Monolithic Linear IC
 LA6563 - For CD players 4-channel Bridge (BTL) Driver

Overview

The LA6563 is a 4-channel bridge (BTL) driver for CD players.

Features

- Built-in bridge connection (BTL) POWER AMP 4-channel
- IO max 1A
- MUTE circuit (main power is ON/OFF) with 3 systems
- Built-in STBY circuit (all circuits are OFF)
- Provides bias voltage (VREF) switching function (Select external or internal reference voltage. Internal reference voltage is 2.5 V : typ)
- Output voltage (dynamic range) is high. ($6 \mathrm{~V}: \operatorname{typ}$)

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	$V_{\text {CC }}$ max	$\mathrm{V}_{\mathrm{CC}}=\mathrm{VS} * 1$	14	V
	VS max	$\mathrm{V}_{\mathrm{CC}}=\mathrm{VS}{ }^{*} 1$	14	V
Maximum input voltage	$\mathrm{V}_{\text {IN }}$ max		13	V
Maximum output current	I_{0} max	Each BTL-AMP of CH 1 to CH 4	1	A
MUTE pin voltage	$\mathrm{V}_{\text {MUTE }}$		13	V
Allowable power dissipation	Pd max	Independent IC	0.8	W
		Mounted on a specified board *2	2.0	W
Operating temperature	Topr		-30 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

${ }^{*} 1 . \mathrm{V}_{\mathrm{CC}}$ and VS must be shorted externally to use. V_{CC} : signal system power supply, VS: power system supply.
*2. Specified board: $114.3 \mathrm{~mm} \times 76.1 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, glass epoxy board.

Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LA6563
Recommended Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	V_{CC}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{VS}$	4 to 13	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{VS}=8 \mathrm{~V}, \mathrm{VREF}=1.65 \mathrm{~V}$, VREF-SW $=3.3 \mathrm{~V}$, MUTE1 $=$ MUTE2 $=$ MUTE3 $=3.3 \mathrm{~V}$, unless otherwise specified

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Whole						
No-load current consumption	$\mathrm{I}_{\mathrm{CC}}-\mathrm{ON}$	All AMP output ON, MUTE; HI		30	45	mA
	${ }^{\text {I CC-OFF }}$	All AMP output OFF, MUTE; LOW		5	10	mA
	${ }^{\text {I CC-OFF-STBY }}$	All circuits OFF, STBY: L			1	mA
STBY ON voltage	STBY-ON		2			V
STBY OFF voltage	STBY-OFF				0.5	V
STBY hysteresis voltage	STBY-HYS			80		mV
Output AMP block						
Output offset voltage	$\mathrm{V}_{\text {OFF }}$	Between (+) and (-) output of each channel	-50		+50	mV
Output voltage	V_{O}	$R_{L}=8 \Omega$, Voltage between (+) and (-) output of each channel *1		6		V
Closed circuit voltage gain	VG1	*2	5.4	6	6.6	times
Slew rate	SR	For output by AMP alone, it must be doubled *3	0.5			V/us
MUTE ON voltage	$\mathrm{V}_{\text {MUTE }}$-ON	MUTE *4	2			V
MUTE OFF voltage	$\mathrm{V}_{\text {MUTE }}$-OFF	MUTE *4			0.5	V
MUTE hysteresis voltage	$\mathrm{V}_{\text {MUTE }}{ }^{\text {-HYS }}$			80		mV
Input OP-AMP block						
Output offset voltage	$\mathrm{V}_{\text {IN }}$-OFF	For BUFFER	-10		+10	mV
Input voltage range	$\mathrm{V}_{\text {IN }}$-OP		0		$\mathrm{V}_{\mathrm{CC}}{ }^{-1.5}$	V
Output current (SINK)	$\mathrm{V}_{\text {IN }}$-SINK			2		mA
Output current (SOURCE)	$\mathrm{V}_{\text {IN }}$-SOURCE		300	500		$\mu \mathrm{A}$
[OP-AMP block]						
Output offset voltage	OP-V ${ }_{\text {OFF }}$	For BUFFER	-10		+10	mV
Input voltage range	OP-V $\mathrm{V}_{\text {IN }}$		0		$\mathrm{V}_{\mathrm{CC}}-1.5$	V
Output current (SINK)	OP-SINK	SINK current		10		mA
Output current (SOURCE)	OP-SOURCE	SOURCE current		10		mA
VREF-AMP block						
VREF-AMP offset voltage	V ${ }_{\text {OFF }}$-VREF	VREF-SW "H" (For external reference voltage selected)	-10		+10	mV
Internal VREF voltage	VREF-CONST	VREF-SW "L" (For internal reference voltage selected)	2.3	2.5	2.7	V
VREF input voltage range	${ }^{1 B_{\text {IN }}}$		1		$\mathrm{V}_{\text {CC }}-1.5$	V
VREF switch voltage 1	$\mathrm{V}_{\text {SW }} 1$	Select external reference voltage *5	3			V
VREF switch voltage 2	$\mathrm{V}_{\text {SW }}{ }^{2}$	Select internal reference voltage *5			1	V

*1. Voltage for both ends of the load when connecting the 8Ω load between outputs. Input is H or L .
Output is saturated.
*2. Input AMP is OdB for BUFFER.
*3. Design guaranteed performance.
*4. MUTE is HI for output ON and LOW for output OFF (AMP output is OFF, HI impedance).
Each MUTE activates independently to a corresponding channel.
*5. VREF-SW is set to " H " for switching to external reference voltage and "L" for switching to internal reference voltage.

Package Dimensions
unit : mm (typ)
3251

Pin Assignment

LA6563
Pin Function

Pin No.	Pin name	Pin function
1	VS	Output stage power supply (short-circuited with V_{CC}).
2	$\mathrm{V}_{\mathrm{O}}{ }^{+}$	Output pin for channel 3 (+), Plus output for $\mathrm{V}_{\text {IN }} 3$
3	$\mathrm{V}_{\mathrm{O}}{ }^{-}$	Output pin for channel $3(-)$, Minus output for $\mathrm{V}_{\text {IN }} 3$
4	$\mathrm{V}_{\mathrm{O}}{ }^{+}$	Output pin for channel $4(+)$, Plus output for $\mathrm{V}_{\text {IN }} 4$
5	$\mathrm{V}_{\mathrm{O}} 4^{-}$	Output pin for channel $4(-)$, Minus output for $\mathrm{V}_{\text {IN }} 4$
6	NC	No connection. Do not used.
7	V_{O} (OP)	OP-AMP output pin.
8	$\mathrm{V}_{\text {IN }}{ }^{-(O P)}$	OP-AMP inverted input pin.
9	$\mathrm{V}_{\text {IN }}{ }^{+}(\mathrm{OP})$	OP-AMP non-inverted input pin.
10	V_{CC}	Signal system supply (short-circuited with VS).
11	$\mathrm{V}_{\text {IN }}{ }^{4}$	Input pin for channel 4 (Channel 4 input amplifier output pin)
12	$\mathrm{V}_{\text {IN }}{ }^{-}$	Input amplifier for channel 4, Inverted input pin.
13	$\mathrm{V}_{1 \mathrm{~N}^{4}}{ }^{+}$	Input amplifier for channel 4, Non-inverted input pin.
14	$\mathrm{V}_{1 \mathrm{IN}^{+}}{ }^{+}$	Input amplifier for channel 3, Non-inverted input pin.
15	$\mathrm{V}_{1 \mathrm{IN}^{3}}$	Input amplifier for channel 3, Inverted input pin.
16	$\mathrm{V}_{\text {IN }}{ }^{3}$	Input pin for channel 3 (Channel 3 input amplifier output pin)
17	VREF-OUT	VREF output pin (VREF amplifier output pin).
18	VREF-IN	Reference voltage input pin (VREF amplifier input pin).
19	VREF-SW	VREF changeover pin. External VREF selected with "H" and internal VREF selected with "L" (2.5V fixed)
20	STBY	Turns ON/OFF the whole circuit (Operation ON with "H" and OFF with "L"
21	$\mathrm{V}_{\mathrm{IN}}{ }^{2}$	Input pin for channel 2 (Channel 2 input amplifier output pin)
22	$\mathrm{V}_{1 \mathrm{IN}^{2-}}$	Input amplifier for channel 2, Inverted input pin.
23	$\mathrm{V}_{1 \mathrm{IN}^{+}}{ }^{+}$	Input amplifier for channel 2, Non-inverted input pin.
24	$\mathrm{V}_{\mathrm{IN}}{ }^{+}$	Input amplifier for channel 1, Non-inverted input pin.
25	$\mathrm{V}_{\text {IN }}{ }^{-}$	Input amplifier for channel 1, Inverted input pin.
26	$\mathrm{V}_{\text {IN }}{ }^{1}$	Input pin for channel 1 (Channel 1 input amplifier output pin)
27	S-GND	Signal system ground.
28	MUTE3	ON/OFF for channel 4 output.
29	MUTE2	ON/OFF for channel 3 output.
30	MUTE1	ON/OFF for channel 1 and 2 outputs.
31	NC	No connection. Do not use.
32	$\mathrm{V}_{\mathrm{O}}{ }^{+}$	Output pin for channel $1(+)$, Plus output for $\mathrm{V}_{\text {IN }}{ }^{1}$
33	$\mathrm{V}_{\mathrm{O}}{ }^{-}$	Output pin for channel $1(-)$, Minus output for $\mathrm{V}_{\mathrm{IN}} 1$
34	$\mathrm{V}_{\mathrm{O}^{+}}$	Output pin for channel $2(+)$, Plus output for $\mathrm{V}_{\mathrm{IN}}{ }^{2}$
35	$\mathrm{V}_{\mathrm{O}}{ }^{-}$	Output pin for channel $2(-)$, Minus output for $\mathrm{V}_{\mathrm{IN}} 2$
36	NC	No connection. Do not use.

*1. Center frame (FR) becomes GND for the power system. Set this to the minimum potential together with S-GND (signal system).
*2. Short-circuit V_{CC} (signal system power supply) and VS (output stage power supply) externally.

Block Diagram

Pin Description

Pin No.	Pin name	Function	Description	Equivalent circuit
26 25 24 21 22 23 16 15 14 11 12 13	$\mathrm{V}_{\mathrm{IN}}{ }^{1}$ $\mathrm{V}_{\mathrm{IN}} 1^{1-}$ $\mathrm{V}_{\mathrm{IN}} 1^{+}$ $\mathrm{V}_{\mathrm{IN}}{ }^{2}$ $\mathrm{V}_{\mathrm{IN}}{ }^{-}$ $\mathrm{V}_{\mathrm{IN}} 2^{+}$ $V_{1 N^{3}}$ $\mathrm{V}_{\mathrm{IN}} 3^{-}$ $\mathrm{V}_{\mathrm{IN}^{3}}{ }^{+}$ $V_{I N}$ $\mathrm{V}_{\mathrm{IN}} 4^{-}$ $\mathrm{V}_{\mathrm{IN}} 4^{+}$	Input	Input pin. Total gain is set with the gain of this input AMP. With BUFFER (input AMP gain: OdB), the total input/output gain becomes six-fold.	
32 33 34 35 2 3 4 5	$\begin{aligned} & \mathrm{v}_{\mathrm{O}}{ }^{1+} \\ & \mathrm{v}_{\mathrm{O}} 1^{-} \\ & \mathrm{v}_{\mathrm{O}^{+}} \\ & \mathrm{v}_{\mathrm{O}^{2-}} \\ & \mathrm{v}_{\mathrm{O}^{+}} \\ & \mathrm{v}_{\mathrm{O}^{-}} \\ & \mathrm{v}_{\mathrm{O}^{+}} \\ & \mathrm{v}_{\mathrm{O}^{-}} \end{aligned}$	Output	Output for channel.	
$\begin{aligned} & 30 \\ & 29 \\ & 28 \end{aligned}$		MUTE	ON/OFF of corresponding channel output. MUTE:H Output ON MUTE:L Output OFF * When the MUTE pin is open, the output becomes OFF (similar to the case of MUTE:L)	

MUTE, STBY, VREF-SW Description

1) Relation of MUTE and output

Each MUTE	Output			
	CH 1	CH 2	CH 3	CH 4
H	ON			
L	OFF			

*1. With output OFF, the output has a high impedance.
*2. MUTE operates independently for each channel.
2) Relation of each channel and MUTE

* Short-circuit VS and V_{CC} externally.

3) Relation of VREF-SW and reference voltage

VREF-SW	VREF-OUT
H	External reference voltage
L	Internal reference voltage (2.5V: typ)

* Selects external or internal (fixed at 2.5V:typ) VREF.

I/O Summary

MUTE operates only for output amplifier of each corresponding channel while STBY operates for the whole circuit including output amplifier.

Application Circuit Example

■ SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
\square SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
■ Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of January, 2009. Specifications and information herein are subject to change without notice.

