

Is Now Part of

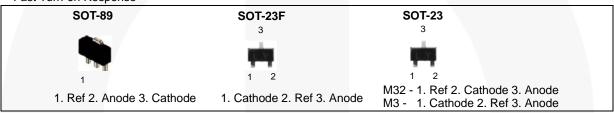
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

June 2015


LM431SA / LM431SB / LM431SC Programmable Shunt Regulator

Features

- Programmable Output Voltage to 36 V
- Low Dynamic Output Impedance: 0.2 Ω (Typical)
- Sink Current Capability: 1.0 to 100 mA
- Equivalent Full-Range Temperature Coefficient of 50 ppm/°C (Typical)
- Temperature Compensated for Operation Over Full Rated Operating Temperature Range
- Low Output Noise Voltage
- Fast Turn-on Response

Description

The LM431SA / LM431SB / LM431SC are three-terminal the output adjustable regulators with thermal stability over operating temperature range. The output voltage can be set any value between V_{REF} (approximately 2.5 V) and 36 V with two external resistors. These devices have a typical dynamic output impedance of 0.2 Ω . Active output circuit provides a sharp turn-on characteristic, making these devices excellent replacement for zener diodes in many applications.

Ordering Information

Product Number	Output Voltage Tolerance	Operating Temperature	Top Mark ⁽¹⁾	Package	Packing Method
LM431SACMFX			43A	SOT-23F 3L	
LM431SACM3X	2%		43L	SOT-23 3L	
LM431SACM32X			43G	SOT-23 3L	
LM431SBCMLX			43B	SOT-89 3L	
LM431SBCMFX	1%		43B	SOT-23F 3L	
LM431SBCM3X	1%	-25 to +85°C	43M	SOT-23 3L	Tape and Reel
LM431SBCM32X			43H	SOT-23 3L	Tape and Reel
LM431SCCMLX			43C	SOT-89 3L	
LM431SCCMFX	0.5%		43C	SOT-23F 3L	
LM431SCCM3X	0.5%		43N	SOT-23 3L	
LM431SCCM32X	1		43J	SOT-23 3L	
LM431SAIMFX	2%	-40 to +85°C	43AI	SOT-23F 3L	

Note:

1. SOT-23 and SOT-23F have basically four-character marking except LM431SAIMFX.

(3 letters for device code + 1 letter for date code)

SOT-23F date code is composed of 1 digit numeric or alphabetic week code adding bar-type year code.

> Week code: Change in every two weeks > Year code (additional bar): Rotate in three year cycle

Week	01~02	03~04	05~06	07~08	09~10	11~12	13~14	15~16	17~18	19~20	21~22	23~24	25~26
Code	1	2	3	4	5	6	7	8	9	А	D	Е	F
Week	27~28	29~30	31~32	33~34	35~36	37~38	39~40	41~42	43~44	45~46	47~48	49~50	51~52
Code	Н	J	к	L	N	0	Ρ	R	S	Т	U	V	х

Year
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018

Code

 2013

 2014

 2015

 2017

 2018

Code

 2013

 2014

 2017

 2017

 2014

</t

Block Diagram

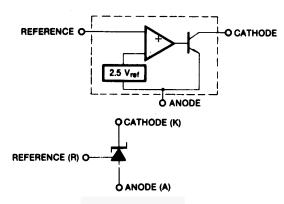


Figure 1. Block Diagram

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	F	Parameter	Value	Unit		
V _{KA}	Cathode Voltage		37	V		
I _{KA}	Cathode current Range (Co	ntinuous)	-100 to +150	mA		
I _{REF}	Reference Input Current Ra	nge	-0.05 to +10.00	mA		
		ML Suffix Package (SOT-89)	220			
$R_{ extsf{ heta}JA}$	R _{0JA} Thermal Resistance Junction-Air ^(2,3)	350	°C/W			
		M32, M3 Suffix Package (SOT-23)	400			
		ML Suffix Package (SOT-89)	560			
PD	Power Dissipation (4,5)	Dissipation ^(4,5) MF Suffix Package (SOT-23F) 350				
		M32, M3 Suffix Package (SOT-23)	310			
ТJ	Junction Temperature		150	°C		
Ŧ	Operating Temperature	All products except LM431SAIMFX	-25 to +85	°c		
T _{OPR}	Range	LM431SAIMFX	-40 to +85			
T _{STG}	Storage Temperature Range	9	-65 to +150	°C		

Notes:

- 2. Thermal resistance test board Size: 1.6 mm x 76.2 mm x 114.3 mm (1S0P) JEDEC Standard: JESD51-3, JESD51-7.
- JEDEC Standard: JESD51-3, JE
- 3. Assume no ambient airflow.
- 4. $T_{JMAX} = 150$ °C; ratings apply to ambient temperature at 25 °C.
- 5. Power dissipation calculation: $P_D = (T_J T_A) / R_{\theta JA.}$

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{KA}	Cathode Voltage	V _{REF}	36	V
I _{KA}	Cathode Current	1	100	mA

LM431SA / LM431SB / LM431SC — Programmable Shunt Regulator

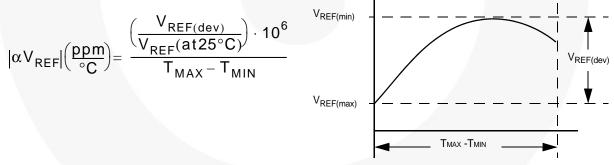
Electrical Characteristics⁽⁶⁾

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Paramatar	Conditions		Parameter Conditions LM431SA			6A	L	M431S	в	LM431SC			Unit
Symbol	Parameter			Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Sint	
V _{REF}	Reference Input Voltage	$V_{KA} = V_{REF}, I_{KA}$	= 10 mA	2.450	2.500	2.550	2.470	2.495	2.520	2.482	2.495	2.508	V	
$\Delta V_{REF} / \Delta T$	Deviation of Reference Input Voltage Over-	$V_{KA} = V_{REF},$ $I_{KA} = 10 \text{ mA}$ $T_{MIN} \le T_A \le$	SOT-89 SOT-23F		4.5	17.0		4.5	17.0		4.5	17.0	mV	
	Temperature	T_{MAX}	SOT-23		6.6	24		6.6	24		6.6	24	mV	
⊿V _{REF} /	Ratio of Change in Reference		⊿V _{KA} = 10 V-V _{REF}		-1.0	-2.7		-1.0	-2.7		-1.0	-2.7		
ΔV _{KA}	Input Voltage to the Change in Cathode Voltage	I _{KA} =10 mA	⊿V _{KA} = 36 V-10 V		-0.5	-2.0		-0.5	-2.0		-0.5	-2.0	mV/V	
I _{REF}	Reference Input Current	$I_{KA} = 10 \text{ mA},$ $R_1 = 10 \text{ K}\Omega, R_2 = \infty$			1.5	4.0		1.5	4.0		1.5	4.0	μΑ	
	Deviation of Reference	$I_{KA} = 10 \text{ mA},$ R ₁ = 10 KΩ,	SOT-89 SOT-23F		0.4	1.2		0.4	1.2		0.4	1.2	μΑ	
⊿I _{REF} / ⊿T	Input Current Over Full Temperature Range	$R_2 = \infty$, $T_A = Full$ Range	SOT-23		0.8	2.0		0.8	2.0		0.8	2.0	μΑ	
I _{KA(MIN)}	Minimum Cathode Current for Regulation	V _{KA} = V _{REF}			0.45	1.00		0.45	1.00		0.45	1.00	mA	
I _{KA(OFF)}	Off -Stage Cathode Current	V _{KA} = 36 V, V _{REF} = 0			0.05	1.00		0.05	1.00		0.05	1.00	μΑ	
Z _{KA}	Dynamic Impedance	$\label{eq:VKA} \begin{split} V_{KA} &= V_{REF}, \\ I_{KA} &= 1 \text{ to } 100 \text{ m} \\ f &\geq 1.0 \text{ kHz} \end{split}$	nA,		0.15	0.50		0.15	0.50		0.15	0.50	Ω	

Note:

6. $T_{MIN} = -25^{\circ}C$, $T_{MAX} = +85^{\circ}C$.

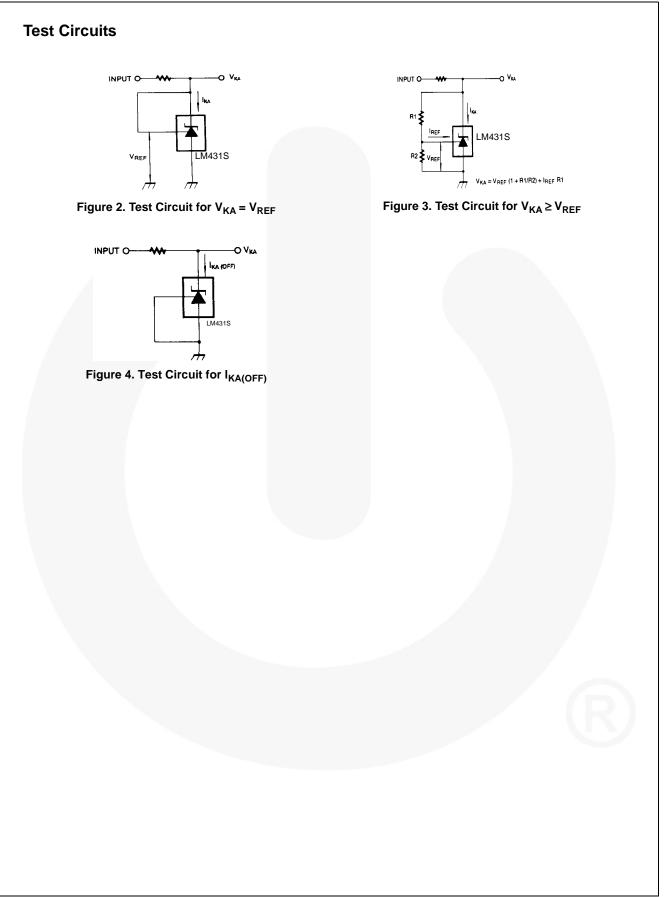

Electrical Characteristics^(7, 8) (Continued)

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions			LM431SAI		
Symbol	Farameter		Min.	Тур.	Max.	Unit	
V _{REF}	Reference Input Voltage	$V_{KA} = V_{REF}, I_{KA} =$: 10 mA	2.450	2.500	2.550	V
V _{REF(dev)}	Deviation of Reference Input Voltage Over- Temperature	$\label{eq:VKA} \begin{split} V_{KA} &= V_{REF}, \ I_{KA} = 10 \ mA, \\ T_{MIN} &\leq T_A \leq T_{MAX} \end{split}$			5	20	mV
	Ratio of Change in		$\Delta V_{KA} = 10 \text{ V} - V_{REF}$		-1.0	-2.7	
$\Delta V_{REF} / \Delta V_{KA}$	Reference Input Voltage to Change in Cathode Voltage	I _{KA} = 10 mA	⊿V _{KA} = 36 V - 10 V		-0.5	-2.0	mV/V
I _{REF}	Reference Input Current	I _{KA} = 10 mA, R ₁ =	I_{KA} = 10 mA, R ₁ =10 KΩ, R ₂ = ∞		1.5	4.0	μΑ
I _{REF(dev)}	Deviation of Reference Input Current Over Full Temperature Range	$\begin{split} I_{KA} &= 10 \text{ mA}, \text{R}_1 = 10 \text{K} \Omega, \text{R}_2 = \infty, \\ T_{MIN} &\leq T_A \leq T_{MAX} \end{split}$			0.8	2.0	μΑ
I _{KA(MIN)}	Minimum Cathode Current for Regulation	V _{KA} = V _{REF}			0.45	1.00	mA
I _{KA(OFF)}	Off -Stage Cathode Current	V _{KA} = 36 V, V _{REF} = 0			0.05	1.00	μΑ
Z _{KA}	Dynamic Impedance	V _{KA} = V _{REF} , I _{KA} = f ≥ 1.0 kHz	= 1 to 100 mA,		0.15	0.50	Ω

Notes:

- 7. $T_{MIN} = -40^{\circ}C$, $T_{MAX} = +85^{\circ}C$.
- The deviation parameters V_{REF(dev)} and I_{REF(dev)} are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV_{REF}, is defined as:



where T_{MAX} -T_{MIN} is the rated operating free-air temperature range of the device. αV_{REF} can be positive or negative, depending on whether minimum V_{REF} or maximum V_{REF}, respectively, occurs at the lower temperature.

Example: $V_{REF(dev)}$ = 4.5 mV, V_{REF} = 2500 mV at 25 °C, T_{MAX} - T_{MIN} = 125 °C for LM431SAI.

$$\left|\alpha V_{\mathsf{REF}}\right| = \frac{\left(\frac{4.5\,\mathrm{mV}}{2500\,\mathrm{mV}}\right) \cdot 10^{6}}{125\,^{\circ}\mathrm{C}} = 14.4\,\mathrm{ppm/^{\circ}C}$$

Because minimum $V_{\mbox{\scriptsize REF}}$ occurs at the lower temperature, the coefficient is positive.

LM431SA / LM431SB / LM431SC — Programmable Shunt Regulator

Typical Applications

$$V_{O} = \left(1 + \frac{R_{1}}{R_{2}}\right) V_{ref}$$

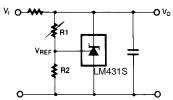


Figure 5. Shunt Regulator

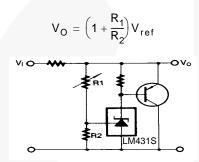


Figure 7. High Current Shunt Regulator

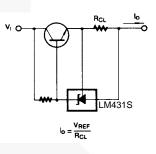


Figure 8. Current Limit or Current Source

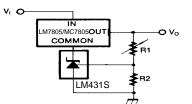


Figure 6. Output Control for Three- Terminal Fixed Regulator

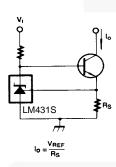
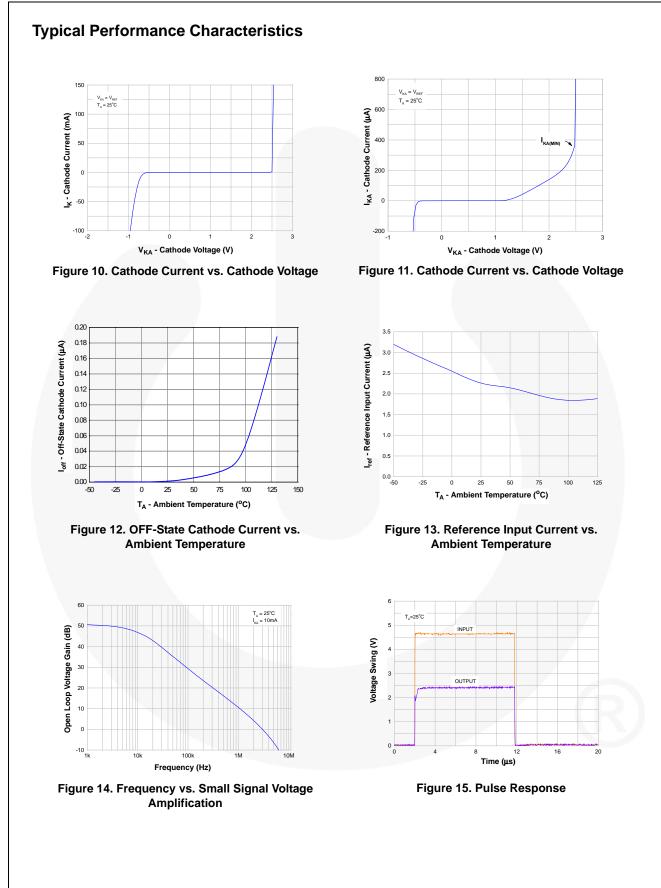
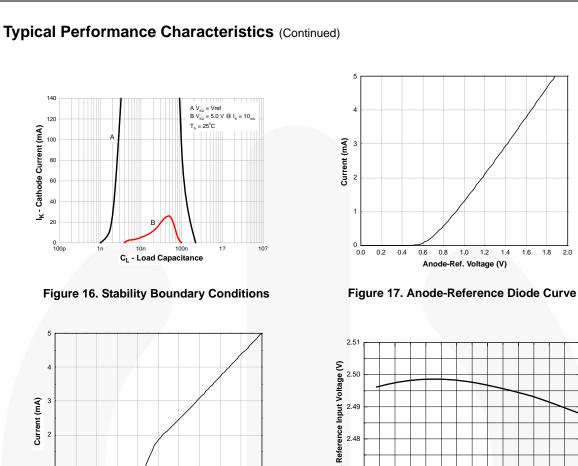




Figure 9. Constant-Current Sink

7

LM431SA / LM431SB / LM431SC — Programmable Shunt Regulator

2.48

ُلَيْ^{2.47}

2.46

-50

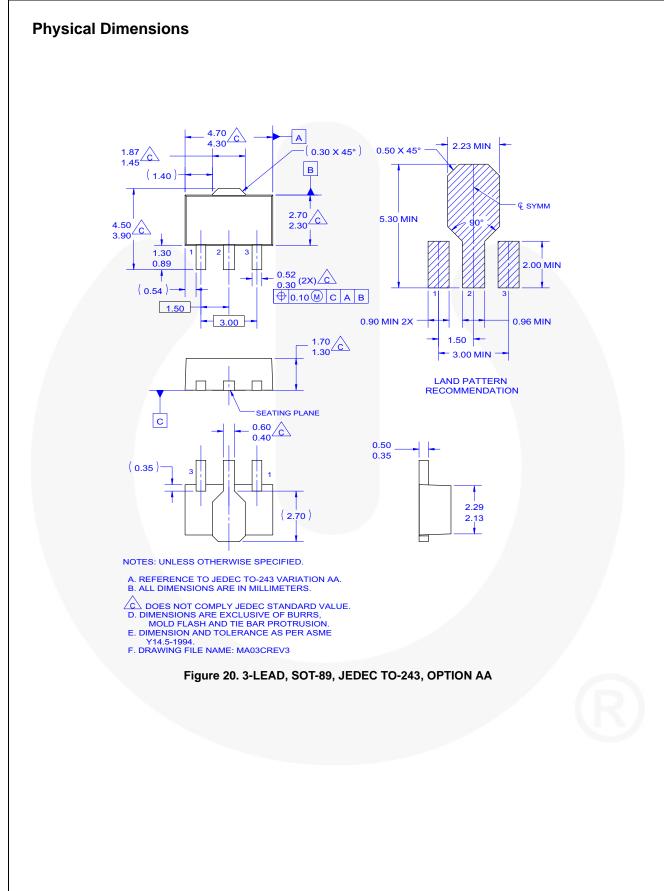
-25

0 25 50 75 T_A, Ambient Temperature (°C)

Figure 19. Reference Input Voltage vs. Ambient Temperature

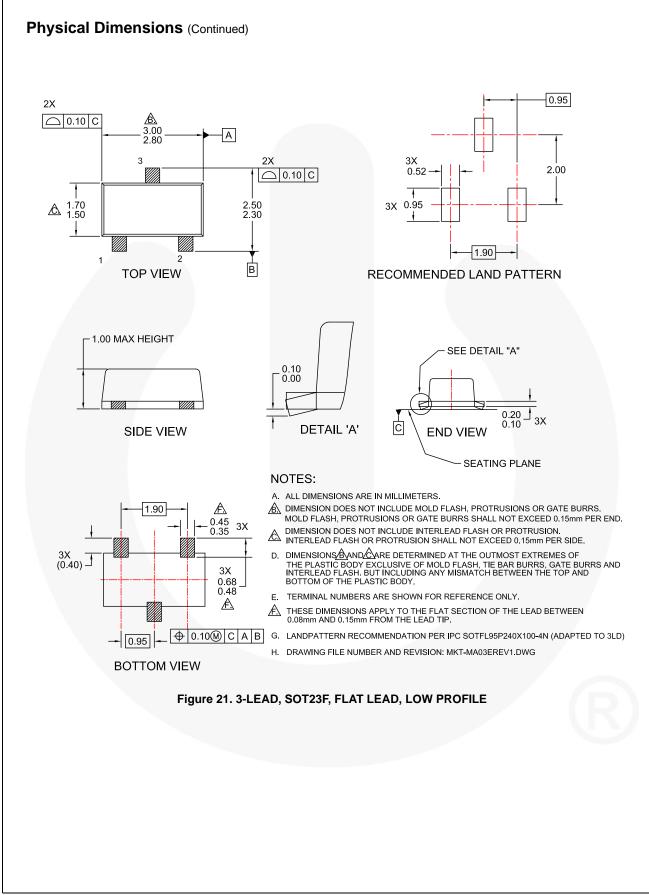
100

125


2

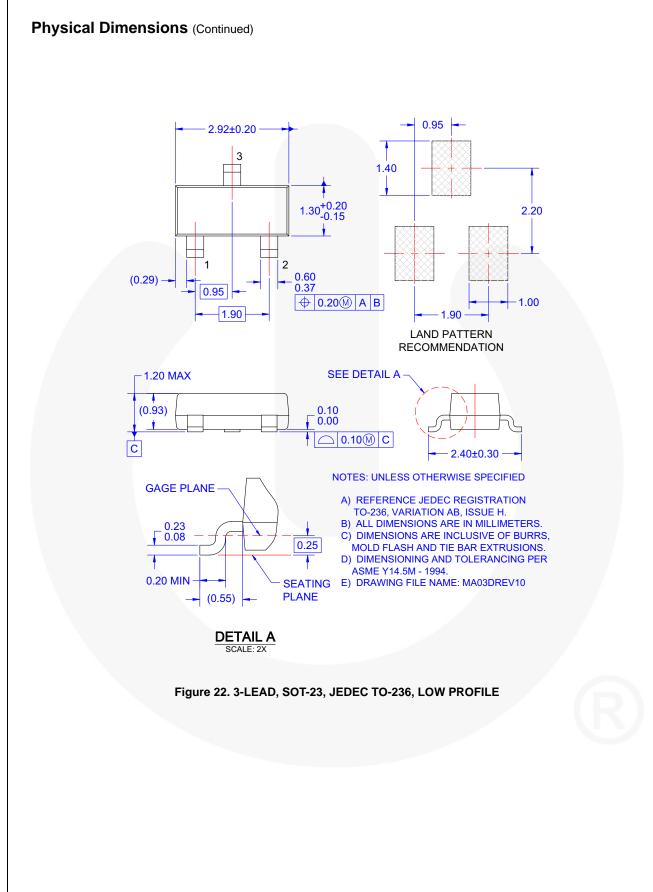
0.0

0.2 0.4 0.6 0.8 1.0 1.2


Ref.-Cathode Voltage (V) Figure 18. Reference-Cathode Diode Curve

1.4 1.6 1.8 2.0

LM431SA / LM431SB / LM431SC


— Programmable Shunt Regulator

LM431SA / LM431SB / LM431SC

I

Programmable Shunt Regulator

LM431SA / LM431SB / LM431SC

- Programmable Shunt Regulator

FAIRCHILD. TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. AccuPower™ F-PFS™ **OPTOPLANAR[®]** AttitudeEngine™ FRFET® Awinda[®] AX-CAP[®]* Global Power Resource SM ® TinyBoost[®] TinyBuck GreenBridge™ Power Supply WebDesigner™ BitSiC™ TinyCalc™ Green FPS™ PowerTrench Build it Now™ TinyLogic® Green FPS™ e-Series™ PowerXS™ CorePI US™ Gmax™ TINYOPTO™ Programmable Active Droop™ CorePOWER™ TinyPower™ GTO™ QFĔT CROSSVOLT™ TinyPWM™ IntelliMAX™ QS™ TinvWire™ CTL™ Quiet Series™ Current Transfer Logic™ TranSiC™ Making Small Speakers Sound Louder RapidConfigure™ **DEUXPEED**[®] and Better TriFault Detect™ Dual Cool™ TRUECURRENT®* MegaBuck™ Saving our world, 1mW/W/kW at a time™ **EcoSPARK[®]** MICROCOUPLER™ μSerDes™ SignalWise™ EfficientMax™ MicroFET™ SmartMax™ ESBC™ MicroPak™ SMART START™ MicroPak2™ F UHC Solutions for Your Success™ MillerDrive™ Ultra FRFET™ Fairchild® SPM[®] MotionMax™ UniFET™ Fairchild Semiconductor® STEALTH™ MotionGrid® VCX™ FACT Quiet Series™ SuperFET[®] MTi[®] VisualMax™ FACT[®] FAST[®] SuperSOT™-3 MTx® VoltagePlus™ SuperSOT™-6 MVN® XS™ FastvCore™ SuperSOT™-8 mWSaver® Xsens™ FETBench™ SupreMOS[®] OptoHiT™ 仙童™ **FPS**TM SyncFET™ **OPTOLOGIC[®]** Sync-Lock™ * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE DSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are 2. A critical component in any component of a life support, device, or intended for surgical implant into the body or (b) support or sustain system whose failure to perform can be reasonably expected to life, and (c) whose failure to perform when properly used in cause the failure of the life support device or system, or to affect its accordance with instructions for use provided in the labeling, can be safety or effectiveness. reasonably expected to result in a significant injury of the user. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full reaceability and or Authorized Distributors will standards for handling and storage and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PF	20	DUC.	T STATU	S DEFINITIONS
-	~			

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 174

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC