.

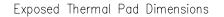
B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. F. Falls within JEDEC MO-187 variation AA-T

PowerPAD is a trademark of Texas Instruments.

DGN (S-PDSO-G8)


PowerPAD[™] PLASTIC SMALL OUTLINE

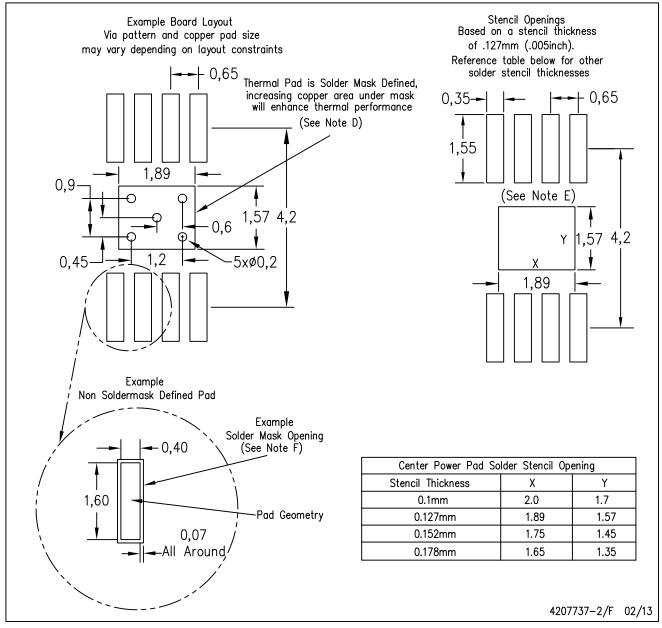

THERMAL INFORMATION

This PowerPAD M package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

4206323-2/1 12/11


NOTE: All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments

DGN (R-PDSO-G8)

PowerPAD[™] PLASTIC SMALL OUTLINE

NOTES:

- : A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
 - F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated