Stereo Audio Codec, 8- to 96-kHz, With Integrated Headphone Amplifier

Data Manual

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

> Literature Number: SGLS240C March 2004–Revised June 2012

Stereo Audio Codec, 8- to 96-kHz, With Integrated Headphone Amplifier

Check for Samples: TLV320AIC23B-Q1

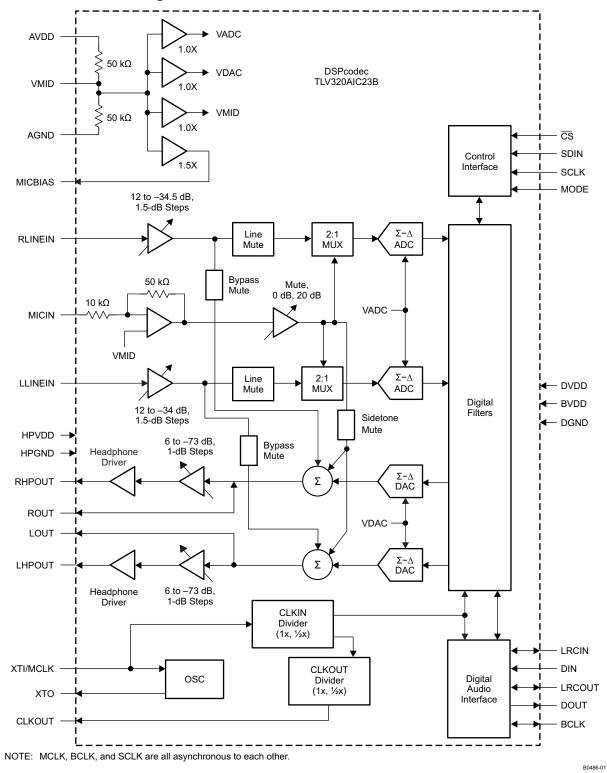
1 1 Introduction

- 1.1 Features
- Qualified for Automotive Applications
- High-Performance Stereo Codec
 - 90-dB SNR Multibit Sigma-Delta ADC (Aweighted at 48 kHz)
 - 100-dB SNR Multibit Sigma-Delta DAC (Aweighted at 48 kHz)
 - 1.42 V 3.6 V Core Digital Supply: Compatible With TI C54x DSP Core Voltages
 - 2.7 V 3.6 V Buffer and Analog Supply: Compatible Both TI C54x DSP Buffer Voltages
 - 8-kHz 96-kHz Sampling-Frequency Support
- Software Control Via TI McBSP-Compatible Multiprotocol Serial Port
 - 2-wire-Compatible and SPI-Compatible Serial-Port Protocols
 - Glueless Interface to TI McBSPs
- Audio-Data Input/Output Via TI McBSP-Compatible Programmable Audio Interface
 - I²S-Compatible Interface Requiring Only One McBSP for both ADC and DAC
 - Standard I²S, MSB, or LSB Justified-Data Transfers
 - 16/20/24/32-Bit Word Lengths
 - Audio Master/Slave Timing Capability Optimized for TI DSPs (250/272 f_s), USB mode
 - Industry-Standard Master/Slave Support Provided Also (256/384 f_s), Normal mode
 - Glueless Interface to TI McBSPs

1.2 Description

- Integrated Total Electret-Microphone Biasing and Buffering Solution
 - Low-Noise MICBIAS pin at 3/4 AVDD for Biasing of Electret Capsules
 - Integrated Buffer Amplifier With Tunable Fixed Gain of 1 to 5
 - Additional Control-Register Selectable Buffer Gain of 0 dB or 20 dB
- Stereo-Line Inputs
 - Integrated Programmable Gain Amplifier
 - Analog Bypass Path of Codec
- ADC Multiplexed Input for Stereo-Line Inputs and Microphone
- Stereo-Line Outputs
 - Analog Stereo Mixer for DAC and Analog Bypass Path
- Volume Control With Mute on Input and Output
- Highly Efficient Linear Headphone Amplifier
 - 30 mW into 32 Ω From a 3.3-V Analog Supply Voltage
- Flexible Power Management Under Total Software Control
 - 23-mW Power Consumption During Playback Mode
 - Standby Power Consumption < 150 μW
 - Power-Down Power Consumption < 15 μW
- 28-Pin TSSOP (62 mm² Total Board Area)
- Ideally Suitable for Portable Solid-State Audio Players and Recorders

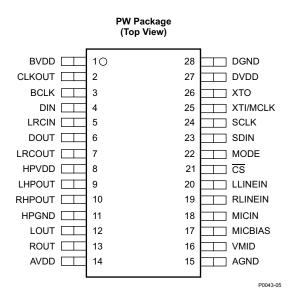
The TLV320AIC23B-Q1 is a high-performance stereo audio codec with highly integrated analog functionality. The analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) within the TLV320AIC23B-Q1 use multibit sigma-delta technology with integrated oversampling digital interpolation filters. Data-transfer word lengths of 16, 20, 24, and 32 bits, with sample rates from 8 kHz to 96 kHz, are supported. The ADC sigma-delta modulator features third-order multibit architecture with up to 90-dBA signal-to-noise ratio (SNR) at audio sampling rates up to 96 kHz, enabling high-fidelity audio recording in a compact, power-saving design. The DAC sigma-delta modulator features a second-order multibit architecture with up to 100-dBA SNR at audio sampling rates up to 96 kHz, enabling high-quality digital audio-playback capability, while consuming less than 23 mW during playback only. The TLV320AIC23B-Q1 is the ideal analog input/output (I/O) choice for portable digital audio-player and recorder applications, such as MP3 digital audio players.


SGLS240C - MARCH 2004 - REVISED JUNE 2012

Integrated analog features consist of stereo-line inputs with an analog bypass path, a stereo headphone amplifier, with analog volume control and mute, and a complete electret-microphone-capsule biasing and buffering solution. The headphone amplifier is capable of delivering 30 mW per channel into 32 Ω . The analog bypass path allows use of the stereo-line inputs and the headphone amplifier with analog volume control, while completely bypassing the codec, thus enabling further design flexibility, such as integrated FM tuners. A microphone bias-voltage output provides a low-noise current source for electret-capsule biasing. The AIC23B has an integrated adjustable microphone amplifier (gain adjustable from 1 to 5) and a programmable gain microphone amplifier (0 dB or 20 dB). The microphone signal can be mixed with the output signals if a sidetone is required.

While the TLV320AIC23B-Q1 supports the industry-standard oversampling rates of 256 f_s and 384 f_s , unique oversampling rates of 250 f_s and 272 f_s are provided, which optimize interface considerations in designs using TI C54x digital signal processors (DSPs) and universal serial bus (USB) data interfaces. A single 12-MHz crystal can supply clocking to the DSP, USB, and codec. The TLV320AIC23B-Q1 features an internal oscillator that, when connected to a 12-MHz external crystal, provides a system clock to the DSP and other peripherals at either 12 MHz or 6 MHz, using an internal clock buffer and selectable divider. Audio sample rates of 48 kHz and compact-disc (CD) standard 44.1 kHz are supported directly from a 12-MHz master clock with 250 f_s and 272 f_s oversampling rates.

Low power consumption and flexible power management allow selective shutdown of codec functions, thus extending battery life in portable applications. This design solution makes powerful portable stereo audio designs easily realizable in a cost-effective, space-saving total analog I/O solution: the TLV320AIC23B-Q1.


1.3 Functional Block Diagram

SGLS240C - MARCH 2004 - REVISED JUNE 2012

1.4 Pin Assignments

1.5 Ordering Information

T _A	PACKAGE	REEL	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	TSSOP	2000	TLV320AIC23BIPWRQ1	AIC23BIQ1

www.ti.com

1.6 Pin Functions

Table 1-1. Pin Functions

PI	N	1/0	DECODIDION
NAME	NO.	I/O	DESCRIPTION
AGND	15		Analog supply return
AVDD	14		Analog supply input. Voltage level is 3.3 V nominal.
BCLK	3	I/O	I ² S serial-bit clock. In audio master mode, the AIC23B generates this signal and sends it to the DSP. In audio slave mode, the signal is generated by the DSP.
BVDD	1		Buffer supply input. Voltage range is from 2.7 V to 3.6 V.
CLKOUT	2	0	Clock output. This is a buffered version of the XTI input and is available in 1X or 1/2X frequencies of XTI. Bit 07 in the sample rate control register controls frequency selection.
CS	21	I	Control port input latch/address select. For SPI control mode this input acts as the data latch control. For 2-wire control mode this input defines the seventh bit in the device address field. See Section 3.1 for details.
DIN	4	I	I ² S format serial data input to the sigma-delta stereo DAC
DGND	28		Digital supply return
DOUT	6	0	I ² S format serial data output from the sigma-delta stereo ADC
DVDD	27		Digital supply input. Voltage range is 1.4 V to 3.6 V.
HPGND	11		Analog headphone amplifier supply return
HPVDD	8		Analog headphone amplifier supply input. Voltage level is 3.3 V nominal.
LHPOUT	9	0	Left stereo mixer-channel amplified headphone output. Nominal 0-dB output level is 1 VRMS. Gain of -73 dB to 6 dB is provided in 1-dB steps.
LLINEIN	20	I	Left stereo-line input channel. Nominal 0-dB input level is 1 VRMS. Gain of –34.5 dB to 12 dB is provided in 1.5-dB steps.
LOUT	12	0	Left stereo mixer-channel line output. Nominal output level is 1.0 VRMS.
LRCIN	5	I/O	I ² S DAC-word clock signal. In audio master mode, the AIC23B generates this framing signal and sends it to the DSP. In audio slave mode, the signal is generated by the DSP.
LRCOUT	7	I/O	I ² S ADC-word clock signal. In audio master mode, the AIC23B generates this framing signal and sends it to the DSP. In audio slave mode, the signal is generated by the DSP.
MICBIAS	17	0	Buffered low-noise-voltage output suitable for electret-microphone-capsule biasing. Voltage level is 3/4 AVDD nominal.
MICIN	18	I	Buffered amplifier input suitable for use with electret-microphone capsules. Without external resistors a default gain of 5 is provided. See Section 2.3.1.2 for details.
MODE	22	I	Serial-interface-mode input. See Section 3.1 for details.
NC			Not Used—No internal connection
RHPOUT	10	0	Right stereo mixer-channel amplified headphone output. Nominal 0-dB output level is 1 VRMS. Gain of -73 dB to 6 dB is provided in 1-dB steps.
RLINEIN	19	I	Right stereo-line input channel. Nominal 0-dB input level is 1 VRMS. Gain of –34.5 dB to 12 dB is provided in 1.5-dB steps.
ROUT	13	0	Right stereo mixer-channel line output. Nominal output level is 1.0 VRMS.
SCLK	24	I	Control-port serial-data clock. For SPI and 2-wire control modes this is the serial-clock input. See Section 3.1 for details.
SDIN	23	I	Control-port serial-data input. For SPI and 2-wire control modes this is the serial-data input and also is used to select the control protocol after reset. See Section 3.1 for details.
VMID	16	I	Midrail voltage decoupling input. 10- μ F and 0.1- μ F capacitors should be connected in parallel to this terminal for noise filtering. Voltage level is 1/2 AVDD nominal.
XTI/MCLK	25	I	Crystal or external-clock input. Used for derivation of all internal clocks on the AIC23B.
хто	26	0	Crystal output. Connect to external crystal for applications where the AIC23B is the audio timing master. Not used in applications where external clock source is used.

www.ti.com

2 Electrical Specifications

2.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		VALUE	UNIT
Supply voltage range ⁽²⁾	AV_{DD} to AGND, DV_{DD} to DGND, BV_{DD} to DGND, HPV_{DD} to HPGND	-0.3 to 3.63	V
Analog supply return to digital supply return	AGND to DGND	-0.3 to 3 .63	V
	Digital	–0.3 to DV _{DD}	V
Input voltage range, all input signals	Analog	–0.3 to AV _{DD}	V
Case temperature for 10 seconds		240	°C
Operating free-air temperature range: Industrial, T _A		-40 to 85	°C
Storage temperature range, T _{stg}		-65 to 150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) DV_{DD} may not exceed BV_{DD} 0.3 V; BV_{DD} may not exceed AV_{DD} 0.3 V or HPV_{DD} 0.3.

2.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM	MAX	UNIT
Analog supply voltage, AV _{DD} , HPV _{DD} ⁽¹⁾	2.7	3.3	3.6	V
Digital buffer supply voltage, BV _{DD} ⁽¹⁾	2.7	3.3	3.6	V
Digital core supply voltage, DV _{DD} ⁽¹⁾	1.42	1.5	3.6	V
Analog input voltage, full scale - 0 dB (AV _{DD} = 3.3 V)		1		V _{RMS}
Stereo-line output load resistance	10			kΩ
Headphone-amplifier output load resistance	0			Ω
CLKOUT digital output load capacitance		20		pF
All other digital output load capacitance		10		pF
Stereo-line output load capacitance		50		pF
XTI master clock Input			18.43	MHz
ADC or DAC conversion rate			96	kHz
Operating free-air temperature, T _A Industrial		-40	85	°C

(1) Digital voltage values are with respect to DGND; analog voltage values are with respect to AGND.

2.3 Electrical Characteristics

over recommended operating conditions, AV_{DD} , HPV_{DD} , $BV_{DD} = 3.3$ V, $DV_{DD} = 1.5$ V, slave mode, XTI/MCLK = 256 f_s, f_s = 48 kHz (unless otherwise stated)

2.3.1 ADC

2.3.1.1 Line Input to ADC

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input signal level (0 dB)			1		V _{RMS}
Signal to point ratio A weighted 0 dD gain $(1)(2)$	f _s = 48 kHz (3.3 V)	85	90		dB
Signal-to-noise ratio, A-weighted, 0-dB gain $^{(1)(2)}$	f _s = 48 kHz (2.7 V)		90		uБ
Dynamia range Augishtad $CO dD full each input (2)$	$AV_{DD} = 3.3 V$	85	90		dB
Dynamic range, A-weighted, -60-dB full-scale input ⁽²⁾	AV _{DD} = 2.7 V		90		uБ
Total harmonic distortion 1 dB input 0 dB agin	AV _{DD} = 3.3 V		-80		dB
Total harmonic distortion, -1-dB input, 0-dB gain	AV _{DD} = 2.7 V		80		uБ
Power supply rejection ratio	1 kHz, 100 mV _{pp}		50		dB
ADC channel separation	1 kHz input tone		90		dB
Programmable gain	1 kHz input tone, $R_{SOURCE} < 50 \Omega$	-34.5		12	dB
Programmable gain step size	Monotonic		1.5		dB
Mute attenuation	0 dB, 1 kHz input tone		80		dB
	12 dB input gain	10		20	1.0
Input resistance	0 dB input gain	28	35		kΩ
Input capacitance			10		pF

(1) Ratio of output level with 1-kHz full-scale input, to the output level with the input short circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer.

(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter results in higher THD + N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values.

2.3.1.2 Microphone Input to ADC

0-dB Gain, $f_s = 8 \text{ kHz}$ (40-K Ω source impedance, see Section 1.3)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input signal level (0 dB)			1		V _{RMS}
Signal-to-noise ratio, A-weighted, 0-dB gain ⁽¹⁾⁽²⁾	AV _{DD} = 3.3 V	77	85		dB
Signal-to-hoise ratio, A-weighted, 0-dB gainted	$AV_{DD} = 2.7 V$		84		uБ
Durantia range A unighted 20 dB full acale input ⁽²⁾	AV _{DD} = 3.3 V	77	85		
Dynamic range, A-weighted, -60-dB full-scale input ⁽²⁾	AV _{DD} = 2.7 V		84		dB
Total harmonic distortion 1 dD input 0 dD acin	AV _{DD} = 3.3 V		-60		٩D
Total harmonic distortion, -1-dB input, 0-dB gain	$AV_{DD} = 2.7 V$		-60		dB
Power supply rejection ratio	1 kHz, 100 mV _{pp}		50		dB
Programmable gain boost	1 kHz input tone, R_{SOURCE} < 50 Ω		20		dB
Microphone-path gain	MICBOOST = 0, $R_{SOURCE} < 50 \Omega$		14		dB
Mute attenuation	0 dB, 1 kHz input tone	60	80		dB
Input resistance		8	14		kΩ
Input capacitance			10		pF

(1) Ratio of output level with 1-kHz full-scale input, to the output level with the input short circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer.

(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter results in higher THD + N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values.

2.3.1.3 Microphone Bias

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Bias voltage		3/4 AV _{DD} - 100 m	3/4 AV _{DD}	3/4 AV _{DD} + 100 m	V
Bias-current source				3	mA
Output noise voltage	1 kHz to 20 kHz		25		nV/√Hz

2.3.2 DAC

Line output, load = $10 \text{ k}\Omega$, 50 pF

PARAMETER	TES	TEST CONDITIONS		TYP	MAX	UNIT
0-dB full-scale output voltage (FFFFF)				1		V _{RMS}
Signal-to-noise ratio, A-weighted, 0-dB gain ⁽¹⁾⁽²⁾⁽³⁾	$AV_{DD} = 3.3 V$	$f_s = 48 kHz$	90	100		dB
	$AV_{DD} = 2.7 V$	$f_s = 48 \text{ kHz}$		100		uБ
Dynamic range, A-weighted ⁽²⁾	$AV_{DD} = 3.3 V$	AV _{DD} = 3.3 V		90		dB
bynamic range, A-weighted	$AV_{DD} = 2.7 V$			TBD		uБ
		1 kHz, 0 dB		-88	-80	٩D
Total harmonic distortion	$AV_{DD} = 3.3 V$	1 kHz, –3 dB		-92	-86	dB
		1 kHz, 0 dB		-85		dB
	$AV_{DD} = 2.7 V$	1 kHz, –3 dB		-88		uБ
Power supply rejection ratio	1 kHz, 100 mV _{pp}	·		50		dB
DAC channel separation				100		dB

(1) Ratio of output level with 1-kHz full-scale input, to the output level with the input short circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer

(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter results in higher THD + N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values.

(3) Ratio of output level with 1-kHz full-scale input, to the output level with all zeros into the digital input, measured A-weighted over a 20-Hz to 20-kHz bandwidth.

2.3.3 Analog Line Input to Line Output (Bypass)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
0-dB full-scale output voltage				1		V _{RMS}
Circulto noise ratio A weighted 0 dD $acin^{(1)}(2)$	$AV_{DD} = 3.3 V$		90	95		dB
Signal-to-noise ratio, A-weighted, 0-dB gain ⁽¹⁾⁽²⁾	$AV_{DD} = 2.7 V$	AV _{DD} = 2.7 V		95		αв
	AV _{DD} = 3.3 V	1 kHz, 0 dB		-86	-80	- dB
Total bernania distantian		1 kHz, –3 dB		-92	-86	
Total harmonic distortion	AV(0.7.)(1 kHz, 0 dB		-86		
	$AV_{DD} = 2.7 V$	1 kHz, –3 dB		-92		dB
Power supply rejection ratio	1 kHz, 100 mV _{pp}			50		dB
DAC channel separation (left to right)	1 kHz, 0 dB			80		dB

(1) Ratio of output level with 1-kHz full-scale input, to the output level with the input short circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer.

(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter results in higher THD + N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values.

Texas Instruments

www.ti.com

2.3.4 Stereo Headphone Output

PARAMETER	TES	T CONDITIONS	MIN	TYP	MAX	UNIT
0-dB full-scale output voltage				1		VRMS
Maximum dan tanan D	RL = 32 Ω			30		
Maximum output power, P _O	RL = 16 Ω	RL = 16 Ω				mW
Signal-to-noise ratio, A-weighted (1)	AV _{DD} = 3.3 V		88	97		dB
	AV _{DD} = 3.3 V, 1 kHz output	PO = 10 mW			0.1	
Total harmonic distortion		PO = 20 mW			1	%
Power supply rejection ratio	1 kHz, 100 mV _{pp}			50		dB
Programmable gain	1 kHz output		-73		6	dB
Programmable-gain step size				1		dB
Mute attenuation	1 kHz output			80		dB

(1) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter results in higher THD + N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values.

2.3.5 Analog Reference Levels

PARAMETER	MIN	TYP	MAX	UNIT
Reference voltage	AV _{DD} /2 – 50 mV		$AV_{DD}/2 + 50 \text{ mV}$	V
Divider resistance	40	50	60	kΩ

2.3.6 Digital I/O

	PARAMETER	MIN	TYP	MAX	UNIT
VIL	Input low level			$0.3 \times BV_{DD}$	V
VIH	Input high level	$0.7 \times BV_{DD}$			V
V _{OL}	Output low level			$0.1 \times BV_{DD}$	V
V _{OH}	Output high level	$0.9 \times BV_{DD}$			V

2.3.7 Supply Current

PARAMETER	TEST (MIN	TYP	MAX	UNIT	
	Record and playback (all active)		20	24	26	
	Record and playback (osc, clk, and MIC output powered down)		16	18	20	
	Line playback only		6	7.5	9	
Total supply current,	Record only		11	13.5	15	mA
No input signal I _{TOT}	Analog bypass (line in to line o	ut)	4	4.5	6	
	Power down, $DV_{DD} = 1.5 V$,	Oscillator enabled	0.8	1.5	3	
	AV_{DD} = BV_{DD} = HPV_{DD} = 3.3 V	Oscillator disabled		0.01		

2.4 Digital-Interface Timing

	PARAMETER			TYP MAX	UNIT
tw(1)	System clock pulse duration MCLK/VTL	High	18		ns
tw(2)	 System-clock pulse duration, MCLK/XTI 	Low	18		
tc(1)	1) System-clock period, MCLK/XTI		54		ns
	Duty cycle, MCLK/XTI		40/60	60/40	%
tpd(1)	tpd(1) Propagation delay, CLKOUT		0	10	ns

TLV320AIC23B-Q1

SGLS240C - MARCH 2004 - REVISED JUNE 2012

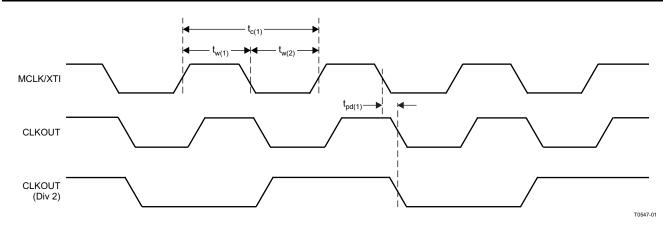


Figure 2-1. System-Clock Timing Requirements

		T		
	PARAMETER	MIN	TYP MAX	UNIT
tpd(2) Propagation delay, LRC	N/LRCOUT	0	10	ns
tpd(3) Propagation delay, DOL	Т	0	10	ns
tsu(1) Setup time, DIN		10		ns
th(1) Hold time, DIN		10		ns
BCLK			/	
	X			
	t _{pd(3)}			
	t _{su(1)}	X	X	

2.4.1 Audio Interface (Master Mode)

Figure 2-2. Master-Mode Timing Requirements

2.4.2 Audio Interface (Slave-Mode)

	PARAMETER			TYP MAX	UNIT
tw(3)	Dulas duration BCLK	High	20		
tw(4)	Pulse duration, BCLK	Low	20		ns
tc(2)	2) Clock period, BCLK		50		ns
tpd(4)	(4) Propagation delay, DOUT		0	10	ns
tsu(2)	2) Setup time, DIN		10		ns
th(2)	h(2) Hold time, DIN		10		ns
tsu(3) Setup time, LRCIN		10		ns	
th(3)	Hold time, LRCIN		10		ns

Copyright © 2004–2012, Texas Instruments Incorporated

T0548-01

ÈXAS NSTRUMENTS

SGLS240C -MARCH 2004-REVISED JUNE 2012

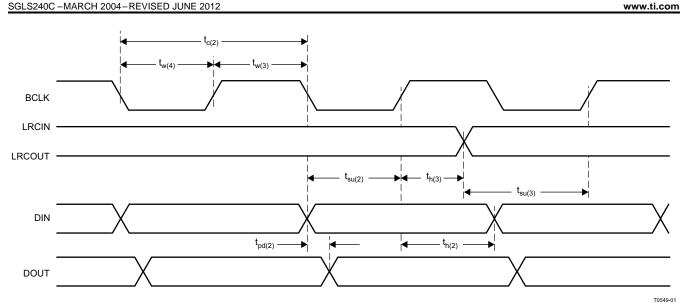


Figure 2-3. Slave-Mode Timing Requirements

2.4.3 3-Wire Control Interface (SDIN)

	PARAMETER		MIN	ТҮР	MAX	UNIT
tw(5)	Clock pulse duration SCLK	High	20			20
tw(6)	Clock pulse duration, SCLK	Low	20			ns
tc(3)	Clock period, SCLK		80			ns
tsu(4)	Clock rising edge to CS risin	g edge, SCLK	60			ns
tsu(5)) Setup time, SDIN to SCLK		20			ns
th(4)	Hold time, SCLK to SDIN		20			ns
tw(7)	Dulas duration $\frac{1}{100}$	High	20			
tw(8)	Pulse duration, CS	Low	20			ns



Figure 2-4. 3-Wire Control Interface Timing Requirements

www.ti.com

2.4.4 2-Wire Control Interface

		PARAMETER	MIN	TYP	MAX	UNIT
tw(9)	Clash sulas duration COLK	High	1.3			μs
tw(10)	 Clock pulse duration, SCLK 	Low	600			ns
f(sf)	Clock frequency, SCLK		0		400	kHz
th(5)	Hold time (start condition)		600			ns
tsu(6)	Setup time (start condition)		600			ns
th(6)	Data hold time				900	ns
tsu(7)	Data setup time		100			ns
tr	Rise time, SDIN, SCLK				300	ns
tf	Fall time, SDIN, SCLK				300	ns
tsu(8)	Setup time (stop condition)		600			ns
tsp	Pulse width of spikes suppress	ed by input filter		0	50	ns

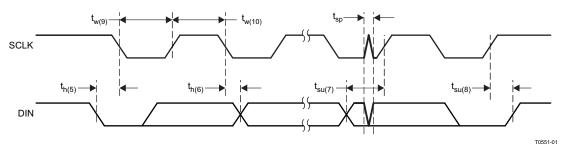


Figure 2-5. 2-Wire Control Interface Timing Requirements

TEXAS INSTRUMENTS

www.ti.com

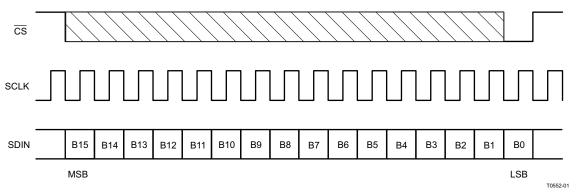
3 How to Use the TLV320AIC23B-Q1

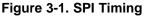
3.1 Control Interfaces

The TLV320AIC23B-Q1 has many programmable features. The control interface is used to program the registers of the device. The control interface complies with SPI (3-wire operation) and 2-wire operation specifications. The state of the MODE terminal selects the control interface type. The MODE pin must be hardwired to the required level.

MODE	INTERFACE
0	2-wire
1	SPI

3.1.1 SPI


In SPI mode, SDIN carries the serial data, SCLK is the serial clock and CS latches the data word into the TLV320AIC23B-Q1. The interface is compatible with microcontrollers and DSPs with an SPI interface.


A control word consists of 16 bits, starting with the MSB. The data bits are latched on the rising edge of SCLK. A rising edge on CS after the 16th rising clock edge latches the data word into the AIC (see Figure 3-1).

The control word is divided into two parts. The first part is the address block, the second part is the data block:

B[15:9] Control Address Bits

B[8:0] Control Data Bits

3.1.2 2-Wire

In 2-wire mode, the data transfer uses SDIN for the serial data and SCLK for the serial clock. The start condition is a falling edge on SDIN while SCLK is high. The seven bits following the start condition determine which device on the 2-wire bus receives the data. R/W determines the direction of the data transfer. The TLV320AIC23B-Q1 is a write only device and responds only if R/W is 0. The device operates only as a slave device whose address is selected by setting the state of the CS pin as follows.

CS STATE (Default = 0)	ADDRESS
0	0011010
1	0011011

The device that recognizes the address responds by pulling SDIN low during the ninth clock cycle, acknowledging the data transfer. The control follows in the next two eight-bit blocks. The stop condition after the data transfer is a rising edge on SDIN when SCLK is high (see Figure 3-2).

The 16-bit control word is divided into two parts. The first part is the address block, the second part is the data block:

B[15:9] Control Address Bits

B[8:0] Control Data Bits

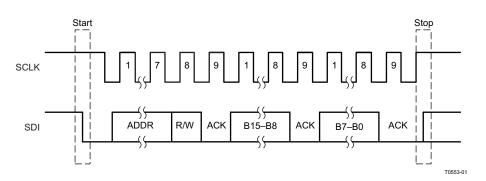


Figure 3-2. 2-Wire Compatible Timing

3.1.3 Register Map

The TLV320AIC23B-Q1 has the following set of registers, which are used to program the modes of operation. To minimize corruption and potential noise injection due to improper sequencing, program the registers while the device is powered down (Register 0x06, value 0x80). After the registers are programmed, power on the device (Register 0x06, value 0x28).

ADDRESS	REGISTER
000000	Left line input channel volume control
0000001	Right line input channel volume control
0000010	Left channel headphone volume control
0000011	Right channel headphone volume control
0000100	Analog audio path control
0000101	Digital audio path control
0000110	Power down control
0000111	Digital audio interface format
0001000	Sample rate control
0001001	Digital interface activation
0001111	Reset register

Table 3-1. Left Line Input Channel Volume Control (Address: 00000

BIT	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	LRS	LIM	Х	х	LIV4	LIV3	LIV2	LIV1	LIV0
Default	0	1	0	0	1	0	1	1	1

LRS	Left/right line simultaneous volume/mute update				
	Simultaneous update	0 = Disabled	1 = Enabled		
LIM	Left line input mute	0 = Normal	1 = Muted		
LIV[4:0]	Left line input volume control (10111 = 0 dB default)				
	11111 = 12 dB down to 00000	= -34.5 dB in 1.5-dE	3 steps		
Х	Reserved				

Copyright © 2004–2012, Texas Instruments Incorporated

SGLS240C - MARCH 2004 - REVISED JUNE 2012

RUMENTS

BIT	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	RLS	RIM	х	х	RIV4	RIV3	RIV2	RIV1	RIV0
Default	0	1	0	0	1	0	1	1	1

RLS Right/left line simultaneous volume/mute update

Simultaneous update 0 = Disabled 1 = Enabled

RIM Right line input mute 0 = Normal 1 = Muted

RIV[4:0] Right line input volume control (10111 = 0 dB default)

11111 = 12 dB down to 00000 = -34.5 dB in 1.5-dB steps

X Reserved

Table 3-3. Left Channel Headphone Volume Control (Address: 0000010)

BIT	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	LRS	LZC	LHV6	LHV5	LHV4	LHV3	LHV2	LHV1	LHV0
Default	0	1	1	1	1	1	0	0	1

LRS Left/right headphone channel simultaneous volume/mute update Simultaneous update 0 = Disabled 1 = Enabled

LZC Left channel zero-cross detect

Zero-cross detect 0 = Off 1 = On

LHV[6:0] Left Headphone volume control (1111001 = 0 dB default)

1111111 = 6 dB, 79 steps between 6 dB and −73 dB (mute), 0110000 = −73 dB (mute), anything below 0110000 does nothing − you are still muted

Table 3-4. Right Channel Headphone Volume Control (Address: 0000011)

	1		-	-				-	
BIT	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	RLS	RZC	RHV6	RHV5	RHV4	RHV3	RHV2	RHV1	RHV0
Default	0	1	1	1	1	1	0	0	1

LRS Right/left headphone channel simultaneous volume/mute update Simultaneous update 0 = Disabled 1 = Enabled

Simultaneous update 0 = RZC Right channel zero-cross detect

Zero-cross detect 0 = Off 1 = On

RHV[6:0] Right headphone volume control (1111001 = 0 dB default)

1111111 = 6 dB, 79 steps between 6 dB and -73 dB (mute), 0110000 = -73 dB (mute), any thing below 0110000 does nothing – you are still muted

SGLS240C - MARCH 2004 - REVISED JUNE 2012

BIT	D8	D7	D6		D5 [04	D3	D2	D1	D0
Function	STA2	STA1	STA0	5	STE [DAC	BYP	INSEL	MICM	MICE
Default	0	0	0	C) 1		1	0	1	0
STA[2:0] a	nd STE									
	STE	STA2	STA1	STA0	ADDED SI	DETONE				
	1	1	Х	Х	0 d	В				
	1	0	0	0	-6 d	IB				
	1	0	0	1	-9 d	IB				
	1	0	1	0	-12 (dB				
	1	0	1	1	-18 (dB				
	0	Х	Х	Х	Disab	oled				
DAC	DAC selec	t	0 = DAC of	ff	1 = DAC se	lected				
BYP	Bypass		0 = Disable	ed	1 = Enableo	ł				
INSEL	Input selec	ct for ADC	0 = Line		1 = Microph	none				
MICM	Microphon	e mute	0 = Norma	l	1 = Muted					
MICB	Microphon	e boost	0 = dB		1 = 20 dB					
Х	Reserved									

Table 3-5. Analog Audio Path Control (Address: 0000100)

Table 3-6. Digital Audio Path Control (Address: 0000101)

BIT	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	Х	Х	х	х	х	DACM	DEEMP1	DEEMP0	ADCHP
Default	0	0	0	0	0	0	1	0	0
DACM DEEMP[1:0] ADCHP X	•	is control	0 = Disabled 00 = Disabled 1 = Disabled	1 = Enabled 01 = 32 kHz 0 = Enabled	10 = 44.1 kl	Hz 11 = 48	s kHz		

BIT D	08	D7	D6	D5	D4	D3	D2	D1	D0
Function X	(OFF	CLK	OSC	OUT	DAC	ADC	MIC	LINE
Default 0		0	0	0	0	0	1	1	1
OFF Device	power	0 = On	1 = Off						
CLK Clock		0 = On	1 = Off						
OSC Oscillat	tor	0 = On	1 = Off						
OUT Outputs	S	0 = On	1 = Off						
DAC DAC		0 = On	1 = Off						
ADC ADC		0 = On	1 = Off						
MIC Microph	hone input	0 = On	1 = Off						
LINE Line inp	put	0 = On	1 = Off						
X Reserv	ved								

Table 3-7. Power Down Control (Address: 0000110)

SGLS240C - MARCH 2004 - REVISED JUNE 2012

TEXAS INSTRUMENTS

www.ti.com

Table 3-8. Digital Audio I	nterface Format	(Address:	0000111)	
----------------------------	-----------------	-----------	----------	--

BIT	D8 D7		D6	D5	D4	D3	D2	D1	D0
Function	X X		MS	LRSWAP	LRP	IWL1	IWL0	FOR1	FOR0
Default	0 0		0	0	0	0	0	0	1
MS	Maser/slave mode	0	= Slave	1 = Master					
RSWAP	DAC left/right swa	o 0	= Disabled	1 = Enabled					
LRP	DAC left/right pha	se O	= Right chan	nel on, LRCIN I	nigh				
	0 1	1	= Right chan	nel on, LRCIN I	ow				
		D	SP mode						
		1	= MSB is ava	ailable on secor	nd BCLK risin	ng edge after	LRCIN rising e	dae	
		0	= MSB is ava	ailable on first B	CLK rising e	edge after LRC	CIN rising edge		
IWL[1:0]	Input bit length	00) = 16 bit	01 = 20 bit	10 = 24 bit	11 = 32 bit	0 0		
FOR[1:0]	Data format	11	I = DSP form	nat, frame sync i	followed by t	wo data word	S		
		10	$ = I^2 S $ forma	t, MSB first, left	- 1 aligned				
		01	I = MSB first,	, left aligned	0				
		00) = MSB first,	, right aligned					
V	Deserved			5 0					

X Reserved

NOTES: 1. In master mode, the TLV320AIC23B-Q1 supplies the BCLK, LRCOUT, and LRCIN. In slave mode, BCLK, LRCOUT, and LRCIN are supplied to the TLV320AIC23B-Q1.

2. In normal mode, BCLK = MCLK/4 for all sample rates except for 88.2 kHz and 96 kHz. For 88.2 kHz and 96 kHz sample rate, BCLK = MCLK.

3. In USB mode, bit BCLK = MCLK

Table 3-9. Sample Rate Control (Address: 0001000)

BIT	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	Х	CLKOUT	CLKIN	SR3	SR2	SR1	SR0	BOSR	USB/Norma I
Default	0	0	0	1	0	0	0	0	0
CLKIN	Clock i	nput divider	0 = MCLK	1 = MC	CLK/2				
CLKOUT	Clock of	output divider	0 = MCLK	1 = MC	CLK/2				
SR[3:0]	Sampli	ng rate control	(see Section 3.3	3.2.1 and S	ection 3.3.2.2))			
BOSR	Base o	versampling rat	e						

BOSR	Base oversampling rate		
	USB mode:	$0 = 250 f_{s}$	1 = 272 f _s
	Normal mode:	0 = 256 f _s	1 = 384 f _s
USB/Normal	Clock mode select:	0 = Normal	1 = USB
Х	Reserved		

Table 3-10. Digital Interface Activation (Address: 0001001)

BIT	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	х	RES	RES	Х	Х	х	Х	Х	ACT
Default	0	0	0	0	0	0	0	0	0

ACT Activate interface 0 = Inactive 1 = Active

X Reserved

Table 3-11. Reset Register (Address: 0001111)

BIT	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	RES								
Default	0	0	0	0	0	0	0	0	0

RES Write 00000000 to this register triggers reset

3.2 Analog Interface

3.2.1 Line Inputs

The TLV320AIC23B-Q1 has line inputs for the left and the right audio channels (RLINEIN and LLINEIN). Both line inputs have independently programmable volume controls and mutes. Active and passive filters for the two channels prevent high frequencies from folding back into the audio band.

The line-input gain is logarithmically adjustable from 12 dB to -34.5 dB in 1.5-dB steps. The ADC full-scale range is 1 V_{RMS} at AV_{DD} = 3.3 V. The full-scale range tracks linearly with analog supply voltage AV_{DD}. To avoid distortions, it is important not to exceed the full-scale range.

The gain is independently programmable on both left and right line-inputs. To reduce the number of software write cycles required. Both channels can be locked to the same value by setting the RLS and LRS bits (see Section 3.1.3).

The line inputs are biased internally to VMID. When the line inputs are muted or the device is set to standby mode, the line inputs are kept biased to VMID using special antithump circuitry. This reduces audible clicks that otherwise might be heard when reactivating the inputs.

For interfacing to a CD system, the line input should be scaled to 1 V_{RMS} to avoid clipping, using the circuit shown in Figure 3-3.

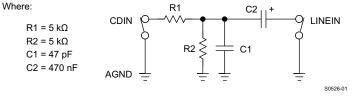


Figure 3-3. Analog Line Input Circuit

R1 and R2 divide the input signal by two, reducing the 2 V_{RMS} from the CD player to the nominal 1 V_{RMS} of the AIC23B inputs. The C1 filters high-frequency noise, and C2 removes any dc component from the signal.

3.2.2 Microphone Input

MICIN is a high-impedance, low-capacitance input that is compatible with a wide range of microphones. It has a programmable volume control and a mute function. Active and passive filters prevent high frequencies from folding back into the audio band.

The MICIN signal path has two gain stages. The first stage has a nominal gain of G1 = 50 k/10 k = 5. By adding an external resistor (R_{MIC}) in series with MICIN, the gain of the first stage can be adjusted by G1 = 50 k/(10 k + R_{MIC}). For example, R_{MIC} = 40 k gives a gain of 0 dB. The second stage has a software programmable gain of 0 dB or 20 dB (see Section 3.1.3).

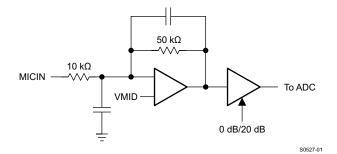


Figure 3-4. Microphone Input Circuit

How to Use the TLV320AIC23B-Q1

The microphone input is biased internally to VMID. When the line inputs are muted, the MICIN input is kept biased to VMID using special antithump circuitry. This reduces audible clicks that may otherwise be heard when reactivating the input.

The MICBIAS output provides a low-noise reference voltage suitable for biasing electret type microphones and the associated external resistor biasing network. The maximum source current capability is 3 mA. This limits the smallest value of external biasing resistors that safely can be used.

The MICBIAS output is not active in standby mode.

3.2.3 Line Outputs

The TLV320AIC23B-Q1 has two low-impedance line outputs (LLINEOUT and RLINEOUT) capable of driving line loads with $10-k\Omega$ and 50-pF impedances.

The DAC full-scale output voltage is 1 V_{RMS} at $AV_{DD} = 3.3$ V. The full-scale range tracks linearly with the analog supply voltage AV_{DD} . The DAC is connected to the line outputs via a low-pass filter that removes out-of-band components. No further external filtering is required in most applications.

The DAC outputs, line inputs, and the microphone signal are summed into the line outputs. These sources can be switched off independently. For example, in bypass mode, the line inputs are routed to the line outputs, bypassing the ADC and the DAC. If sidetone is enabled, the microphone signal is routed to both line outputs via a four-step programmable attenuation circuit.

The line outputs are muted by either muting the DAC (analog) or soft muting (digital) and disabling the bypass and sidetone paths (see Section 3.1.3).

3.2.4 Headphone Output

The TLV320AIC23B-Q1 has stereo headphone outputs (LHPOUT and RHPOUT), and is designed to drive 16- Ω or 32- Ω headphones. The headphone output includes a high-quality volume control and mute function.

The headphone volume is logarithmically adjustable from 6 dB to -73 dB in 1-dB steps. Writing 000000 to the volume-control registers (see Section 3.1.3) mutes the headphone output. When the headphone output is muted or the device is placed in standby mode, the dc voltage is maintained at the outputs to prevent audible clicks.

A zero-cross detection circuit is provided under the control of the LZC and RZC bits. If this circuit is enabled, the volume-control values are updated only when the input signal to the gain stage is close to the analog ground level.

This minimizes audible clicks as the volume is changed or the device is muted. This circuit has no timeout, so, if only dc levels are being applied to the gain stage input of more than 20 mV, the gain is not updated.

The gain is independently programmable on the left and right channels. Both channels can be locked to the same value by setting the RLS and LRS bits (see Section 3.1.3).

3.2.5 Analog Bypass Mode

The TLV320AIC23B-Q1 includes a bypass mode in which the analog line inputs are directly routed to the analog line outputs, bypassing the ADC and DAC. This is enabled by selecting the bypass bit in the analog audio path control register (see Section 3.1.3).

For a true bypass mode, the output from the DAC and the sidetone should be disabled. The line input and headphone output volume controls and mutes are still operational in bypass mode. Therefore the line inputs, DAC output, and microphone input can be summed together. The maximum signal at any point in the bypass path must be no greater than 1 V_{RMS} at $AV_{DD} = 3.3$ V to avoid clipping and distortion. This amplitude tracks linearly with AV_{DD} .

www.ti.com

3.2.6 Sidetone Insertion

The TLV320AIC23B-Q1 has a sidetone insertion made where the microphone input is routed to the line and headphone outputs. This is useful for telephony and headset applications. The attenuation of the sidetone signal may be set to $-6 \, dB$, $-9 \, dB$, $-12 \, dB$, $-15 \, dB$, or 0 dB, by software selection (see Section 3.1.3). If this mode is used to sum the microphone input with the DAC output and line inputs, care must be taken not to exceed signal level to avoid clipping and distortion.

3.3 Digital Audio Interface

3.3.1 Digital Audio-Interface Modes

The TLV320AIC23B-Q1 supports four audio-interface modes.

- Right justified
- Left justified
- I²S mode
- DSP mode

The four modes are MSB first and operate with a variable word width between 16 to 32 bits (except rightjustified mode, which does not support 32 bits).

The digital audio interface consists of clock signal BCLK, data signals DIN and DOUT, and synchronization signals LRCIN and LRCOUT. BCLK is an output in master mode and an input in slave mode.

3.3.1.1 Right-Justified Mode

In right-justified mode, the LSB is available on the rising edge of BCLK, preceding a falling edge on LRCIN or LRCOUT (see Figure 3-5).

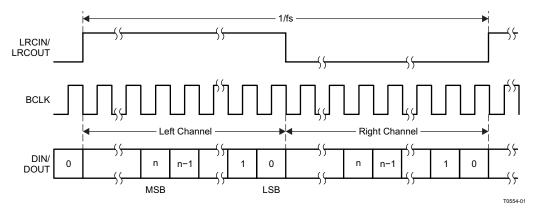


Figure 3-5. Right-Justified Mode Timing

3.3.1.2 Left-Justified Mode

In left-justified mode, the MSB is available on the rising edge of BCLK, following a rising edge on LRCIN or LRCOUT (see Figure 3-6).

Texas Instruments

SGLS240C - MARCH 2004 - REVISED JUNE 2012

www.ti.com

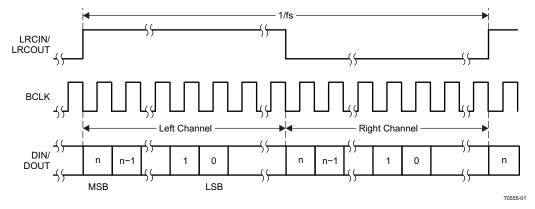


Figure 3-6. Left-Justified Mode Timing

3.3.1.3 I²S Mode

In I²S mode, the MSB is available on the second rising edge of BCLK, after the falling edge on LRCIN or LRCOUT (see Figure 3-7).

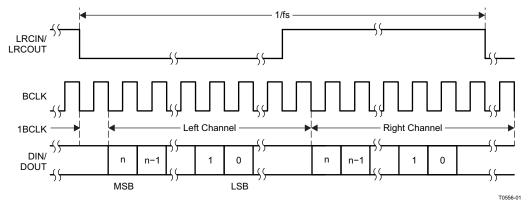
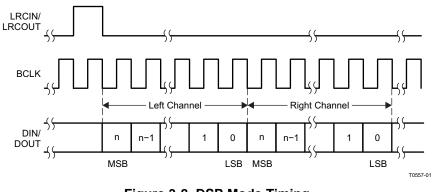



Figure 3-7. I²S Mode Timing

3.3.1.4 DSP Mode

The DSP mode is compatible with the McBSP ports of TI DSPs. LRCIN and LRCOUT must be connected to the Frame Sync signal of the McBSP. A falling edge on LRCIN or LRCOUT starts the data transfer. The left-channel data consists of the first data word, which is immediately followed by the right channel data word (see Figure 3-8). Input word length is defined by the IWL register. Figure 3-8 shows LRP = 1 (default LRP = 0).

3.3.2 Audio Sampling Rates

The TLV320AIC23B-Q1 can operate in master or slave clock mode. In the master mode, the TLV320AIC23B-Q1 clock and sampling rates are derived from a 12-MHz MCLK signal. This 12-MHz clock signal is compatible with the USB specification. The TLV320AIC23B-Q1 can be used directly in a USB system.

In the slave mode, an appropriate MCLK or crystal frequency and the sample rate control register settings control the TLV320AIC23B-Q1 clock and sampling rates.

The settings in the sample rate control register control the clock mode and sampling rates.

BIT	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	Х	CLKOUT	CLKIN	SR3	SR2	SR1	SR0	BOSR	USB/Normal
Default	0	0	0	1	0	0	0	0	0
CLKIN	Clock	input divider	0 = MCLK	1 = M0	CLK/2				
CLKOUT	Clock	Clock output divider 0 = MCLK 1 = MCLK/2							
SR[3:0]	Samp	ling rate control	(see Sections	3.3.2.1 AND	3.3.2.2)				
BOSR	Base	oversampling ra	ate						
	USB mode: $0 = 250 \text{ f}_{s}$ $1 = 272 \text{ f}_{s}$								
	Normal mode: $0 = 256 f_s$ $1 = 384 f_s$								
USB/Normal	Clock mode select: 0 = Normal 1 = USB								
x	Reser	ved							

	Table 3-12. Sam	ple Rate Control	(Address: 0001000)
--	-----------------	------------------	--------------------

The clock circuit of the AIC23B has two internal dividers. The first, controlled by CLKIN, applies to the sampling-rate generator of the codec. The second, controlled by CLKOUT, applies only to the CLKOUT terminal. By setting CLKIN to 1, the entire codec is clocked with half the frequency, effectively dividing the resulting sampling rates by two. The following sampling-rate tables are based on CLKIN = MCLK.

3.3.2.1 USB-Mode Sampling Rates (MCLK = 12 MHz)

In the USB mode, the following ADC and DAC sampling rates are available:

SAMPLIN	SAMPLING RATE ⁽¹⁾			SAMPLING-RATE CONTROL SETTINGS					
ADC (kHz)	DAC (kHz)	FILTER TYPE	SR3	SR2	SR1	SR0	BOSR		
96	96	3	0	1	1	1	0		
88.2	88.2	2	1	1	1	1	1		
48	48	0	0	0	0	0	0		
44.1	44.1	1	1	0	0	0	1		
32	32	0	0	1	1	0	0		
8.021	8.021	1	1	0	1	1	1		
8	8	0	0	0	1	1	0		
48	8	0	0	0	0	1	0		
44.1	8.021	1	1	0	0	1	1		
8	48	0	0	0	1	0	0		
8.021	44.1	1	1	0	1	0	1		

(1) The sampling rates are derived from the 12-MHz master clock. The available oversampling rates do not produce exactly 8-kHz, 44.1-kHz, and 88.2-kHz sampling rates, but 8.021 kHz, 44.117 kHz, and 88.235 kHz, respectively. See Figure 3-9 through Figure 3-26 for filter responses.

3.3.2.2 Normal-Mode Sampling Rates

In normal mode, the following ADC and DAC sampling rates, depending on the MCLK frequency, are available:

www.ti.com

Ν	ACI	K =	12	288	MHz

SAMPLI	NG RATE		SAMPLING-RATE CONTROL SETTINGS						
ADC (kHz)	DAC (kHz)	FILTER TYPE	SR3	SR2	SR1	SR0	BOSR		
96	96	2	0	1	1	1	0		
48	48	1	0	0	0	0	0		
32	32	1	0	1	1	0	0		
8	8	1	0	0	1	1	0		
48	8	1	0	0	0	1	0		
8	48	1	0	0	1	0	0		

MCLK = 11.2896 MHz

SAMPLI	SAMPLING RATE		SAMPLING-RATE CONTROL SETTINGS					
ADC (kHz)	DAC (kHz)	FILTER TYPE	SR3	SR2	SR1	SR0	BOSR	
88.2	88.2	2	1	1	1	1	0	
44.1	44.1	1	1	0	0	0	0	
8.021	8.021	1	1	0	1	1	0	
44.1	8.021	1	1	0	0	1	0	
8.021	44.1	1	1	0	1	0	0	

MCLK = 18.432 MHz

SAMPLI	SAMPLING RATE		SAMPLING-RATE CONTROL SETTINGS					
ADC (kHz)	DAC (kHz)	FILTER TYPE	SR3	SR2	SR1	SR0	BOSR	
96	96	2	0	1	1	1	1	
48	48	1	0	0	0	0	1	
32	32	1	0	1	1	0	1	
8	8	1	0	0	1	1	1	
48	8	1	0	0	0	1	1	
8	48	1	0	0	1	0	1	

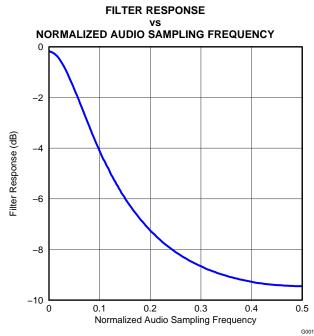
MCLK = 16.9344 MHz

SAMPLI	NG RATE	FILTER TYPE	SAMPLING-RATE CONTROL SETTINGS					
ADC (kHz)	DAC (kHz)	FILTER TTPE	SR3	SR2	SR1	SR0	BOSR	
88.2	88.2	2	1	1	1	1	1	
44.1	44.1	1	1	0	0	0	1	
8.021	8.021	1	1	0	1	1	1	
44.1	8.021	1	1	0	0	1	1	
8.021	44.1	1	1	0	1	0	1	

3.3.3 Digital Filter Characteristics

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ADC Filter Characteristics (TI DSP	250 f _s Mode Operation)				
Passband	±0.05 dB	0.416 f _s			Hz
Stopband	6 dB		0.5 f _s		Hz
Passband ripple				±0.05	dB
Stopband attenuation	f > 0.584 f _s		-60		dB
ADC Filter Characteristics (TI DSP	272 f _s and Normal Mode Operation)				
Passband	±0.05 dB	0.4535 f _s			Hz
Stopband	6 dB		0.5 f _s		Hz
Passband ripple				±0.05	dB
Stopband attenuation	f > 0.5465 f _s		-60		dB

ISTRUMENTS


XAS


www.ti.com

TLV320AIC23B-Q1

SGLS240C - MARCH 2004 - REVISED JUNE 2012

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
ADC High-Pass Filter Characteristic	:S			
Corner frequency	−3 dB, f _s = 44.1 kHz	3.7		Hz
	−3 dB, f _s = 48 kHz	4		Hz
	–0.5 dB, f _s = 44.1 kHz	10.4		Hz
	–0.5 dB, f _s = 48 kHz	11.3		Hz
	-0.1 dB f _s = 44.1 kHz	21.6		Hz
	-0.1 dB, f _s = 48 kHz	23.5		Hz
DAC Filter Characteristics (48-kHz \$	Sampling Rate)			
Passband	±0.03 dB	0.416 f _s		Hz
Stopband	-6 dB	0.5 f _s		Hz
Passband ripple			±0.03	dB
Stopband attenuation	f > 0.584 f _s	-50		dB
DAC Filter Characteristics (44.1-kHz	z Sampling Rate)	L		
Passband	±0.03 dB	0.4535 f _s		Hz
Stopband	-6 dB	0.5 f _s		Hz
Passband ripple			±0.03	dB
Stopband attenuation	f > 0.5465 f _s	-50		dB

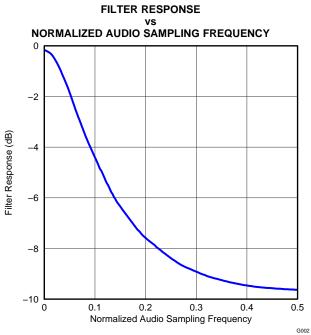


Figure 3-10. Digital De-Emphasis Filter Response – 48 kHz Sampling

SGLS240C -MARCH 2004-REVISED JUNE 2012

Texas Instruments

www.ti.com

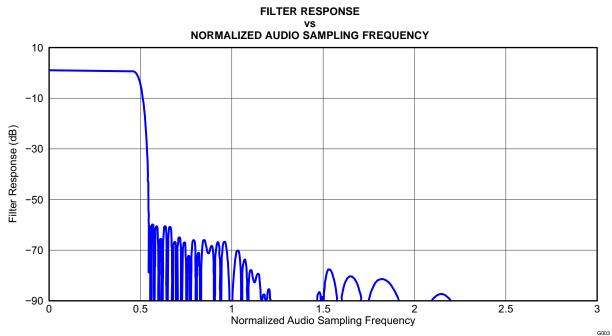


Figure 3-11. ADC Digital Filter Response 0: USB Mode (Group Delay = 12 Output Samples)

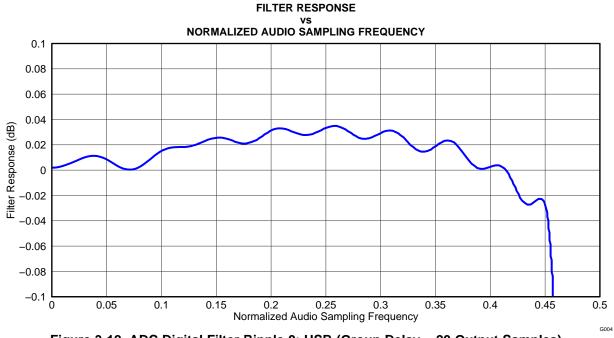


Figure 3-12. ADC Digital Filter Ripple 0: USB (Group Delay = 20 Output Samples)

TEXAS INSTRUMENTS

www.ti.com

SGLS240C - MARCH 2004 - REVISED JUNE 2012

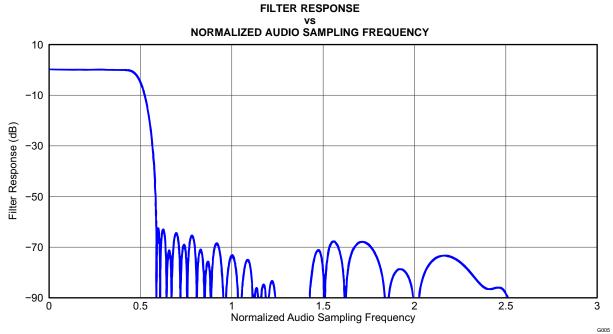
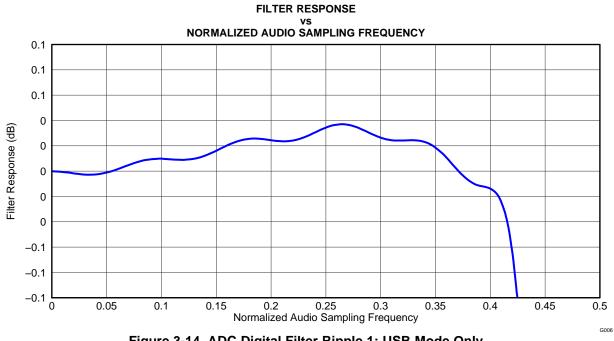



Figure 3-13. ADC Digital Filter Response 1: USB Mode Only

SGLS240C - MARCH 2004 - REVISED JUNE 2012

TEXAS INSTRUMENTS

www.ti.com

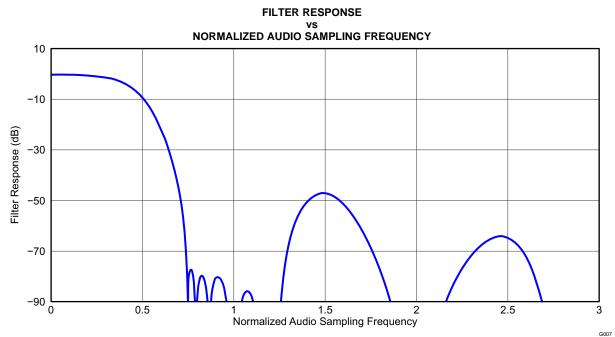
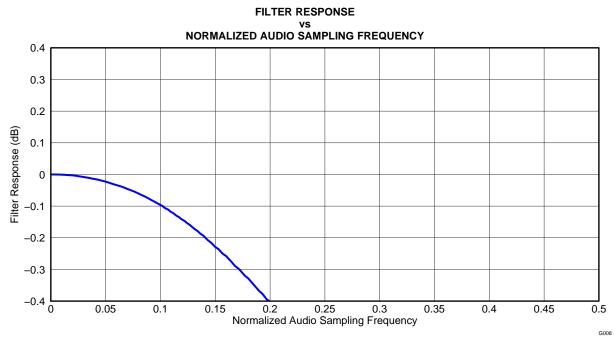
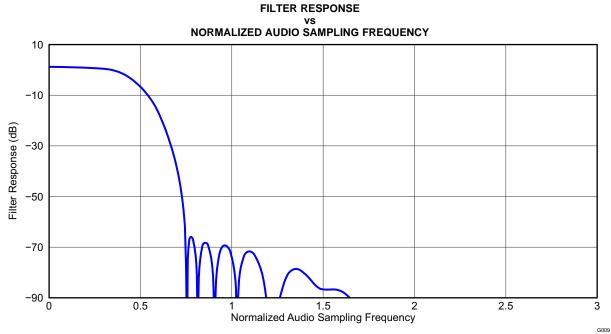
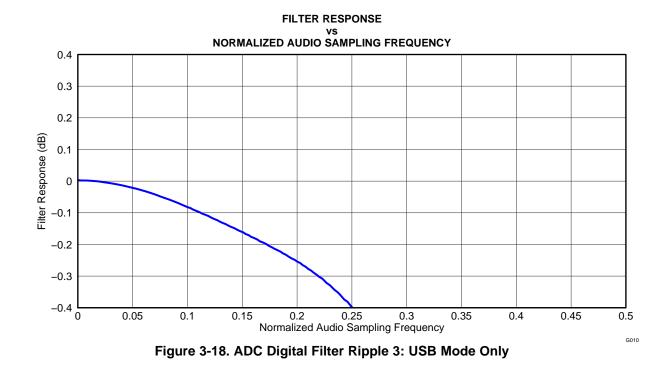



Figure 3-15. ADC Digital Filter Response 2: USB Mode and Normal Modes (Group Delay = 3 Output Samples)




KAS STRUMENTS

www.ti.com

SGLS240C - MARCH 2004 - REVISED JUNE 2012

SGLS240C - MARCH 2004 - REVISED JUNE 2012

TEXAS INSTRUMENTS

www.ti.com

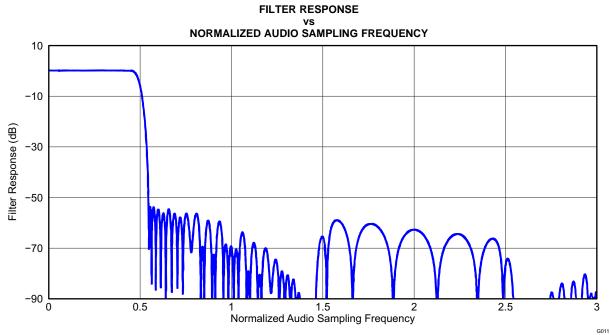


Figure 3-19. DAC Digital Filter Response 0: USB Mode

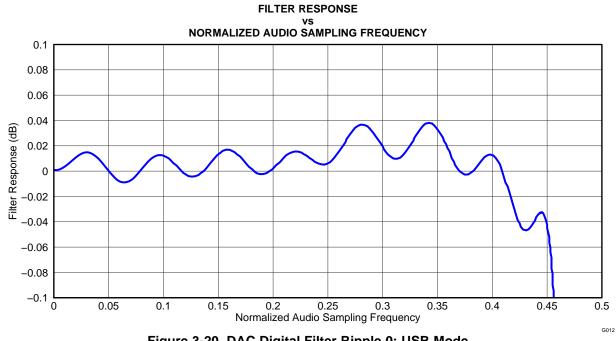
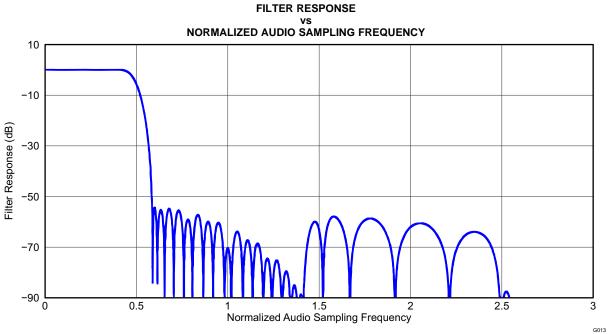
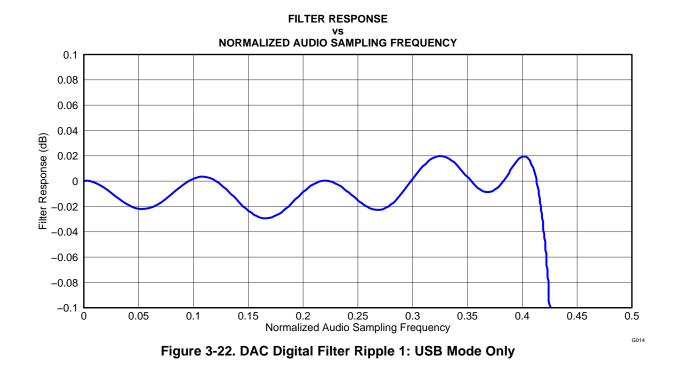



Figure 3-20. DAC Digital Filter Ripple 0: USB Mode


www.ti.com

XAS

STRUMENTS

Copyright © 2004–2012, Texas Instruments Incorporated

SGLS240C - MARCH 2004 - REVISED JUNE 2012

www.ti.com

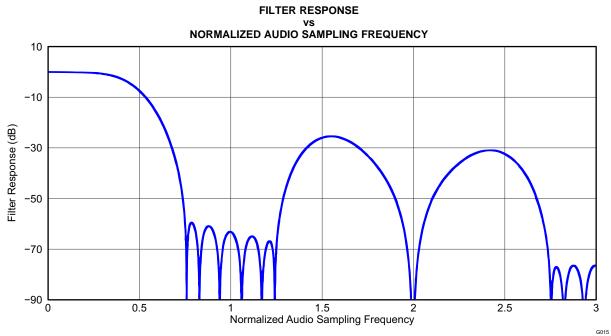


Figure 3-23. DAC Digital Filter Response 2: USB Mode and Normal Modes

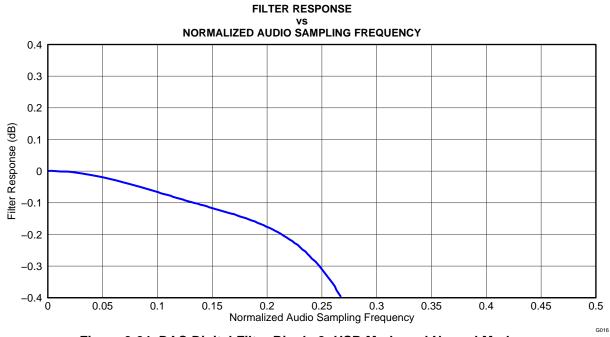


Figure 3-24. DAC Digital Filter Ripple 2: USB Mode and Normal Modes

TEXAS INSTRUMENTS

www.ti.com

SGLS240C - MARCH 2004 - REVISED JUNE 2012

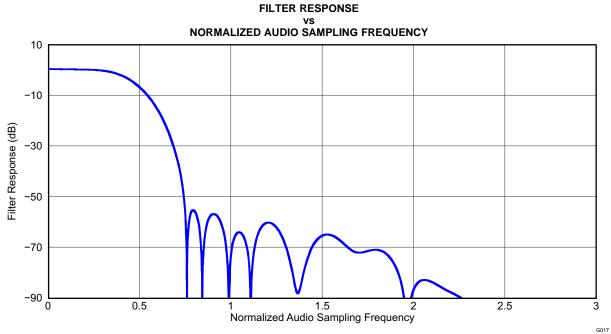
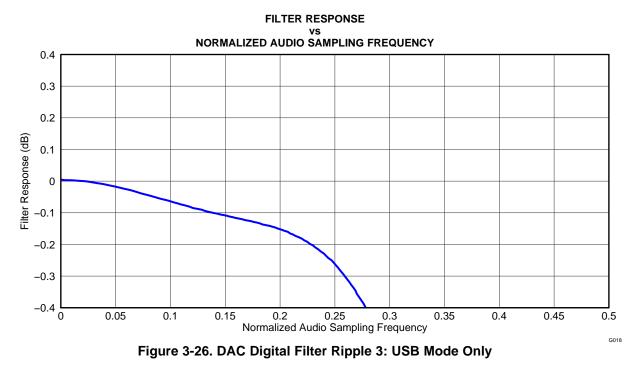



Figure 3-25. DAC Digital Filter Response 3: USB Mode Only

The delay between the converter is a function of the sample rate. The group delays for the AIC23B are shown in the following table. Each delay is one LR clock (1/sample rate).

www.ti.com

Table 3-13. Group Delays

FILTER	GROUP DELAY
DAC type 0	11
DAC type 1	18
DAC type 2	5
DAC type 3	5
ADC type 0	12
ADC type 1	20
ADC type 2	3
ADC type 3	6

Page

TEXAS INSTRUMENTS

SGLS240C - MARCH 2004 - REVISED JUNE 2012

www.ti.com

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (June 2008) to Revision C

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
6PAIC23BIPWRG4Q1	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AIC23BIQ1	Samples
TLV320AIC23BIPWRQ1	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AIC23BIQ1	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

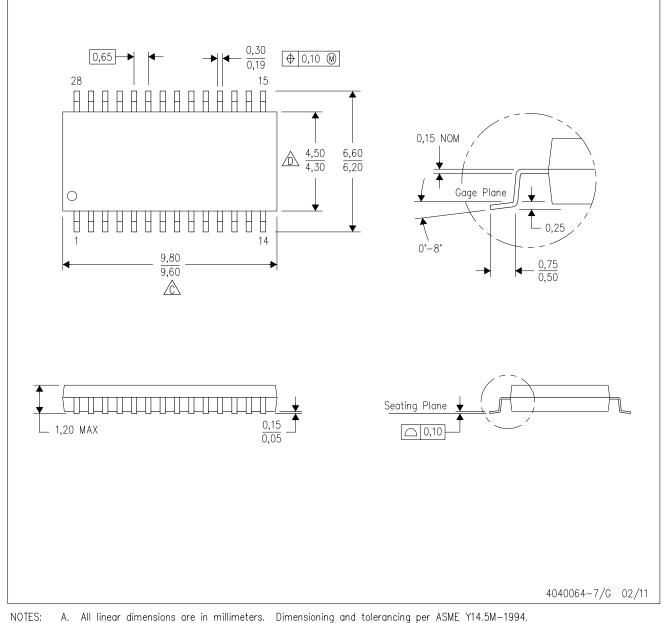
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLV320AIC23B-Q1 :

PACKAGE OPTION ADDENDUM

11-Apr-2013


Catalog: TLV320AIC23B

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

All finited dimensions die in finite cers. Dimensioning e
 B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: All linear dimensions are in millimeters. Α.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.

E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications				
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive			
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications			
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers			
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps			
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy			
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial			
Interface	interface.ti.com	Medical	www.ti.com/medical			
Logic	logic.ti.com	Security	www.ti.com/security			
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense			
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video			
RFID	www.ti-rfid.com					
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com			
Wireless Connectivity	www.ti.com/wirelessconnectivity					

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated