TOSHIBA Bi-CMOS INTEGRATED CIRCUIT

 SILICON MONOLITHIC
TB1226EN

VIDEO, CHROMA AND SYNCHRONIZING SIGNALS PROCESSING IC FOR PAL / NTSC / SECAM SYSTEM COLOR TV

TB1226EN that is a signal processing IC for the PAL / NTSC / SECAM color TV system integrates video, chroma and synchronizing signal processing circuits together in a 56-pin shrink DIP plastic package.
TB1226EN incorporates a high performance picture quality compensation circuit in the video section, an automatic PAL / NTSC / SECAM discrimination circuit in the chroma section, and an automatic $50 / 60 \mathrm{~Hz}$ discrimination circuit in the synchronizing section. Besides a crystal oscillator that internally generates $4.43 \mathrm{MHz}, 3.58 \mathrm{MHz}$ and M / N-PAL clock signals for color demodulation, there is a horizontal PLL circuit built in the IC.
The PAL / SECAM demodulation circuit which is an

Weight: 5.55 g (Typ.) adjustment-free circuit incorporates a 1H DL circuit inside for operating the base band signal processing system.
Also, TB1226EN makes it possible to set or control various functions through the built-in $\mathrm{I}^{2} \mathrm{C}$ bus line.

FEATURES

Video section

- Built-in trap filter
- Black expansion circuit
- Variable DC regeneration rate
- Y delay line
- Sharpness control by aperture control
- Y correction

Chroma section

- Built-in 1H Delay circuit
- PAL / SECAM base band demodulation system
- One crystal color demodulation circuit (4.43MHz, $3.58 \mathrm{MHz}, \mathrm{M} / \mathrm{N}-\mathrm{PAL})$
- Automatic system discrimination, system forced mode
- 1H delay line also serves as comb filter in NTSC demodulation
- Built-in band-pass filter, SECAM bell filter
- Color limiter circuit

Synchronizing deflecting section

- Built-in horizontal VCO resonator
- Adjustment-free horizontal / vertical oscillation by count-down circuit
- Double AFC circuit
- Vertical frequency automatic discrimination circuit
- Horizontal / vertical holding adjustment
- Vertical ramp output
- Vertical amplitude adjustment
- Vertical linearity / S-shaped curve adjustment

Text section

- Linear RGB input
- OSD RGB input
- Cut / off-drive adjustment
- RGB primary signal output

BLOCK DIAGRAM

TERMINAL FUNCTIONS

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
$\begin{gathered} 1 \\ 47 \end{gathered}$	External Video Input TV Video Input	For inputting external / TV composite video signal. Input negative $1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ synchronizing signal through a coupling capacitor to these pins.		$\underset{\text { Negative } 1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}}{\substack{\text { sync }}}$
2	V-AGC	Controls pin 52 to maintain a uniform V-ramp output. Connect a current smoothing capacitor to this pin.		-
3	$\mathrm{H}-\mathrm{V}_{\mathrm{Cc}}(9 \mathrm{~V})$	$V_{\text {Cc }}$ for the DEF block (deflecting system). Connect 9V (Typ.) to this pin.	-	
4	Horizontal Output	Horizontal output terminal.		$\pm\left\lfloor\left[_{0.2 \mathrm{~V}}^{5.0 \mathrm{~V}}\right.\right.$
5	Picture Distortion Correction	Corrects picture distortion in high voltage variation. Input AC component of high voltage variation. For inactivating the picture distortion correction function, connect $0.01 \mu \mathrm{~F}$ capacitor between this pin and GND.		4.5 V at Open
6	FBP Input	FBP input for generating horizontal AFC2 detection pulse and horizontal blanking pulse The threshold of horizontal AFC2 detection is set $H . V_{C C}-2 V_{f}\left(V_{f} \approx 0.75 V\right)$ Confirming the power supply voltage, determine the hige level of FBP.		

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
7	Coincident Det.	To connect filter for detecting presence of H . synchronizing signal or V. synchronizing signal.		-
8	$\mathrm{V}_{\mathrm{DD}}(5 \mathrm{~V})$	V_{DD} terminal of the LOGIC block. Connect 5V (Typ.) to this pin.	- -	-
9	SCL	SCL terminal of ${ }^{2} \mathrm{C}$ bus.		-
10	SDA	SDA terminal of ${ }^{2} \mathrm{C}$ bus.		-
11	Digital GND	Grounding terminal of LOGIC block.	-	-
$\begin{aligned} & 12 \\ & 13 \\ & 14 \end{aligned}$	B Output G Output R Output	R, G, B output terminals.		
15	TEXT GND	Grounding terminal of TEXT block.	-	-
16	ABCL	External unicolor brightness control terminal. Sensitivity and start point of ABL can be set through the bus.		6.4 V at Open
17	RGB-V ${ }_{\text {cc }}(9 \mathrm{~V})$	V_{CC} terminal of TEXT block. Connect 9V (Typ.) to this pin.	-	-

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
$\begin{aligned} & 18 \\ & 19 \\ & 20 \end{aligned}$	Digital R Input Digital G Input Digital B Input	Input terminals of digital R, G, B signals. Input DC directly to these pins. OSD or TEXT signal can be input to these pins.		OSD TEXT -1.0 V -GND
21	Digital YS / YM	Selector switch of halftone / internal RGB signal / digital RGB (pins 18, 19, 20).		
22	Analog YS	Selector switch of internal RGB signal or analog RGB (pins 23, 24, 25).		Analog RGB TV
23 24 25	Analog R Input Analog G Input Analog B Input	Analog R, G, B input terminals. Input signal through the clamping capacitor. Standard input level : $0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}(100$ IRE).		
26	Color Limiter	To connect filter for detecting color limit.		-
$\begin{aligned} & 27 \\ & 28 \end{aligned}$	TV Audio Input External Audio Input	Input terminals for monaural audio signal.		$\begin{gathered} \text { DC } \\ 2.9 \mathrm{~V} \\ \mathrm{AC} \\ \text { Max. } 6.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{gathered}$

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
29	Audio Output	Output terminal of audio signal that passes attenuator.		
30	APC Filter	To connect APC filter for chroma demodulation.		-
31	Y_{2} Input	Input terminal of processed Y signal. Input Y signal through clamping capacitor. Standard input level : 0.7Vpp		
32	Fsc GND	Grounding terminal of VCXO block. Insert a decoupling capacitor between this pin and pin 38 (Fsc $\left.V_{D D}\right)$ at the shortest distance from both.	-	-
33 34	B-Y Input R-Y Input	Input terminal of $\mathrm{B}-\mathrm{Y}$ or $\mathrm{R}-\mathrm{Y}$ signal. Input signal through a clamping capacitor.		$\begin{gathered} \text { DC } \\ 2.5 \mathrm{~V} \\ \text { AC } \\ \text { B-Y: } 650 \mathrm{mV}_{\mathrm{p}-\mathrm{p}} \\ \mathrm{R}-\mathrm{Y}: 510 \mathrm{mV} \mathrm{p}_{\mathrm{p}-\mathrm{p}} \\ \begin{array}{c} \text { (with input of } \end{array} \\ \text { PAL-75\% color bar } \\ \text { signal) } \end{gathered}$

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
35 36	R-Y Output B-Y Output	Output terminal of demodulated $\mathrm{R}-\mathrm{Y}$ or B-Y signal. There is an LPF for removing carrier built in this pin.		DC 1.9 V AC B-Y: $650 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ $\mathrm{R}-\mathrm{Y}: 510 \mathrm{mV}$ $\mathrm{p}-\mathrm{p}$ (with input of PAL-75\% color bar signal)
com 37	Y Output	Output terminal of processed Y signal. Standard output level : 0.7V $\mathrm{V}_{\mathrm{p} \text { p }}$		
38	Fsc V_{DD}	$V_{D D}$ terminal of DDS block. Insert a decoupling capacitor between this pin and pin 32 (Fsc GND) at the shortest distance from both. If decouping capacitor is inserted at a distance from the pins, it may cause spurious deterioration.	-	-
39	Black Stretch	To connect filter for controlling black expansion gain of the black expansion circuit. Black expansion gain is determined by voltage of this pin.		-
40	16.2MHz X'tal	To connect 16.2 MHz crystal clock for generating sub-carrier. Lowest resonance frequency (f_{0}) of the crystal oscillation can be varied by changing DC capacity. Adjust f_{0} of the oscillation frequency with the board pattern.		-

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
41	$\mathrm{Y} / \mathrm{C} \mathrm{V}_{\mathrm{Cc}}(5 \mathrm{~V})$	V_{CC} terminal of Y / C signal processing block.	-	-
42	Chroma Input	Chroma signal input terminal. Input negative $1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ sync composite video signal to this pin through a coupling capacitor.		$\begin{gathered} \text { DC } \\ 2.4 \mathrm{~V} \\ \mathrm{AC}: 300 \mathrm{~m} \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ \text { burst } \end{gathered}$
43	Y / C GND	Grounding terminal of Y / C signal processing block.	-	-
44	APL	To connect filter for DC regeneration compensation. Y signal after black expansion can be monitored by opening this pin.		-
45	Y_{1} Input	Input terminal of Y signal. Input negative $1.0 \mathrm{~V}_{\mathrm{p} \text {-p }}$ sync composite video signal to this pin through a clamping capacitor.		
46	S-Demo-Adj.	To connect f_{0} adjustment filter for SECAM demodulation.		$\begin{gathered} \text { DC } \\ 3.2 \mathrm{~V} \end{gathered}$
48	AFC1 Filter	To connect filter for horizontal AFC1 detection. Horizontal frequency is determined by voltage of this pin.		-

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
55	DEF GND	Grounding terminal of DEF (deflection) block.	Output terminal of external / TV video input selected by bus. Output level is 2.0V Cop (Typ.).	Connect a drive resistor to this pin because it is an open-emitter output type. The minimum drive resistance is $1.2 \mathrm{k} \Omega$.

BUS CONTROL MAP
WRITE DATA
Slave address : 88H

Note: * : Data is ignored.

READ-IN DATA

Slave address : 89H

	$\begin{gathered} \text { MSB } \\ 7 \end{gathered}$	6	5	4	3	2	1	LSB 0
00	PORES	COLOR SYSTEM		X'tal		V-FREQ	V-STD	N-DET
01	LOCK	RGBOUT	$\mathrm{Y}_{1}-\mathrm{IN}$	UV-IN	$\mathrm{Y}_{2}-\mathrm{IN}$	H	V	V-GUARD

BUS CONTROL FUNCTION

WRITE FUNCTION

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
UNI-COLOR	-	8bit	-18dB~0dB	80h MAX - 5.0dB
BRIGHT	-	8bit	-1V~1V	80h OV
COLOR	-	8bit	$\sim 0 \mathrm{~dB}$	80h -6dB
AV SW	Ext Audio and Video SW	1bit	INT / EXT	00h INT
TINT	-	7bit	$-45^{\circ} \sim 45^{\circ}$	40h 0°
P / N KIL	P / N KILLER sensitivity control	1bit	Normal / Low	00h NORMAL
SHARPNESS	-	6 bit	$-6 \mathrm{~dB} \sim 12 \mathrm{~dB}$	20h
DTrp-SW	SECAM double trap ON / OFF	1bit	ON / OFF	01h OFF
R-Mon	TEXT-11 dB pre-amplification UV output	1bit	Normal / Monitor	00h Normal
B-Mon	(Pin 35 : Bo, Pin 36 : Ro)	1 bit	Normal / Monitor	00h Normal
Y SUB CONTRAST	-	5 bit	$-3 \mathrm{~dB} \sim+3 \mathrm{~dB}$	10h 0dB
RGB-CONTRAST	EXT RGB UNI-COLOR control	8bit	-18dB~0dB	80h MAX - 5.0dB
A MUTE	Audio Mute ON / OFF SW	1bit	OFF / ON	01h ON
Audio-ATT Gain	Audio ATT GAIN	7bit	-85dB~1dB	00h -85dB
Yy	Y ON / OFF	1bit	OFF / 95 IRE	00h OFF
WPL SW	White peak limit level	1bit	130 IRE / OFF	00h 130 IRE
BLUE BACK MODE	Luminance selector switch	2bit	IRE ; OFF, 40, 50, 50	00h OFF
Y-DL SW	$\begin{array}{\|l\|} \hline \text { Y-DL TIME } \\ (28,33,38,43,48) \end{array}$	3bit	280~480ns after Y IN	04h 480ns
G DRIVE GAIN	-	8bit	$-5 \mathrm{~dB} \sim 3 \mathrm{~dB}$	80h 0dB
B DRIVE GAIN	-	8bit	$-5 \mathrm{~dB} \sim 3 \mathrm{~dB}$	80h 0dB
HORIZONTAL POSITION	Horizontal position adjustment	5bit	$-3 \mu s \sim+3 \mu s$	10h 0 ${ }^{\text {s }}$

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
AFC MODE	AFC1 detection sensitivity selector	2bit	dB ; AUTO, 0, -10, -10	OOh AUTO
H-CK SW	HOUT generation clock selector	1bit	384fh-VCO, FSC-VCXO	01h FSC-VCXO
R CUT OFF	-	8bit	-0.5~0.5V	00h -0.5V
G CUT OFF	-	8bit	-0.5~0.5V	00h -0.5V
B CUT OFF	-	8bit	-0.5~0.5V	00h -0.5V
B. S. OFF	Black expansion ON / OFF	1bit	ON / OFF	00h ON
C-TRAP	Chroma Trap ON / OFF SW	1bit	ON / OFF	00h ON
FST SW	Black offset SECAM discrimination interlocking switch	1bit	SECAM only / All systems	00h S only
C-TOF	P / N TOF ON / OFF SW	1bit	ON / OFF	00h ON
P / N GP	PAL GATE position	1bit	Standard $/ 0.5 \mu \mathrm{~s}$ delay	00h Standard
CL-L SW	COLOR LIMIT ON / OFF	1 bit	ON / OFF	00h ON
WBLK SW	WIDE V-BLK ON / OFF	1bit	OFF / ON	00h OFF
WMUT SW	WIDE Picture-MUTE ON / OFF	1bit	OFF / ON	00h OFF
S-INHBT	To detect or not to detect SECAM	1bit	Yes / No	00h Yes
3.58 Trap	C Trap-fo, force 3.58 MHz switch	1bit	AUTO / Forced 3.58MHz	OOh AUTO
F-B / W	Force B / W switch	1bit	AUTO / Forced B / W	OOh AUTO
X'tal MODE	APC oscillation frequency selector switch	3bit	$\begin{aligned} & 000 ; \text { European system AUTO } \\ & 001 ; 3 \mathrm{~N} \\ & 010 ; 4 \mathrm{P} \\ & \text { 011; 4P (N inhibited) } \\ & \text { 100; S.American system AUTO } \\ & \text { 101; 3N } \\ & 110 ; \text { MP } \\ & 111 ; \text { NP } \end{aligned}$	$\begin{aligned} & \text { Ouropean system } \\ & \text { AUTO } \end{aligned}$
COLOR SYSTEM	Chroma system selection	2bit	AUTO, PAL, NTSC, SECAM	00h AUTO
R-Y BLACK OFFSET	R-Y color difference output black offset adjustment	4bit	-24~21mV STEP 3mV	08h 0mV
B-Y BLACK OFFSET	B-Y color difference output black offset adjustment	4bit	-24~21mV STEP 3mV	08h 0mV
CLL LEVEL	Color limit level adjustment	2bit	91, 100, 108, 116\%	02h 108\%

Note: $\quad 3 \mathrm{~N} ; 3.58-\mathrm{NTSC}, 4 \mathrm{P} ; 4.43-\mathrm{PAL}, \mathrm{MP}$; M-PAL, NP ; N-PAL
European system AUTO ; 4.43-PAL, 4.43-NTSC, 3.58-NTSC, SECAM
S.American system AUTO ; 3.58-NTSC, M-PAL, N-PAL

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE	
PN CD ATT	P / N color difference amplitude adjustment	2bit	+1~-2dB STEP 1dB	01h	OdB
TOF Q	TOF Q adjustment	2bit	1.0, 1.5, 2.0, 2.5	02h	2.0
TOF F_{0}	TOF f_{0} adjustment	2bit	kHz ; 0, 500, 600, 700	02h	600 kHz
C-TRAP Q	Chroma trap Q control	2bit	1.0, 1.5, 2.0, 2.5	02h	2.0
C-TRAP F0	Chroma trap f_{0} control	2bit	kHz ; -100, -50, 0, +50	02h	0kHz
BLACK STRETCH POI	Black expansion start point setting	3bit	28~70\% IRE $\times 0.4$	05h	56\% IRE
DC TRAN RATE	Direct transmission compensation degree selection	3bit	100~130\% APL	00h	100\%
APA-CON PEAK F0	Sharpness peak frequency selection	2bit	kHz ; 2.5, 3.1, 4.2, OFF	02h	4.2kHz
ABL POINT	ABL detection voltage	3bit	ABL point ; 6.5V $\sim 5.9 \mathrm{~V}$	00h	6.5 V
ABL GAIN	ABL sensitivity	3bit	Brightness ; 0~-2V	00h	OV
HALF TONE SW	Halftone gain selection	2bit	-3dB, -6dB, OFF, OFF	00h	-3dB
H BLK PHASE	Horizontal blanking end position	3bit	$0 \sim 3.5 \mu \mathrm{~s}$ step $0.5 \mu \mathrm{~s}$	00h	Ops
V FREQ	Vertical frequency	2bit	AUTO, 60 Hz , Forced 312.5 H , Forced 262.5H	00h	AUTO
V OUT PHASE	Vertical position adjustment	3bit	0~7H STEP 1H	00h	OH
V-AMPLITUDE	Vertical amplitude selection	7bit	-50~50\%	40h	0\%
COINCIDENT MODE	Discriminator output signal selection	2bit	00 ; DSYNC 01 ; DSYNC×AFC 10 ; Field counting 11 ; VP is present.	02h	Field counting
V S-CORRECTION	Vertical S-curve correction	7bit	Reverse S-curve, S-curve	40h	-
DRG SW	Drive reference axis selection	1bit	R / G	00h	R
V LINEARITY	Vertical linearity correction	5bit	(one side)	00h	-
V-CD MD	Vertical count-down mode selection	1bit	AUTO / Force synchronization	00h	AUTO
DRV CNT	All drive gains forced centering switch	1bit	OFF / Force centering	00h	OFF
VAGC SP	Vertical ramp time constant selection	1bit	Normal / High speed	01h	High speed

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE	
MUTE MODE	OFF, RGB mute, Y mute, transverse	2bit	OFF, RGB, Y, Transverse	01h	RGB
WIDE V-BLK START PH	Vertical pre-position selection	6 bit	-64~-1H STEP 1H	3Fh	-1H
BLK SW	Blanking ON / OFF	1bit	ON / OFF	00h	ON
WIDE V-BLK STOP PH	Vertical post-position selection	7bit	0~128H STEP 1H	00h	OH
NOISE DET LEVEL	Noise detection level selection	2bit	$0.15,0.125,0.1,0.075$	02h	0.1
WIDE P-MUTE START PH	Video mute pre-position selection	6 bit	-64~-1H STEP 1H	3Fh	-1H
N COMB	1H addition selection	1bit	OFF / ADD	00h	OFF
WIDE P-MUTE STOP PH	Video mute post-position selection	7bit	0~128H STEP 1H	00h	OH
S-field	SECAM color and Q selection in weak electric field	1bit	Weak electric field control ON / OFF	00h	ON
SCD ATT	SECAM color difference amplitude adjustment	1bit	$0 /-1 d B$	00h	0dB
DEMO Fo	SECAM deemphasis time constant selection	1bit	85kHz / 100kHz	00h	85kHz
S GP	SECAM gate position selection	1bit	Standard / $0.5 \mu \mathrm{~s}$ delay	00h	Standard
V-ID SW	SECAM V-ID ON / OFF switch	1bit	OFF / ON	00h	OFF
S KIL	SECAM KILLER sensitivity selection	1bit	NORMAL / LOW	00h	NORMAL
BELL F0	Bell f_{0} adjustment	2bit	-46~92kHz STEP 46kHz	01h	0kHz

READ-IN FUNCTION

ITEM	DESCRIPTION	NUMBER OF BITS
PONRES	0 : POR cancel, 1 : POR ON	1 bit
COLOR SYSTEM	$\begin{aligned} & 00 \text { : B / W, } 01 \text { : PAL } \\ & 10 \text { : NTSC, } 11 \text { : SECAM } \end{aligned}$	2bit
X'tal	$\begin{aligned} & 00: 4.433619 \mathrm{MHz} \\ & 01: 3.579545 \mathrm{MHz} \\ & 10: 3.575611 \mathrm{MHz}(\mathrm{M}-\mathrm{PAL}) \\ & 11: 3.582056 \mathrm{MHz}(\mathrm{~N}-\mathrm{PAL}) \end{aligned}$	2bit
V-FREQ	0:50Hz, 1:60Hz	1 bit
V-STD	0 : NON-STD, 1: STD	1 bit
N-DET	0 : Low, 1 : High	1 bit
LOCK	0 : UN-LOCK, 1 : LOCK	1 bit
RGBOUT, Y_{1}-IN UV-IN, $\mathrm{Y}_{2}-\mathrm{IN}, \mathrm{H}, \mathrm{V}$	Self-diagnosis 0 : NG, 1 : OK	1bit each
V-GUARD	Detection of breaking neck 0 : Abnormal, 1 : Normal	1bit

DATA TRANSFER FORMAT VIA I ${ }^{2} \mathrm{C}$ BUS

Start and stop condition

Bit transfer

Acknowledge

Data transmit format 1

S	Slave address	0	A	Sub address	A	Transmit data	A	P	
	$\stackrel{1}{\text { MSB }}^{1} 7$ bit								
S	Start Condition			: Acknowledge					Stop Condition

Data transmit format 2

Data receive format

S	Slave address	1		A		Received data 01	A		Received data 02	A	P	P
	7bit				$\stackrel{+}{1}$	1SB 8bit						

At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver becomes a slave transmitter. This acknowledge is still generated by the slave.
The STOP condition is generated by the master.

Optional data transmit format : Automatic increment mode

S	Slave address	0	A	1	Sub address	A		Transmit data			Transmit data n	A	P	
	$\begin{array}{ll} 1 & 7 b i t \\ \text { VSB } \end{array}$				7bit			$\hat{\Lambda}^{1} 8 \mathrm{Bbit}$			$\begin{gathered} 1 \\ \text { MSB } \end{gathered} 8 \mathrm{bit}$			

In this transmission method, data is set on automatically incremented sub-address from the specified sub-address. Purchase of TOSHIBA $\mathrm{I}^{2} \mathrm{C}$ components conveys a license under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent Rights to use these components in an $\mathrm{I}^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

MAXIMUM RATINGS $\left(\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	VCCMAX	12	V
Permissible Loss	PDMAX	$2190($ Note $)$	mW
Power Consumption Declining Degree	$1 / \mathrm{Qja}$	17.52	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Input Terminal Voltage	Vin	GND $-0.3 \sim \mathrm{VCC}+0.3$	V
Input Signal Voltage	ein	7	$\mathrm{Vp}-\mathrm{p}$
Operating Temperature	Topr	$-20 \sim 65$	${ }^{\circ} \mathrm{C}$
Conserving Temperature	Tstg	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

Note: In the condition that IC is actually mounted. See the diagram below.

Fig. Power consumption declining curve relative to temperature change

RECOMMENDED OPERATING CONDITION

CHARACTERISTIC	DESCRIPTION	MIN	TYP.	MAX	UNIT
Supply Voltage	Pin 3, pin 17	8.50	9.0	9.25	V
	Pin 8, pin 38, pin 41	4.75	5.0	5.25	
TV, External Input Level	Pin 1, pin 47	0.9	1.0	1.1	V_{p-p}
Video Input Level	100\% white, negative sync	0.9	1.0	1.1	
Chroma Input Level		0.9	1.0	1.1	
Sync Input Level		0.9	1.0	2.2	
FBP Width	-	11	12	13	$\mu \mathrm{s}$
Incoming FBP Current (Note)	-	-	-	1.5	mA
H. Output Current	-	-	1.0	2.0	
RGB Output Current	-	-	1.0	2.0	V
Analog RGB Input Level	-	-	0.7	0.8	
OSD RGB Input Level	In TEXT input	0.7	1.0	1.3	
	In OSD input	-	4.2	5.0	
Incoming Current to Pin 49	Sync-out	-	0.5	1.0	mA

Note: The threshold of horizontal AFC2 detection is set $\mathrm{H} . \mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}_{\mathrm{f}}\left(\mathrm{V}_{\mathrm{f}} \approx 0.75 \mathrm{~V}\right)$. Confirming the power supply voltage, determine the high level of EBP.

ELECTRICAL CHARACTERISTIC

(Unless otherwise specified, H, RGB $V_{C C}=0 \mathrm{~V}$, V_{DD}, $\mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Ta}=\mathbf{2 5} \mathbf{3}^{\circ} \mathrm{C}$) CURRENT CONSUMPTION

PIN No.	PIN NAME	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	MIN	TYP.	MAX	UNIT
3	H.V ${ }_{\text {CC }}(9 \mathrm{~V})$	$\mathrm{I}_{\mathrm{CC} 1}$	-	16.0	19.0	23.5	mA
8	$\mathrm{V}_{\text {DD }}(5 \mathrm{~V}$)	ICC2	-	8.8	11.0	14.0	
17	RGB $\mathrm{V}_{\text {CC }}(9 \mathrm{~V})$	I_{CC}	-	25.0	31.5	39.0	
38	Fsc $\mathrm{V}_{\mathrm{Cc}}(5 \mathrm{~V})$	ICC4	-	6.8	8.5	11.0	
41	$\mathrm{Y} / \mathrm{C} \mathrm{V}_{\mathrm{Cc}}(9 \mathrm{~V})$	ICC5	-	80	100	130	

TERMINAL VOLTAGE

PIN No.	PIN NAME	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	MIN	TYP.	MAX	UNIT
1	Ext. Video Input	V_{1}	-	2.0	2.8	3.6	V
16	ABCL	V_{16}	-	5.9	6.4	6.9	V
18	OSD R Input	V_{18}	-	-	0	0.3	V
19	OSD G Input	V_{19}	-	-	0	0.3	V
20	OSD B Input	V_{20}	-	-	0	0.3	V
21	Digital Ys	V_{21}	-	-	0	0.3	V
22	Analog Ys	V_{22}	-	-	0	0.3	V
com 23	Analog R Input	V_{23}	-	4.2	4.6	5.0	V
24	Analog G Input	V_{24}	-	4.2	4.6	5.0	V
25	Analog B Input	V_{25}	-	4.2	4.6	5.0	V
27	TV Audio Input	V_{27}	-	2.5	2.9	3.3	V
28	Ext. Audio Input	V_{28}	-	2.5	2.9	3.3	V
29	Audio Output	V_{29}	-	4.1	4.5	4.9	V
31	Y_{2} Input	V_{31}	-	1.7	2.0	2.3	V
33	B-Y Input	V_{33}	-	2.2	2.5	2.8	V
34	R-Y Input	V_{34}	-	2.2	2.5	2.8	V
35	R-Y Output	V_{35}	-	1.5	1.9	2.3	V
36	B-Y Output	V_{36}	-	1.5	1.9	2.3	V
37	Y_{1} Output	V_{37}	-	1.9	2.3	2.7	V
40	16.2MHz X'tal Oscillation	V_{40}	-	3.6	4.1	4.6	V
42	Chroma Input	V_{42}	-	2.0	2.4	2.8	V
47	TV Video Input	V_{47}	-	2.0	2.8	3.6	V
50	V-Sepa.	V_{50}	-	5.4	5.9	6.4	V
56	Video Output	V_{56}	-	2.6	3.1	3.6	V

AC CHARACTERISTIC

Video switch section ((Note) T = TV mode, E = Ext. mode)

CHARACTERISTIC	SYMBOL	$\begin{array}{\|l\|} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \end{array}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Min. Linear Video Input	TVdi1	-	(Note V_{1})	-	1.5	2.0	V
	EVdi1	-					
Max. Linear Video Input	TVdi2	-	(Note V_{2})	4.0	5.0	-	
	EVdi2	-					
Video Input Dynamic Range	TVdiA	-	(Note V_{3})	2.0	3.5	-	
	EVdiA	-					
Min. Output	TVdo1	-	(Note V4)	-	0.1	0.5	
	EVdo1	-					
Max. Output	TVdo2	-	(Note V_{5})	6.0	7.3	-	
	EVdo2	-					
AC Gain	TGv1	-	(Note V6)	1.7	2.0	2.1	times
	EGv1	-					
Frequency Characteristic	TGf1	-	(Note V_{7})	-1.0	0	1.0	
	EGf1	-					
Crosstalk between TV and EXT	TVcr	-	(Note V8)	-82	-70	-60	
	EVcr	-					

Video section

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Y Input Pedestal Clamping Voltage	VYclp	-	(Note Y_{1})	2.0	2.2	2.4	V
Chroma Trap Frequency	ftr3	-	(Note Y_{2})	3.429	3.58	3.679	MHz
	ftr 4	-		4.203	4.43	4.633	
Chroma Trap Attenuation$\text { (} 3.58 \mathrm{MHz} \text {) }$	Gtr3a	-	(Note Y_{3})	20	26	52	dB
	Gtr3f	-					
(4.43MHz)	Gtr4	-	(Note Y_{4})	20	26	52	
(SECAM)	Gtrs	-	(Note Y_{5})	18	26	52	
Yy Correction Point	yp	-	(Note Y_{6})	90	95	99	-
Yy Correction Curve	Yc	-	(Note Y_{7})	-2.6	-2.0	-1.3	dB
APL Terminal Output Impedance	Zo44	-	(Note Y_{8})	15	20	25	k Ω
DC Transmission Compensation Amplifier Gain	Adrmax	-	(Note Y9)	0.11	0.13	0.15	times
	Adrcnt	-		0.44	0.06	0.08	
Maximum Gain of Black Expansion Amplifier	Ake	-	(Note Y_{10})	1.20	1.5	1.65	

CHARACTERISTIC	SYMBOL	$\begin{array}{\|l} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \\ \hline \end{array}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Black Expansion Start Point	VBS9MX	-	(Note Y_{11})	65	77.5	80	IRE
	VBS9CT	-		55	62.5	70	
	VBS9MN	-		48	55.5	63	
	VBS2MX	-		35	42.5	50	
	VBS2CT	-		25	31.5	38	
	VBS2MN	-		19	25.5	32	
Black Peak Detection Period (Horizontal)	TbpH	-	(Note Y_{12})	15	16	17	$\mu \mathrm{s}$
com (Vertical)	TbpV	-		33	34	35	H
Picture Quality Control Peaking Frequency	fp25	-	(Note Y 13)	1.5	2.5	3.4	MHz
	fp31	-		1.9	3.1	4.3	
	fp42	-		3.0	4.2	5.4	
Picture Quality Control Maximum Characteristic	GS25MX	-	(Note Y_{14})	12.0	14.5	17.0	dB
	GS31MX	-		12.0	14.5	17.0	
	GS42MX	-		10.6	13.5	16.4	
Picture Quality Control Minimum Characteristic	GS25MN	-	(Note Y_{15})	-22.0	-19.5	-17.0	
	GS31MN	-		-22.0	-19.5	-17.0	
	GS42MN	-		-19.5	-16.5	-13.5	
Picture Quality Control Center Characteristic	GS25CT	-	(Note Y_{16})	6.0	8.5	11.0	
	GS31CT	-		6.0	8.5	11.0	
	GS42CT	-		4.6	7.5	10.4	
Y Signal Gain	Gy	-	(Note Y 17)	-1.0	0	1.0	
Y Signal Frequency Characteristic	Gfy	-	(Note Y_{18})	-6.5	0	1.0	
Y Signal Maximum Input Range	Vyd	-	(Note Y_{19})	0.9	1.2	1.5	V

Chroma section

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
ACC Characteristic	$3 \mathrm{~N}_{\text {eAT }}$	-	(Note C_{1})	30	35	90	$\mathrm{mV} \mathrm{p}_{\mathrm{p}}$
	$3 \mathrm{~N}_{\mathrm{F} 1 \mathrm{~T}}$	-		68	85	105	
	$3 N_{\text {AT }}$	-		0.9	1.0	1.1	times
	$3 \mathrm{~N}_{\text {eAE }}$	-		18	35	-	
	$3 N_{\text {F1E }}$	-		71	85	102	
	$3 N_{\text {AE }}$	-		0.9	1.0	1.1	
$\mathrm{f}_{\mathrm{O}}=4.43$	$4 \mathrm{~N}_{\text {eAT }}$	-		18	35	-	$m V_{p-p}$
	$4 \mathrm{~N}_{\text {F1T }}$	-		71	85	102	
	$4 N_{\text {AT }}$	-		0.9	1.0	1.1	times
	$4 \mathrm{~N}_{\text {eAE }}$	-		18	35	-	
	$4 \mathrm{~N}_{\text {F1E }}$	-		71	85	102	
	4NAE	-		0.9	1.0	1.1	
Band Pass Filter Characteristic$f_{0}=3.58$	$3 \mathrm{Nfo}_{0}$	-	(Note C2)	3.43	3.579	3.73	MHz
	$3 \mathrm{NfO}_{500}$	-		3.93	4.079	4.23	
	$3 \mathrm{Nfo}_{600}$	-		4.03	4.179	4.33	
	3Nfo700	-		4.13	4.279	4.43	
$\mathrm{f}_{\mathrm{O}}=4.43$	$4 \mathrm{Nfo}_{0}$	-		4.28	4.433	4.58	
	4Nfo500	-		4.78	4.933	4.58	
	4Nfo600	-		4.88	5.033	5.18	
	4Nfo700	-		4.98	5.133	5.28	
Band Pass Filter, -3 dB Band Characteristic $f_{0}=3.58$	fo_{0}	-	(Note C_{3})	1.64	1.79	1.94	
	fo500	-					
	f0600	-					
	fo_{700}	-					
$\mathrm{f}_{\mathrm{O}}=4.43$	fo_{0}	-		2.07	2.22	2.37	
	fo500	-					
	fo_{600}	-					
	fo700	-					
Band Pass Filter, Q Characteristic Check $\quad f_{0}=3.58$	Q_{1}	-	(Note C4)	-	3.58	-	
	$\mathrm{Q}_{1.5}$	-		-	2.39	-	
	$\mathrm{Q}_{2.0}$	-		1.64	1.79	1.94	
	Q2.5	-		-	1.43	-	
$\mathrm{f}_{\mathrm{o}}=4.43$	Q_{1}	-		-	4.43	-	
	Q1.5	-		-	2.95	-	
	$\mathrm{Q}_{2.0}$	-		2.07	2.22	2.37	
	$\mathrm{Q}_{2.5}$	-		-	1.77	-	

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
$1 / 2 f_{c}$ Trap Characteristic $\begin{aligned} & \\ & \\ & \\ & f_{0}=3.58\end{aligned}$	fo_{0}	-	(Note C_{5})	1.45	1.60	1.75	MHz
	fo500	-		1.70	1.85	2.00	
	fo600	-		1.75	1.90	2.06	
	fo700	-		1.80	1.95	2.10	
$\mathrm{f}_{\mathrm{O}}=4.43$	fo_{0}	-		1.85	2.00	2.15	
	fo500	-		2.00	2.15	2.30	
	fo600	-		2.05	2.20	2.35	
	fo_{700}	-		2.10	2.25	2.40	
Tint Control Range ($\mathrm{f}_{\mathrm{o}}=600 \mathrm{kHz}$)	$3 N \Delta \theta 1$	-	(Note C6)	35.0	45.0	55.0	-
	$3 N \Delta \theta 2$	-		-55.0	-45.0	-35.0	
	$4 \mathrm{~N} \Delta \theta 1$	-		35.0	45.0	55.0	
	$4 \mathrm{~N} \Delta \theta 2$	-					
Tint Control Variable Range $\left(\mathrm{f}_{\mathrm{o}}=600 \mathrm{kHz}\right.$)	$3 \mathrm{~N} \Delta \theta \mathrm{~T}$	-	(Note C_{7})	70.0	90.0	110.0	
	$4 \mathrm{~N} \Delta \theta \mathrm{~T}$	-					
Tint Control Characteristic	$3 \mathrm{~T} \theta$ Tin	-	(Note C8)	39	40	47	bit
	3E日Tin	-					
	$3 N \Delta$ Tin	-		73	80	87	Step
	$4 \mathrm{~T} \theta$ Tin	-		39	40	47	bit
	4E日Tin	-					
	$4 \mathrm{~N} \triangle$ Tin	-		73	80	87	Step
APC Lead-In Range	4.433PH	-	(Note C9)	350	500	1500	Hz
	4.433 PL	-		-350	-500	-1500	
	3.579 PH	-		350	500	1700	
	3.579 PL	-		-350	-500	-1700	
(Variable Range)	4.433 HH	-		400	500	1100	
	4.433 HL	-		-400	-500	-1100	
	3.579 HH	-		400	500	1100	
	3.579 HL	-		-400	-500	-1100	
APC Control Sensitivity	3.58ß3	-	$\left(\right.$ Note C_{10})	1.50	2.2	2.90	-
	$4.43 \beta 3$	-		1.70	2.4	3.10	
	M-PALßM	-		1.50	2.2	2.90	
	N-PALßN	-					

CHARACTERISTIC	SYMBOL	$\begin{array}{\|l\|} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \\ \hline \end{array}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Killer Operation Input Level	3N-VTK1	-	(Note C_{11})	1.8	2.5	3.2	$m V_{p-p}$
	3N-VTC1	-		2.2	3.2	4.0	
	3N-VTK2	-		2.5	3.6	4.5	
	3N-VTC2	-		3.2	4.5	5.6	
	4N-VTK1	-		1.8	2.5	3.2	
	4N-VTC1	-		2.2	3.2	4.0	
	4N-VTK2	-		2.5	3.6	4.5	
	4N-VTC2	-		3.2	4.5	5.6	
	4P-VTK1	-		1.8	2.5	3.2	
	4P-VTC1	-		2.2	3.2	4.0	
	4P-VTK2	-		2.5	3.6	4.5	
	4P-VTC2	-		3.2	4.5	5.6	
	MP-VTK1	-		1.8	2.5	3.2	
	MP-VTC1	-		2.2	3.2	4.0	
	MP-VTK2	-		2.5	3.6	4.5	
	MP-VTC2	-		3.2	4.5	5.6	
	NP-VTK1	-		1.8	2.5	3.2	
	NP-VTC1	-		2.2	3.2	4.0	
	NP-VTK2	-		2.5	3.6	4.5	
	NP-VTC2	-		3.2	4.5	5.6	
	3NeB-Y	-	(Note C ${ }_{12}$)	320	380	460	
	3NeR-Y	-		240	290	350	
Color Difference Output	4NeB-Y	-		320	380	460	
(Rainbow Color Bar)	4NeR-Y	-		240	290	350	
	4PeB-Y	-		360	430	520	
	4PeR-Y	-		200	240	290	
(75\% Color Bar)	4Peb-y	-		540	650	780	
	4Per-y	-		430	510	610	
Demodulation Relative Amplitude	$3 N G_{R / B}$	-	(Note C13)	0.69	0.77	0.86	times
	$4 N G_{R / B}$	-		0.70	0.77	0.85	
	$4 \mathrm{PG}_{\mathrm{R} / \mathrm{B}}$	-		0.49	0.56	0.64	
Demodulation Relative Phase	3NөR-B	-	(Note C14)	85	93	100	-
	4NөR-B	-		87	93	99	
	4PөR-B	-		85	90	95	
Demodulation Output Residual Carrier	3 N -SCB	-	(Note C15)	0	5	15	$m V_{p-p}$
	3N-SCR	-					
	4N-SCB	-					
	4N-SCR	-					

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Demodulation Output Residual Higher Harmonic	3N-HCB	-	(Note C_{16})	0	10	30	$m V_{p-p}$
	3N-HCR	-					
	4N-HCB	-					
	4N-HCR	-					
Color Difference Output ATT Check	$B-Y-1 d B$	-	(Note C_{17})	-1.20	-0.9	-0.60	dB
	B-Y - 2dB	-		-2.30	-1.7	-1.55	
	$B-Y+1 d B$	-		0.60	0.8	1.20	
16.2MHz Oscillation Frequency	$\Delta \mathrm{foF}$	-	(Note C_{18})	-2.0	0	2.0	kHz
16.2MHz Oscillation Start Voltage	VFon1	-	(Note C_{19})	3.0	3.2	3.4	V
$\mathrm{f}_{\text {Sc }}$ Free-Run Frequency	3 fr	-	(Note C_{20})	-100	50	200	Hz
(4.43M)	4fr	-		-125	25	175	
(M-PAL)	Mfr	-					
(N-PAL)	Nfr	-		-140	10	160	

DEF section

CHARACTERISTIC	SYMBOL	$\begin{array}{\|l\|} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \\ \hline \end{array}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
H. Reference Frequency	FHVCO	-	(Note DH1)	5.95	6.0	6.10	MHz
H. Reference Oscillation Start Voltage	VSHVCO	-	(Note DH2)	2.3	2.6	2.9	V
H. Output Frequency 1	fH1	-	(Note DH3)	15.5	15.625	15.72	kHz
H. Output Frequency 2	fH2	-	(Note DH4)	15.62	15.734	15.84	
H. Output Duty 1	$\mathrm{H} \varphi 1$	-	(Note DH5)	39	41	43	\%
H. Output Duty 2	H 2	-	(Note DH6)	35	37	39	
H. Output Duty Switching Voltage 1	V_{5-1}	-	(Note DH7)	1.2	1.5	1.8	V
	VHH	-	(Note DH8)	4.5	5.0	5.5	
H. Output Voltage	VHL	-		-	-	0.5	
H. Output Oscillation Start Voltage	VHS	-	(Note DH9)	-	5.0	-	
H. FBP Phase	φ FBP	-	(Note DH10)	6.2	6.9	7.6	$\mu \mathrm{s}$
H. Picture Position, Maximum	HSFTmax	-	(Note DH11)	17.7	18.4	19.1	
H. Picture Position, Minimum	HSFTmin	-	(Note DH12)	12.4	13.1	13.8	
H. Picture Position Control Range	$\Delta \mathrm{HSFT}$	-	(Note DH13)	4.5	5.3	6.1	

| CHARACTERISTIC | SYMBOL | TEST
 CIR-
 CUIT | TEST CONDITION | MIN | TYP. | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
AFC-MASK Start Phase	$\varphi A F C f$	-	(Note DV10)	2.6	3.2	3.8	H
AFC-MASK Stop Phase	φ AFCe	-	(Note DV11)	4.4	5.0	5.6	
VNFB phase	φ VNFB	-	(Note DV12)	0.45	0.75	1.05	
V. Output Maximum Phase	$V \varphi$ max	-	(Note DV13)	7.3	8.0	8.7	
V. Output Minimum Phase	$V \varphi m i n$	-	(Note DV14)	0.5	1.0	1.5	
V. Output Phase Variable Range	$\Delta \mathrm{V} \varphi$	-	(Note DV15)	6.3	7.0	7.7	
50 System VBLK Start Phase	V50BLKf	-	(Note DV16)	0.4	0.55	0.7	
50 System VBLK Stop Phase	V50BLKe	-	(Note DV17)	20	23	26	
60 System VBLK Start Phase	V60BLKf	-	(Note DV18)	0.4	0.55	0.7	
60 System VBLK Stop Phase	V60BLKe	-	(Note DV19)	15	18	21	
V Lead-In Range 1	VAcaL	-	(Note DV20)	-	232.5	-	Hz
V. Lead-In Range 1	VAcaH	-		-	344.5	-	
V. Lead-In Range 2	V60caL	-	(Note DV21)	-	232.5	-	
	V60caH	-		-	294.5	-	
W-VBLK Start Phase	SWVB	-	(Note DV22)	9	-	88	H
W-PMUTE Start Phase	SWP	-	(Note DV23)	9	-	88	
W-VBLK Stop Phase	STWVB	-	(Note DV24)	10	-	120	
W-PMUTE Stop Phase	STWP	-	(Note DV25)				

1H DL section

CHARACTERISTIC	SYMBOL	$\begin{array}{\|l} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \\ \hline \end{array}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
1HDL Dynamic Range, Direct	VNBD	-	(Note H_{1})	0.8	1.2	-	V
	VNRD	-					
1HDL Dynamic Range, Delay	VPBD	-	(Note H_{2})	0.8	1.2	-	
	VPRD	-					
1HDL Dynamic Range, Direct+Delay	VSBD	-	$\left(\right.$ Note H_{3})	0.9	1.2	-	
	VSRD	-					
Frequency Characteristic, Direct	GHB1	-	(Note H4)	-3.0	-2.0	0.5	dB
	GHR1	-					
Frequency Characteristic, Delay	GHB2	-	(Note H_{5})	-8.2	-6.5	-4.3	
	GHR2	-					
AC Gain, Direct	GBY1	-	(Note H_{6})	-2.0	-0.5	2.0	
	GRY1	-					
AC Gain, Delay	GBY2	-	(Note H7)	-2.4	-0.5	1.1	
	GRY2	-					
Direct-Delay AC Gain Difference	GBYD	-	(Note H_{8})	-1.0	0.0	1.0	
	GRYD	-					
Color Difference Output DC Stepping	VBD	-	(Note H9)	-5	0.0	5	mV
	VRD	-					
1H Delay Quantity	BDt	-	(Note H_{10})	63.7	64.0	64.4	$\mu \mathrm{s}$
	RDt	-					
Color Difference Output	Bomin	-	(Note H_{11})	22	36	55	mV
DC-Offset Control	Bomax	-		-55	-36	-22	
Bus-Min Data	Romin	-		22	36	55	
Bus-Max Data	Romax	-		-55	-36	-22	
Color Difference Output DC-Offset Control / Min. Control Quantity	Bo1	-	(Note H_{12})	1	4	8	
	Ro1	-					
NTSC Mode Gain / NTSC-COM Gain	GNB	-	$\left(\right.$ Note H_{13})	-0.90	0	1.20	dB
	GNR	-		0.92	0	1.58	

Text section

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Y Color Difference Clamping Voltage	Vcp31	-	(Note T1)	1.7	2.0	2.3	V
	Vcp33	-		2.2	2.5	2.8	
	Vcp34	-					
Contrast Control Characteristic	Vc12mx	-	(Note T2)	2.50	3.00	3.50	
	Vc12mn	-		0.21	0.31	0.47	
	D12c80	-		0.83	1.24	1.86	
	Vc13mx	-		2.50	3.00	3.50	
	Vc13mn	-		0.21	0.31	0.47	
	D13c80	-		0.83	1.24	1.86	
	Vc 14 mx	-		2.50	3.00	3.50	
	Vc14mn	-		0.21	0.31	0.47	
	D14c80	-		0.83	1.24	1.86	
AC Gain	Gr	-	(Note T3)	2.8	4.0	5.2	times
	Gg	-					
	Gb	-					
Frequency Characteristic	Gf	-	(Note T4)	-	-1.0	-3.0	dB
Y Sub-Contrast Control Characteristic	$\Delta \mathrm{Vscnt}$	-	(Note T5)	3.0	6.0	9.0	V
Y_{2} Input Range	Vy2d	-	(Note T6)	0.7	-	-	
Unicolor Control Characteristic	Vn12mx	-	(Note T7)	1.6	2.3	4.3	
	Vn12mn	-		0.17	0.35	0.42	
	D12n80	-		0.67	1.16	1.68	
	Vn13mx	-		1.6	2.3	4.3	
	Vn13mn	-		0.17	0.35	0.42	
	D13n80	-		0.67	1.16	1.68	
	Vn14mx	-		1.6	2.3	4.3	
	Vn14mn	-		0.17	0.26	0.42	
	D14n80	-		0.67	1.16	1.68	
	$\Delta \mathrm{V} 13$ un	-		16	20	24	dB
Relative Amplitude (NTSC)	Mnr-b	-	(Note T8)	0.70	0.77	0.85	times
	Mng-b	-		0.30	0.34	0.38	
Relative Phase (NTSC)	Өnr-b	-	(Note T9)	87	93	99	-
	Өng-b	-		235	241.5	248	
Relative Amplitude (PAL)	Mpr-b	-	(Note T10)	0.50	0.56	0.63	times
	Mpg-b	-		0.30	0.34	0.38	
Relative Phase (PAL)	Өpr-b	-	(Note T 11)	86	90	94	-
	Өpg-b	-		232	237	242	

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Color Control Characteristic	Vcmx	-	(Note T12)	1.50	1.80	2.10	V_{p-p}
	$\mathrm{e}_{\text {col }}$	-		80	128	160	step
	$\Delta_{\text {col }}$	-		142	192	242	
Color Control Characteristic, Residual Color	e_{cr}	-	(Note T_{13})	0	12.5	25	$m V_{p-p}$
	e_{cg}	-					
	$e_{c b}$	-					
Chroma Input Range	Vcr	-	(Note T_{14})	700	-	-	
Brightness Control Characteristic	Vbrmx	-	(Note T_{15})	3.05	3.45	3.85	V
	Vbrmn	-		1.05	1.35	1.65	
Brightness Center Voltage	Vbent	-	(Note T_{16})	2.05	2.30	2.55	
Brightness Data Sensitivity	$\Delta \mathrm{Vbrt}$	-	(Note T17)	6.3	7.8	9.4	mV
RGB Output Voltage Axes Difference	Δ Vbct	-	(Note T_{18})	-150	0	150	
White Peak Limit Level	Vwpl	-	(Note T19)	2.63	3.25	3.75	V
Cutoff Control Characteristic	Vcomx	-	(Note T20)	2.55	2.75	2.95	
	Vcomn	-		1.55	1.75	1.95	
Cutoff Center Level	Vcoct	-	(Note T21)	2.05	2.3	2.55	
Cutoff Variable Range	Δ Dcut	-	$\left(\right.$ Note T_{22})	2.3	3.9	5.5	mV
Drive Variable Range	DR+	-	(Note T23)	2.7	3.85	5.0	dB
	DR-	-		-6.5	-5.6	-4.7	
DC Regeneration	TDC	-	(Note T24)	0	50	100	mV
RGB Output S / N Ratio	SNo	-	(Note T25)	-	-50	-45	dB
Blanking Pulse Output Level	Vv	-	(Note T26)	0.7	1.0	1.3	V
	Vh	-					
Blanking Pulse Delay Time	$\mathrm{t}_{\text {don }}$	-	(Note T27)	0.05	0.25	0.45	$\mu \mathrm{s}$
	$t_{\text {doff }}$	-		0.05	0.35	0.85	
RGB Min. Output Level	Vmn	-	(Note T28)	0.8	1.0	1.2	V
RGB Max. Output Level	Vmx	-	(Note T29)	6.85	7.15	7.45	
Halftone ON Ys Level	Vthtl	-	(Note T_{30})	0.3	0.5	0.7	
Halftone Gain 1	G3htl3	-	(Note T31)	-4.5	-3.0	-1.5	dB
Halftone Gain 2	G6htl3	-	(Note T32)	-7.5	-6.0	-4.5	
Text ON Ys Level	Vttx	-	(Note T33)	0.8	1.0	1.2	V
Text / OSD Output, Low Level	Vtxl13	-	(Note T34)	-0.45	-0.25	-0.05	
Text RGB Output, High Level	Vmt13	-	(Note T_{35})	1.15	1.4	1.85	
OSD Ys ON Level	Vtosl	-	(Note T36)	1.8	2.0	2.2	
OSD RGB Output, High Level	Vmos13	-	(Note T37)	1.75	2.15	2.55	
Text Input Threshold Level	Vtxtg	-	(Note T38)	0.7	1.0	1.3	
OSD Input Threshold Level	Vosdg	-	(Note T39)	1.7	2.0	2.3	

CHARACTERISTIC	SYMBOL	$\begin{array}{\|l} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \end{array}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
OSD Mode Switching Rise-Up Time	TRosr	-	(Note T40)	-	40	100	ns
	$\mathrm{T}_{\text {Rosg }}$	-					
	$\mathrm{T}_{\text {Rosb }}$	-					
OSD Mode Switching Rise-Up Transfer Time	tpRosr	-	(Note T41)	-	40	100	ns
	$t_{\text {PRosg }}$	-					
	tpRosb	-					
OSD Mode Switching Rise-Up Transfer Time, 3 Axes Difference	$\Delta t_{\text {PRos }}$	-	(Note T42)	-	15	40	ns
OSD Mode Switching Breaking Time	TFosr	-	(Note T43)	-	30	100	ns
	$\mathrm{T}_{\text {Fosg }}$	-					
	TFosb	-					
OSD Mode Switching Breaking Transfer Time	tpFosr	-	(Note T44)	-	30	100	ns
	tPFosg	-					
	tpFosb	-					
OSD Mode Switching Breaking Transfer Time, 3 Axes Difference	$\Delta \mathrm{t}_{\text {FRos }}$	-	(Note T45)	-	20	40	ns
OSD Hi DC Switching Rise-Up Time	TRoshr	-	(Note T46)	-	20	100	ns
	$\mathrm{T}_{\text {Roshg }}$	-					
	TRoshb	-					
OSD Hi DC Switching Rise-Up Transfer Time	$t_{\text {PRohr }}$	-	(Note T47)	-	20	100	ns
	tpRohg	-					
	tpRohb	-					
OSD Hi DC Switching Rise-Up Transfer Time, 3 Axes Difference	$\Delta t_{\text {PRoh }}$	-	(Note T48)	-	0	40	ns
OSD Hi DC Switching Breaking Time	$\mathrm{T}_{\text {Foshr }}$	-	(Note T49)	-	20	100	ns
	${ }^{\text {T }}$ Foshg	-					
	TFoshb	-					
OSD Hi DC Switching Breaking Transfer Time	tPFohr	-	(Note T_{50})	-	20	100	ns
	tpFohg	-					
	$t_{\text {PFFohb }}$	-					
OSD Hi DC Switching Breaking Transfer Time, 3 Axes Difference	$\Delta t_{\text {PFoh }}$	-	(Note T_{51})	-	0	40	ns

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CHARACTERISTIC \& SYMBOL \& $$
\begin{aligned}
& \hline \text { TEST } \\
& \text { CIR- } \\
& \text { CUIT } \\
& \hline
\end{aligned}
$$ \& TEST CONDITION \& MIN \& TYP. \& MAX \& UNIT

\hline \multirow[b]{9}{*}{RGB Contrast Control Characteristic

com} \& Vc12mx \& - \& \multirow{9}{*}{(Note T52)} \& 2.10 \& 2.5 \& 2.97 \& \multirow{9}{*}{V}

\hline \& Vc12mn \& - \& \& 0.21 \& 0.31 \& 0.47 \&

\hline \& D12c80 \& - \& \& 0.84 \& 1.25 \& 1.87 \&

\hline \& Vc13mx \& - \& \& 2.10 \& 2.5 \& 2.97 \&

\hline \& Vc13mn \& - \& \& 0.21 \& 0.31 \& 0.47 \&

\hline \& D13c80 \& - \& \& 0.84 \& 1.25 \& 1.87 \&

\hline \& Vc 14 mx \& - \& \& 2.10 \& 2.5 \& 2.97 \&

\hline \& Vc14mn \& - \& \& 0.21 \& 0.31 \& 0.47 \&

\hline \& D14c80 \& - \& \& 0.84 \& 1.25 \& 1.87 \&

\hline Analog RGB AC Gain \& Gag \& - \& (Note T_{53}) \& 4.0 \& 5.1 \& 6.3 \& times

\hline Analog RGB Frequency Characteristic \& Gfg \& - \& (Note T_{54}) \& -0.5 \& -1.75 \& -3.0 \& dB

\hline Analog RGB Dynamic Range \& Dr24 \& - \& (Note T55) \& 0.5 \& - \& - \& \multirow{4}{*}{V}

\hline \multirow[t]{2}{*}{RGB Brightness Control Characteristic} \& Vbrmxg \& - \& \multirow[b]{2}{*}{(Note T56)} \& 3.05 \& 3.25 \& 3.45 \&

\hline \& Vbrmng \& - \& \& 1.05 \& 1.25 \& 1.45 \&

\hline RGB Brightness Center Voltage \& Vbcntg \& - \& (Note T57) \& 2.05 \& 2.25 \& 2.45 \&

\hline RGB Brightness Data Sensitivity \& $\Delta \mathrm{Vbrtg}$ \& - \& (Note T58) \& 6.3 \& 7.8 \& 9.4 \& mV

\hline Analog RGB Mode ON Voltage \& Vanath \& - \& (Note T59) \& 0.8 \& 1.0 \& 1.2 \& V

\hline \multirow{3}{*}{Analog RGB Switching Rise-Up Time} \& TRanr \& - \& \multirow{3}{*}{(Note T60)} \& \multirow{3}{*}{-} \& \multirow{3}{*}{50} \& \multirow{3}{*}{100} \& \multirow{14}{*}{ns}

\hline \& TRang \& - \& \& \& \& \&

\hline \& TRanb \& - \& \& \& \& \&

\hline \multirow{3}{*}{Analog RGB Switching Rise-Up Transfer Time} \& tPRanr \& - \& \multirow{3}{*}{(Not T61e)} \& \multirow{3}{*}{-} \& \multirow{3}{*}{20} \& \multirow{3}{*}{100} \&

\hline \& tpRang \& - \& \& \& \& \&

\hline \& tPRanb \& - \& \& \& \& \&

\hline Analog RGB Switching Rise-Up Transfer Time, 3 Axes Difference \& Δ tpRas \& - \& (Note T62) \& - \& 0 \& 40 \&

\hline \multirow{3}{*}{Analog RGB Switching Breaking Time} \& $\mathrm{T}_{\text {Fanr }}$ \& - \& \multirow{3}{*}{(Note T63)} \& \multirow{3}{*}{-} \& \multirow{3}{*}{50} \& \multirow{3}{*}{100} \&

\hline \& TFang \& - \& \& \& \& \&

\hline \& TFanb \& - \& \& \& \& \&

\hline \multirow{3}{*}{Analog RGB Switching Breaking Transfer Time} \& tPFanr \& - \& \multirow{3}{*}{(Note T64)} \& \multirow{3}{*}{-} \& \multirow{3}{*}{30} \& \multirow{3}{*}{100} \&

\hline \& tpFang \& - \& \& \& \& \&

\hline \& $t_{\text {PFanb }}$ \& - \& \& \& \& \&

\hline Analog RGB Switching Breaking Transfer Time, 3 Axes Difference \& Δ tPFas \& - \& (Note T65) \& - \& 0 \& 40 \&

\hline
\end{tabular}

Audio section

CHARACTERISTIC		SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Attenuator Max. Gain		Gmxt	-	(Note A_{1})	0	1	2	dB
	EXT	Gmxe	-					
Attenuator Center Gain	TV	Gcntt	-	(Note A_{2})	-20	-17	-14	
	EXT	Gcnte	-					
Attenuator Residual Sound		Vmnt	-	(Note A_{3})	-	-	70	$\mu \mathrm{V}$
	EXT	Vmne	-					
Audio Mute Residual Sound	TV	Vmutt	-	(Note A_{4})	-	-	70	
	EXT	Vmute	-					
Attenuator Gain Switching Offset	TV	ATToft	-	(Note A_{5})	-100	0	100	mV
	EXT	ATTofe	-					
Audio Mute Offset	TV	AMToft	-	(Note A_{6})	-30	0	30	
	EXT	AMTofe	-					
Audio Crosstalk	TV \rightarrow EXT	CRtv	-	(Note A_{7})		-75	-70	dB
	EXT \rightarrow TV	CRext	-					
Attenuator Max. Input Voltage	TV	DItv	-	(Note A_{8})	6.0	-	-	V_{p-p}
	EXT	Dlext	-					
A-SW Switching Offset		VSWof	-	-	-30	0	30	mV
Attenuator Breaking Frequency	$\begin{gathered} \text { TV } \\ \text { EXT } \end{gathered}$	fctv	-	(Note A_{10})	500	-	-	kHz
		fcext	-					
Audio S / N Ratio	TV	SNtv	-	(Note A_{11})	60	-	-	dB
	EXT	SNext	-					
Attenuator Max. Output Voltage	TV	DOtv	-	(Note A_{12})	5.5	-	-	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
	EXT	DOext	-					

SECAM section

CHARACTERISTIC	SYMBOL	$\begin{array}{\|l} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \\ \hline \end{array}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Bell Monitor Output Amplitude	embo	-	(Note S_{1})	200	300	400	$\mathrm{mV} \mathrm{V}_{\mathrm{p}} \mathrm{p}$
Bell Filter f_{O}	foB-C	-	(Note S_{2})	-23	0	23	kHz
Bell Filter f_{o} Variable Range	foB-L	-	(Note S3)	-69	-46	-23	
	foB-H	-		69	92	115	
Bell Filter Q	QBEL	-	(Note S4)	14	16	18	-
Color Difference Output Amplitude	VBS	-	(Note S_{5})	0.50	-	0.91	V_{p-p}
	VRS	-		0.39	-	0.73	
Color Difference Relative Amplitude	R / B-S	-	(Note S_{6})	0.70	-	0.90	-
Color Difference Attenuation Quantity	SATTB	-	(Note S_{7})	-1.50	-	-0.50	dB
	SATTR	-					
Color Difference S / N Ratio	SNB-S	-	(Note S_{8})	-85	-	-25	
	SBR-S	-					
Linearity	LinB	-	(Note S9)	75	-	117	\%
	LinR	-		85	-	120	
Rising-Fall Time (Standard De-Emphasis)	trfB	-	(Note S_{10})	-	1.3	1.5	$\mu \mathrm{s}$
	trfR	-					
Rising-Fall Time (Wide-Band De-Emphasis)	trfBw	-	(Note S_{11})	-	1.1	1.3	
	trfRw	-					
Killer Operation Input Level (Standard Setting)	eSK	-	(Note S_{12})	0.5	1	2	$m V_{p-p}$
	eSC	-					
Killer Operation Input Level (VID ON)	eSFK	-	(Note S_{13})				
	eSFC	-					
Killer Operation Input Level (Low Sensitivity, VID OFF)	eSWK	-	(Note S ${ }_{14}$)	0.7	1.5	3	
	eSWC	-					

TEST CONDITION

VIDEO SWITCH SECTION

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)				
		SW MODE			SUB-ADDRESS \& BUS DATA	MEASURING METHOD
		S1	S47	S51	03H	
$\begin{aligned} & v_{1} \\ & v_{2} \\ & v_{3} \end{aligned}$	Min. Linear Video Input Max. Linear Video Input Video Input Dynamic Range	B	B	A	$\begin{gathered} 40 \mathrm{H} \\ \downarrow \\ \mathrm{BOH} \end{gathered}$	(1) While supplying DC voltage to pin 47 (TVin), measure voltage change at pin 56 (Video Out) to find values of Vdi1 and Vdi2. (2) Find dynamic range from $\mathrm{Vdi1}$ and $\mathrm{Vdi2}$. VdiA = Vdi1 - Vdi2 (3) Perform the same measurement in the EXT. mode as well as the TV mode. (EXT. IN : pin 1). Note: $\quad T=T V$ mode, $E=E X T$. mode
$\begin{aligned} & V_{4} \\ & V_{5} \end{aligned}$	Min. Output Max. Output	\uparrow	\uparrow	\uparrow	$\begin{gathered} 40 \mathrm{H} \\ \downarrow \\ \mathrm{BOH} \end{gathered}$	(1) In the same measurement as the preceding item V_{1}, find minimum output voltage (Vdo1) and maximum output voltage (Vdo2) at pin 56 (Video OUT). (2) Perform the same measurement in the EXT. mode as well as the TV mode. (EXT. IN : pin 1).
V_{6}	AC Gain	A	A	\uparrow	$\begin{gathered} 40 \mathrm{H} \\ \vdots \\ \mathrm{BOH} \end{gathered}$	(1) Input $10 \mathrm{kHz}, 0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ TG7 sine wave signal to pin 47 (TV IN). (2) Measure amplitude of video output at pin 56. (3) Calculate gain of the input and output (output / input). Calculation result shall be expressed as Gv1. Gv1 = v56 / v47 (4) Perform the same measurement and calculation in the EXT. mode as well as the TV mode. (EXT. IN : pin 1)
V_{7}	Frequency Characteristic	\uparrow	\uparrow	\uparrow	$\begin{gathered} 40 \mathrm{H} \\ \downarrow \\ \mathrm{BOH} \end{gathered}$	(1) Input $100 \mathrm{kHz}, 0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ and $6 \mathrm{MHz}, 0.5 \mathrm{~V}_{\mathrm{p} \text {-p }} \mathrm{TG7}$ sine wave signals to pin 47 (TV IN). (2) Measure amplitude of the respective video output at pin 56 . Measurement results shall be expressed as V100k and V6M respectively, and difference in the frequency characteristic between those outputs shall be expressed as Gf1. Gf1 = 20log (V6M / V100k) (3) Perform the same measurement in the EXT. mode as well as the TV mode. (EXT. IN : pin 1)
V_{8}	Crosstalk between TV and EXT	B \downarrow A	B \downarrow \downarrow A	A	$\begin{gathered} 40 \mathrm{H} \\ \downarrow \\ \mathrm{BOH} \end{gathered}$	(1) Input $3 \mathrm{MHz}, 0.7 \mathrm{~V}$ (video portion) TG7 sine wave signal to pin 47 (TV IN). (2) Short circuit pin 1 (EXT. IN) in AC coupling. (3) Measure amplitude of the video output at pin 56 in both the TV mode and EXT. mode, and express the measurement results as VTV and VEXT respectively. (4) $\mathrm{Vcr}=20 \log (\mathrm{VEXT} / \mathrm{VTV})$ (5) Perform the same measurement in the EXT. mode as well as the TV mode. (EXT. IN : pin 1)

VIDEO SECTION

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : H, RGB $\mathrm{V}_{C C}=9 \mathrm{~V}$; $\mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)											
		SW MODE					SUB-ADDRESS \& BUS DATA						MEASURING METHOD
		S39	S42	S44	S45	S51	04H	08H	0FH	10H	13H	14H	
Y_{4}	Chroma Trap Attenuation (4.43MHz)	A	C	A	B	A	20H	04H	Variable	Variable	Variable	03H	(1) Set the 358 TRAP mode to AUTO by setting bus data. (2) Set the bus data so that Q of chroma trap is 1.5 . (3) Set the bus data so that f_{0} of chroma trap is 0 . (4) Input TG7 sine wave signal whose frequency is 4.43 MHz and video amplitude is 0.5 V to pin $45\left(\mathrm{Y}_{1} \mathrm{IN}\right)$. (5) Perform the same measurement as the steps 5 through 7 of the preceding item Y_{3}. The measurement result shall be expressed as Gtr4.
Y_{5}	Chroma Trap Attenuation (SECAM)	\uparrow	(1) Set the bus data so that the 358 TRAP mode is AUTO and the Dtrap is ON . (2) Set the bus data so that Q of chroma trap is 1.5 . (3) Set the bus data so that f_{0} of chroma trap is 0 . (4) Input SECAM signal whose amplitude in video period is 0.5 V to pin 45 ($\mathrm{Y}_{1} \mathrm{IN}$). (5) Perform the same measurement as the steps 5 through 7 of the preceding item Y_{3} to find the maximum attenuation (Gtrs).										
Y6	Yy Correction Point	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	Variable	80H	00H	ВАН	\uparrow	(1) Connect the power supply to pin 45 $\left(Y_{1} I N\right)$. (2) Turn off $Y Y$ by setting the bus data. (3) While raising the supply voltage from the level measured in the preceding item Y_{1}, measure voltage change characteristic of Y_{1} output at pin 37. (4) Set the bus data to turn on $Y y$. (5) Perform the same measurement as the above step 3. (6) Find a gamma (Y) point from the measurement results of the steps 3 and 5 . $\mathrm{yp}=\mathrm{Vr} \div 0.7 \mathrm{~V}$
Y_{7}	Yy Correction Curve	\uparrow	From the measurement in the above item Y_{6}, find gain of the portion that the y correction has an effect on.										

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)											
		SW MODE					SUB-ADDRESS \& BUS DATA						MEASURING METHOD
		S39	S42	S44	S45	S51	04H	08H	OFH	10 H	13 H	14H	
Y_{8}	APL Terminal Output Impedance	A	C	B	A	A	20H	04H	80H	00H	BAH	03H	(1) Short circuit pin $45\left(\mathrm{Y}_{1} \mathrm{IN}\right)$ in AC coupling. (2) Input synchronizing signal to pin 51. (3) Connect power supply and an ammeter to the APL of pin 44 as shown in the figure, and adjust the power supply so that the ammeter reads 0 (zero). (4) Raise the voltage at pin 44 by 0.1 V , and measure the current (lin) at that time. $\mathrm{Zo44}(\Omega)=0.1 \mathrm{~V} \div \operatorname{lin}(\mathrm{A})$
Y_{9}	DC Transmission Compensation Amplifier Gain	\uparrow	Variable	(1) Set the bus data so that DC transmission factor correction gain is maximum. (2) In the condition of the Note Y_{8}, observe $\mathrm{Y}_{1 \text { out }}$ waveform at pin 37 and measure voltage change in the video period. (3) Set the bus data so that DC transmission factor correction gain is centered, and measure voltage in the same manner as the above step 2. $\begin{aligned} & \text { Pin } 19 \text { waveform }\left[\square \frac{\Delta \mathrm{V}_{1}}{\Delta \mathrm{~V}_{2}} \text { Pin } 44+0.1 \mathrm{~V}\right. \\ & \text { Adr }=\left(\Delta \mathrm{V}_{2}-\Delta \mathrm{V}_{1}\right) \div 0.1 \mathrm{~V} \div \mathrm{Y}_{1} \text { gain } 44+0.2 \mathrm{~V} \end{aligned}$									
Y_{10}	Maximum Gain of Black Expansion Amplifier	\uparrow	\uparrow	A	B	\uparrow	\uparrow	\uparrow	OOH	\uparrow	\uparrow	E3H	(1) Set the bus data so that black expansion is on and black expansion point is maximum. (2) Input TG7 sine wave signal whose frequency is 500 kHz and video amplitude is 0.1 V to pin $45\left(\mathrm{Y}_{1} \mathrm{IN}\right)$. (3) While impressing 1.0 V to pin 39 (Black Peak Hold), measure amplitude (Va) of $\mathrm{Y}_{1 \text { out }}$ signal at pin 37. (4) While impressing 3.5 V to pin 39 (Black Peak Hold), measure amplitude (Vb) of $\mathrm{Y}_{1 \text { out }}$ signal at pin 37. $\mathrm{Akc}=\mathrm{Va} \div \mathrm{Vb}$

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : H, RGB $\mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)											
		SW MODE					SUB-ADDRESS \& BUS DATA						MEASURING METHOD
		S39	S42	S44	S45	S51	04H	08H	OFH	10 H	13H	14 H	
Y_{11}	Black Expansion Start Point	A	C	A	A	A	20H	04H	00H	00H	BAH	Variable	(1) Set the bus data so that black expansion is on and black expansion point is maximum. (2) Supply 1.0 V to pin 39 (Black Peak Hold). (3) Supply 2.9 V to the APL of pin 44. (4) Connect the power supply to pin 45 (Y_{1} IN). While raising the supply voltage from the level measured in the preceding item Y_{1}, measure voltage change at pin 37 ($Y_{1 \text { out }}$). (5) Set the bus data to center the black expansion point, and perform the same measurement as the above steps 2 through 4. (6) Set the black expansion point to the minimum by setting the bus data, and perform the same measurement as the above steps 2 through 4. (7) While supplying 2.2 V to the APL of pin 44, perform the same measurement as the above step 4 with the black expansion point set to maximum, center and minimum.
Y_{12}	Black Peak Detection Period (Horizontal) Black Peak Detection Period (Vertical)	B	\uparrow	E3H	In the condition of the Note Y_{1}, measure waveform at pin 39 (Black Peak Hold).								

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)												
		SW MODE					SUB-ADDRESS \& BUS DATA						MEASURING METHOD	
		S39	S42	S44	S45	S51	04H	08H	OFH	10 H	13 H	14 H		
													(1)	Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum.
Y_{19}	Y Signal Maximum Input Range	A	C	A	B	A	20 H	04H	80H	OOH	BAH	03H	(2)	Input TG7 sine wave signal whose frequency is 100 kHz to pin 45 (Y_{1} IN) and pin 51 (Sync. IN).
													(3)	While increasing the amplitude Vyd of the signal in the video period, measure Vyd just before the waveform of Y_{1} output (pin 37) is distorted.

CHROMA SECTION

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : H, RGB $\mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)										
		SW MODE										MEASURING METHOD
		S26	S1	S31	S33	S34	S39	S42	S44	S45	S51	
C_{1}	ACC Characteristic	ON	A	B	B	B	A	A	A	A	B	(1) Activate the test mode (S26-ON, Sub Add 02 ; 01h). (2) Set as follows : band pass filter $\mathrm{Q}=2, \mathrm{f}_{\mathrm{o}}=600 \mathrm{kHz}$, crystal clock $=$ conforming to European, Asian system. (3) Set the gate to the normal status. (4) Input 3 N rainbow color bar signal to pin 42 (Chroma IN). (5) When input signal to pin 42 is the same in the burst and chroma levels $\left(10 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}\right)$, burst amplitude of B-Y output signal from pin 36 is expressed as eAT. When the level of input signal to pin 42 is $100 \mathrm{mV}_{\text {p-p }}$ or 300 mV p-p, burst amplitude of the $B-Y$ output signal is expressed as F1T or F2T. The ratio between F1T and F2T is expressed as AT. F2T / F1T = AT (6) Perform the same measurement in the EXT. mode ($f_{o}=0$). (eAE, F1E, AE) (7) Input 4N rainbow color bar signal to pin 42 (Chroma IN), and perform the same measurement as the above-mentioned steps with 3 N rainbow color bar signal input.

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{CV} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)										
		SW MODE										MEASURING METHOD
		S26	S1	S31	S33	S34	S39	S42	S44	S45	S51	
C_{3}	Band Pass Filter, -3dB Band Characteristic	ON	A	B	B	B	A	B	A	A	B	(1) Activate the test mode (S26-ON, Sub Add 02 ; 01h). (2) Set as follows : band pass filter $\mathrm{Q}=2$, crystal clock $=$ conforming to 3.579 / 4.43 MHz . (3) Set the gate to the normal status. (4) Input 3 N composite sine wave signal ($1 \mathrm{~V}_{\mathrm{p} \text {-p }}$) to pin 42 (Chroma IN). (5) Measure frequency characteristic of B-Y output of pin 36, and measure peak frequency in the -3 dB band. (6) Changing f_{0} to $0,500,600$ and 700 by the bus control and measure peak frequencies in the -3 dB band respectively with different f_{o}.
C_{4}	Band Pass Filter, Q Characteristic Check	\uparrow	(1) Activate the test mode (S26-ON, Sub Add 02 ; 01h). (2) Set as follows : TV mode ($\mathrm{f}_{\mathrm{O}}=600$), Crystal mode $=$ conforming to 3.579 / 4.43 MHz , gate $=$ normal status. (3) Input 3 N composite sine wave signal ($1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) to pin 42 (Chroma IN). (4) Measure frequency characteristic of B-Y output of pin 36, and measure peak frequency in the -3 dB band. (5) Changing f_{0} of the band pass filter to $0,500,600$ and 700 by the bus control and measure peak frequencies in the -3 dB band respectively with different f_{o}.									

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : H, RGB $\mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)										
		S26	S1	S31	S33	SW	S39	S42	S44	S45	S51	MEASURING METHOD
C_{9}	APC Lead-In Range	OFF \downarrow ON	A	B	B	B	A	A	A	A	B	(1) Connect band pass filter $(Q=2)$, set to $T V$ mode $\left(f_{0}=600 \mathrm{kHz}\right)$ with X 'tal clock conforming to European, Asian system. (2) Set the gate to normal status. (3) Input 3 NCW signal of $100 \mathrm{mV} \mathrm{V}_{\mathrm{p} \text {-p }}$ to pin 42 of the chroma input terminal. (4) While changing frequency of the CW (continuous waveform) signal, measure its frequency when B-Y color difference signal of pin 36 is colored. (5) Input 4 NCW (continuous waveform) $100 \mathrm{mV} \mathrm{V}_{\mathrm{p} \text { p }}$ signal to pin 42 (Chroma IN). (6) While changing frequency of the CW signal, measure frequencies when B-Y color difference output of pin 36 is colored and discolored. Find difference between the measured frequency and $\mathrm{f}_{\mathrm{c}}(4.433619 \mathrm{MHz})$ and express the differences as fPH and fPL, which show the APC lead-in range. (7) Variable frequency of VCXO is used to cope with lead-in of $3.582 \mathrm{MHz} / 3.575 \mathrm{MHz}$ PAL system. (8) Activate the test mode (S26-ON, Sub Add 02 ; 02h). (9) Input nothing to pin 42 (Chroma IN). (10) While varying voltage of pin 30 (APC Filter), measure variable frequency of VCXO at pin 35 ($\mathrm{R}-\mathrm{Y}$ OUT) while observing color and discoloring of $\mathrm{R}-\mathrm{Y}$ color difference signal. Express difference between the high frequency (fH) and f_{0} center as 3.582 HH , and difference between the low frequency (fL) and f_{o} center as 3.582 HL . Perform the same measurement for the NP system (3.575 MHz PAL).
C_{10}	APC Control Sensitivity	ON	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	c	\uparrow	\uparrow	\uparrow	(1) Activate the test mode (S26-ON, Sub Add 02 ; 02h). (2) Connect band pass filter as same as the Note C_{9}. (3) Change the X'tal mode properly to the system. (4) Input nothing to pin 42 (Chroma IN). (5) When V_{30} 's APC voltage $\pm 50 \mathrm{mV}$ is impressed to pin 30 (APC Filter) while its voltage is being varied, measure frequency change of pin 35 output signal as frH or frL and calculate sensitivity according to the following equation. $\mathrm{b}=(\mathrm{frH}-\mathrm{frL}) / 100$

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)													
		SW MODE										MEASURING METHOD			
		S26	S1	S31	S33	S34	S39	S42	S44	S45	S51				
C_{11}	Killer Operation Input Level	OFF	A	B	B	B	A	A	A	A	B	(1) Connect band pass filter $(Q=2)$ and set to $T V$ mode ($f_{\mathrm{O}}=600 \mathrm{kHz}$). (2) Set the crystal mode to conform to European, Asian system and set the gate to normal status. (3) Input 3 N color signal having $200 \mathrm{mV} \mathrm{V}_{\mathrm{p} \text { p }}$ burst to pin 42 (Chroma IN). (4) While attenuating chroma input signal, measure input burst amplitudes of the signal when B-Y color difference output of pin 36 is discolored and when the same signal is colored. Measured input burst amplitudes shall be expressed as $3 \mathrm{~N}-\mathrm{VTK} 1$ and 3NVTC1 respectively (killer operation input level). (5) Killer operation input level in the condition that P / N killer sensitivity is set to LOW with the bus control is expressed as $3 \mathrm{~N}-\mathrm{VTK} 2$ or $3 \mathrm{~N}-\mathrm{VTC2}$. (6) Perform the same measurement as the above step 4 with different inputs of $4 \mathrm{~N}, 4 \mathrm{P}$, MP, NP color signals having 200 mV p-p burst to pin 42 (Chroma IN). (When measuring with MP / NP color signal, set the crystal system to conform to South American system.) (7) Killer operation input level at that time is expressed as follows. Normal killer operation input level in the 4 N system is expressed as $4 \mathrm{~N}-\mathrm{VTK} 1$, 4N-VTC1. Normal killer operation input level in the 4P system is expressed as 4P-VTK1, 4P-VTC1. Killer operation input level with low killer sensitivity is expressed as 4P-VTK2, 4P-VTC2. Normal killer operation input level in the MP system is expressed as MP-VTK2, MP-VTC2. Normal killer operation input level in the NP system is expressed as NP-VTK1, NP-VTC1. Killer operation input level with low killer sensitivity is expressed as NP-VTK2, NP-VTC2. [Reference]			

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)										
		S26	S1	S31	S33	SW	S 39	S42	S44	S45	S51	MEASURING METHOD
C_{12}	Color Difference Output	ON	A	B	B	B	A	A	A	A	B	(1) Activate the test mode (S26-ON, Sub Add $02 ; 08 \mathrm{~h}$). (2) Connect band pass filter $(Q=2)$, set to $T V$ mode $\left(f_{0}=600 \mathrm{kHz}\right)$ with 0 dB attenuation. (3) Set the crystal mode to conform to European, Asian system and set the gate to normal status. (4) Input $3 \mathrm{~N}, 4 \mathrm{~N}$ and 4 P rainbow color bar signals having $100 \mathrm{mV} \mathrm{V}_{\text {pp }}$ burst to pin 42 of the chroma input terminal one after another. (5) Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 ($R-Y$) respectively, and express them as 3 NeB-Y / R-Y, 4NeB-Y / R-Y and 4PeB-Y / R-Y respectively. (6) While inputting 4P 75% color bar signal ($100 \mathrm{~m} V_{p-p}$ burst) to pin 42 of the chroma input terminal, measure amplitudes of color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively. (Ratio of those amplitudes is expressed as 4Peb-y / r-y for checking color level of SECAM system.)
C_{13}	Demodulation Relative Amplitude	\uparrow	(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h). (2) Connect band pass filter $(Q=2)$, set to $T V$ mode $\left(f_{0}=600 \mathrm{kHz}\right)$ with 0 dB attenuation. (3) Set the crystal mode to conform to European, Asian system and set the gate to normal status. (4) Input $3 \mathrm{~N}, 4 \mathrm{~N}$ and 4 P rainbow color bar signals having 100 mV p-p burst to pin 42 of the chroma input terminal one after another. (5) Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 ($R-Y$) respectively, and express ratio between the two amplitudes as $3 N G R / B, 4 N G R /$ B and $4 P G R / B$ respectively. (Note) Relative amplitude of G-Y color difference signal shall be checked later in the Text section.									

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : H, RGB $\mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)										
		SW MODE										MEASURING METHOD
		S26	S1	S31	S33	S34	S39	S42	S44	S45	S51	
C_{14}	Demodulation Relative Phase	ON	A	B	B	B	A	A	A	A	B	(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h). (2) Connect band pass filter $(Q=2)$, set to $T V$ mode $\left(f_{0}=600 \mathrm{kHz}\right)$ with 0 dB attenuation. (3) Set the crystal mode to conform to European, Asian system and set the gate to normal status. (4) Input $3 \mathrm{~N}, 4 \mathrm{~N}$ and 4P rainbow color bar signals having $100 \mathrm{mV} \mathrm{V}_{\mathrm{p} \text {-p }}$ burst to pin 42 of the chroma input terminal one after another. (5) Measure phases of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express them as $3 N \theta R-B, 4 N \theta R-B$ and $4 P \theta R-B$ respectively. (6) For measuring with 3 N and 4 N color bar signals in NTSC system, set six bars of the $B-Y$ color difference waveform to the peak level with the Tint control and measure its phase difference from phase of $R-Y$ color difference signal of pin 35 (R-Y OUT). (Note) Relative phase of G-Y color difference signal shall be checked later in the Text section.
C_{15}	Demodulation Output Residual Carrier	\uparrow	(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h). (2) Connect band pass filter $(Q=2)$, set to TV mode $\left(f_{0}=600 \mathrm{kHz}\right)$ with 0 dB attenuation. (3) Set the crystal mode to conform to European, Asian system. (4) Set the gate to normal status. (5) Input 3 N and 4 N rainbow color bar signals having $100 \mathrm{mV}_{\mathrm{p} \text {-p }}$ burst to pin 42 of the chroma input terminal one after another. (6) Measure subcarrier leak of 3 N and 4 N color bar signals appearing in color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively, and express those leaks as $3 N-S C B / R$ and $4 N-S C B / R$.									

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)																		
		s	$\frac{\text { BUS : TEST }}{}$				MODE			BUS : NORMAL CONTROL MODE							MEASURING METHOD			
							D5	D4	D3 ${ }^{101}$	D2	D1	D0	OTHER CONDITION							
C_{18}	16.2 MHz Oscillation Frequency	ON	0	0	0	1				0	0	0	0	0	0	0	0	0	-	(1) Input nothing to pin 42. (2) Measure frequency of CW signal of pin 35 as fr, and find oscillation frequency by the following equation. $\Delta \mathrm{foF}=(\mathrm{fr}-0.05 \mathrm{MHz}) \times 4$
C_{19}	16.2 MHz Oscillation Start Voltage	ON	0	0	0	1	0	0	0	0	0	0	0	0	0	Impress pin 38 individually with separate power supply.	While raising voltage of pin 38 , measure voltage when oscillation waveform appears at pin 40 .			
C_{20}	f_{sc} Free-Run Frequency	ON	0	0	0	1	0	0	0	0		Variable		0	0	-	(1) Input nothing to pin 42. (2) Change setting of SUB (10H) D_{4}, D_{3} and D_{2} according to respective frequency modes, and measure frequency of CW signal of pin 35. $\begin{aligned} & \text { Detail of } D_{4}, D_{3} \text { and } D_{2} \\ & \begin{array}{l} 3.58 M=1:(001), \quad 4.43 M=2:(010) \\ M-P A L=6:(110), \quad N-P A L=7:(111) \end{array} \end{aligned}$			

DEF SECTION

NOTE	ITEM											
		SUB-ADDRESS \& BUS DATA										MEASURING METHOD
DV8	V. Reverse S-Curve Correction, Max. Correction Quantity	Sub 19H	0	0	0	-	-	0	0	\times	(1)	Adjust the oscilloscope's amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each other as the bus data is set to the preset value. Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below. Find V_{S} according to the equation that $V_{S}=(X / Y) \times 100 \%$.
DV9	V. Linearity Max. Correction Quantity	Sub 1AH	1	1	1	1	1	\times	\times	\times	(1) (2) (3)	Adjust the oscilloscope's amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each other as the bus data is set to the preset value. Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below. Find V_{S} according to the equation that $\mathrm{V}_{\mathrm{S}}=(\mathrm{X} / 2 \mathrm{Y}) \times 100 \%$.

NOTE	ITEM											
		SUB-ADDRESS \& BUS DATA										MEASURING METHOD
$\begin{aligned} & \text { DV10 } \\ & \text { DV11 } \\ & \text { DV12 } \end{aligned}$	AFC-MASK Start Phase AFC-MASK Stop Phase VNFB Phase	Sub 02H Sub 16H	0 \times	0 \times	0	0	0	0 0	0 0	1 0		Supply 5V DC to pin 26. Set bus data as indicated on the left and activate the test mode. Measure the AFC-MASK start phase (X) and AFC-MASK stop phase (Y) of pin 49. Set the Sub 16 H as indicated on the left. Measure the VNFB start phase (Z) of pin 54.
$\begin{aligned} & \text { DV13 } \\ & \text { DV14 } \\ & \text { DV15 } \end{aligned}$	V. Output MaximumPhase V. Output Minimum Phase V. Output Phase Variable Range	Sub 16H	\times \times	\times \times	\times \times \times	\times \times	\times \times	0 1	0 1	0 1		Input video signal to pin 51. Measure both phases (Xmax, Xmin) of pin 52 and pin 54 with the respective bus data settings shown on the left. Find difference between the two phases measured in the above step 2. $Y=X \max -X \min$ (52)

NOTE	ITEM											
		SUB-ADDRESS \& BUS DATA										MEASURING METHOD
DV21	V. Lead-In Range 2	Sub 16H	\times	\times	\times	0	1	0	0	0		Set bus data as indicated on the left. Input 262.5 H video signal to pin 51. Set a certain number of field lines in which signals of pin 51 and pin 54 completely synchronize with each other as shown in the figure below. Decrease the field lines in number and measure number of lines in which pin 51 and pin 54 signals do not synchronize with each other. Again set a certain number of field lines in which pin 51 and pin 52 signals synchronize with each other. Increase the field lines in number and measure number of lines in which pin 51 and pin 52 signals do not synchronize with each other.
$\begin{aligned} & \hline \text { DV22 } \\ & \text { DV23 } \end{aligned}$	W-VBLK Start Phase W-PMUTE Start Phase (Note) Only the 60 system is subject to evaluation.	Sub 1BH Sub 1DH	\times \times \times \times \times	\times \times \times \times \times \times	0 1 0 1	0 1 0 1	0 1 0 1	0 1 0 0 1	0 1 0 0 1	0 1 0 1		Set bus data as specified for the Sub 1BH in the left columns, and measure the value of X shown in the figure below. W-VBLK start phase : MAX, MIN Set bus data as specified for the Sub 1DH in the left columns, and measure the value of X shown in the figure below. W-PMUTE start phase : MAX, MIN

NOTE	ITEM	$\left.\begin{array}{c} \text { TEST CONDITION } \\ \text { Unless otherwise specified : } \mathrm{H}, \mathrm{RGB} \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}, \mathrm{FsC}} \mathrm{~V}_{\mathrm{DD},} \mathrm{Y} / \mathrm{C} \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=\text { preset value } ; \\ \text { (Note) } \quad \text { " } \mathrm{x} \text { " in the data column represents preset value at power } \mathrm{ON} . \end{array}\right)$										
		SUB-ADDRESS \& BUS DATA										MEASURING METHOD
DV24	W-VBLK Stop Phase W-PMUTE Stop Phase		\times	0	0	0	0	0	0	0	(1)	Set bus data as specified for the Sub 1CH in the left columns, and measure the value of Y shown in the figure below. W-VBLK stop phase : MAX, MIN
	Note: Only the 60 system is subject to evaluation.	Sub 1CH	\times	1	1	1	1	1	1	1	(2)	Set bus data as specified for the Sub 1EH in the left columns, and measure the value of Y shown in the figure below. W-PMUTE stop phase : MAX, MIN
		Sub 1EH	\times	0	0	0	0	0	0	0		(52)
			\times	1	1	1	1	1	1	1		(12)

1H DL SECTION

NOTE	ITEM					
		SW MODE	SUB-	RESS	ATA	MEASURING METHOD
H_{1}	1HDL Dynamic Range Direct	ON	94H	- -	-	(1) Input waveform 1 to pin 33 (B-Yin), and measure VNBD, that pin 36 (B-Yout) is saturated input level. (2) Measure VNRD of R-Y input in the same way as VNBD.
H_{2}	1HDL Dynamic Range Delay	\uparrow	8CH	-	-	(1) Input waveform 1 to pin 33 (B-Yin), and measure VPBD, that pin 36 (B-Yout) is saturated input level. (2) Measure VPRD of R-Y input in the same way as VPBD.
H_{3}	1HDL Dynamic Range, Direct+Delay	\uparrow	A4H	-	-	(1) Input waveform 1 to pin 33 (B-Yin), and measure VSBD, that pin 36 (B-Yout) is saturated input level. (2) Measure VNRD of R-Y input in the same way as VSBD.
H_{4}	Frequency Characteristic, Direct	\uparrow	94H	-	-	(1) In the same measuring as H_{1}, set waveform 1 to $0.3 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ and $\mathrm{f}=100 \mathrm{kHz}$. Measure VB100, that is pin 36 (B-Yout) level. And set waveform 1 to $f=700 \mathrm{kHz}$. Measure VB700, that is pin 36 (B-Yout) level. GHB1 = 201og (VB700 / VB100) (2) Measure GHR1 of R-Y out in the same way as GHB1.
H_{5}	Frequency Characteristic, Delay	\uparrow	8CH	-	-	(1) In the same measuring as H_{1}, set waveform 1 to $0.3 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ and $\mathrm{f}=100 \mathrm{kHz}$. Measure VB100, that is pin 36 (B-Yout) level. And set waveform 1 to $f=700 \mathrm{kHz}$. Measure VB700, that is pin 36 (B -Yout) level. $\text { GHB2 }=2010 g(V B 700 / V B 100)$ (2) Measure GHR2 of R-Y out in the same way as GHB2.
H_{6}	AC Gain Direct	\uparrow	94H	-	-	$\mathrm{GBY}_{1}=20 \log (\mathrm{VByt} 1 / 0.7)$ (2) Measure GRY1 of R-Y out in the same way as GBY1.
H_{7}	AC Gain Delay	\uparrow	8CH	-	-	(1) In the same measuring as H_{1}, set waveform 1 to $0.7 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$. Measure VByt2, that is pin 36 ($\mathrm{B}-\mathrm{Yout}$) level. $\mathrm{GBY}_{2}=20 \log (\mathrm{VByt} 2 / 0.7)$ (2) Measure GRY2 of R-Y out in the same way as GBY2.

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : H, RGB $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{FsC} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$; BUS = preset value ; pin $3=9 \mathrm{~V}$; pin $8 \cdot 38 \cdot 41=5 \mathrm{~V}$)				
		SW MODE	SUB-ADDRESS \& DATA			MEASURING METHOD
		S26	07H	0FH	11H	
H_{8}	Direct-Delay AC Gain Difference	\uparrow	$\begin{aligned} & 94 \mathrm{H} \\ & 8 \mathrm{CH} \end{aligned}$	-	-	(1) $\mathrm{GBYD}=\mathrm{GBY} 1-\mathrm{GBY} 2$ (2) GRYD $=$ GRY1 - GRY2
H_{9}	Color Difference Output DC Stepping	\uparrow	8CH	-	-	(1) Measure pin 36 (B-Yout) DC stepping of the picture period. (2) Measure pin 35 (R-Yout) DC stepping of the picture period.
H_{10}	1H Delay Quantity	ON	8CH	-	-	(1) Input waveform 2 to pin 33 (B-Yin). And measure the time deference BDt of pin 36 (B-Yout). (2) Input waveform 2 to pin $34(\mathrm{R}-\mathrm{Yin})$. And measure the time diference RDt of pin 36 (B-Yout).
H_{11}	Color Difference Output DC-Offset Control	\uparrow	8CH	20H	$\begin{aligned} & 00 \mathrm{H} \\ & 88 \mathrm{H} \\ & \text { FFH } \end{aligned}$	(1) Set Sub-Address 11 h ; data 88 h . Measure the pin 36 DC voltage, that is BDC1. (2) Set Sub-Address 11h ; data 88h. Measure the pin 35 DC voltage, that is RDC1. (3) Set Sub-Address 11 h ; data 00h. Measure the pin 36 DC voltage, that is BDC2. (4) Set Sub-Address 11 h ; data 00h. Measure the pin 35 DC voltage, that is RDC2. (5) Set Sub-Address 11 h ; data FFh. Measure the pin 36 DC voltage, that is BDC3. (6) Set Sub-Address 11 h ; data FFh. Measure the pin 35 DC voltage, that is RDC3. (7) Bomin $=$ BDC2 - BDC1, Bomax $=$ BDC3 - BDC1, Romin $=$ RDC2 - RDC1, Romax $=$ RDC3 - RDC1
H_{12}	Color Difference Output DC-Offset Control / Min. Control Quantity	\uparrow	A4H	00H	89H	(1) Measure the pin 36 DC voltage, that is BDC4. (2) Measure the pin 35 DC voltage, that is RDC4. (3) Bo1 = BDC4 - BDC1, Ro1 = RDC4 - RDC1
H_{13}	NTSC Mode Gain / NTSC-COM Gain	\uparrow	94H	80H	-	(1) Input waveform 1, that is set $0.3 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ and $\mathrm{f}=100 \mathrm{kHz}$, to pin 33 . Measure pin 36 output level, that is VBNC. (2) $\quad \mathrm{GNB}=20 \log (\mathrm{VBNC} / \mathrm{VB} 100)$ (3) In the same way as (1) and (2), measure the pin 36 output level, that is VRNC. GNR $=20 \log (V R N C / V R 100)$

TEXT SECTION

NOTE	ITEM	TEST CONDITION (Unless otherwise specified: $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)SW MODESUB-ADDRESS															
		S_{21}	S_{22}	S_{31}	S_{33}	S_{34}	S_{51}	-	-	-	00H	02H	-	-	-	-	
T_{4}	Frequency Characteristic	B	B	B	B	B	A	-	-	-	FFH	OOH	-	-	-	-	(1) Input TG7 sine wave signal whose frequency is 6 MHz and video amplitude is 0.7 V to pin $31(\mathrm{Y} \mathrm{IN})$.
																	(2) Input 0.3 V synchronizing signal to pin 51 (Sync IN).
																	(3) Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
																	(4) Set bus data so that contrast is maximum, Y sub contrast and drive are set at each center value and color is minimum.
																	(5) Measure amplitude of pin 13 signal (G OUT) and find the output / input gain (double) (G6M).
																	(6) From the results of the above step 5 and the Note T_{3}, find the frequency characteristic.
																	$\mathrm{Gf}=20 \log (\mathrm{G} 6 \mathrm{M} / \mathrm{G})$

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\text {DD }}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)																
		SW MODE									SUB-ADDRESS \& BUS DATA						MEASURING METHOD	
		S_{21}	S_{22}	S_{31}	S_{33}	S_{34}	S_{51}	S_{42}	-	-	OOH	02H	1BH	-	-	-		
	Chroma Input Range	B	B	A	A	A	A	A	-	-	FFH	88H	BFH	-	-	-	(1)	Input rainbow color bar signal (3.58 MHz for NTSC or 4.43 MHz for PAL) to pin 42 (C IN) and 0.3 V synchronizing signal to pin 51 (Sync IN).
																	(2)	Connect pin 36 (B-Y OUT) and pin 33 (B-Y IN), pin 35 (R-Y OUT) and pin $34(\mathrm{R}-\mathrm{Y} \operatorname{IN})$ in AC coupling respectively.
T_{14}																		Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
																	(4)	Set bus data so that unicolor is maximum, drive and color are set at each center value (80) and mute is on.
																	(5)	While increasing amplitude of chroma signal input to pin 42 , measure amplitude just before any of pin 12 (B OUT), pin 13 (G OUT) and pin 14 (R OUT) output signals is distorted (VCr).

NOTE	ITEM	TEST CONDITION (Unless otherwSW MODE									spec	cified:	H, RG	V $\mathrm{C}_{\text {c }}$	=9V	; VDD	Fsc $\mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)
											SUB-ADDRESS \& BUS DATA						MEASURING METHOD
		S_{21}	S_{22}	S_{31}			S_{51}	-	-	-	01H	05H	08H	OCH	ODH	OEH	
T_{26}	Blanking Pulse Output Level	B	B	B	B	B	A	-	-	-	80 H	10H	04H	80H	80 H	80H	(1) Input synchronizing signal of 0.3 V in amplitude to pin 51 (Sync IN). (2) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (3) Set bus data so that blanking is on. (4) Measure voltage of pin 13 (G OUT) in V. blanking period (Vy). (5) Measure voltage of pin 13 (G OUT) in H . blanking period (Vh).
T_{27}	Blanking Pulse Delay Time	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	In the setting condition of the Note T_{26}, find "tdon" and "t $\mathrm{t}_{\text {doff" (}}$ (see figure below) between the signal impressed to pin 6 (BFP IN) and output signal of pin 13 (G OUT).
T_{28}	RGB Min. Output Level	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	00H	\uparrow	\uparrow	OOH	00H	00H	(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin $34(\mathrm{R}-\mathrm{Y} \operatorname{IN})$ in AC coupling. (2) Input synchronizing signal of 0.3 V in amplitude to pin 51 (Sync IN). (3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) Set bus data so that brightness and RGB cutoff are minimum. (5) Measure video voltage of pin 13 (G OUT) (Vmn).
T_{29}	RGB Max. Output Level	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	80H	1fH	44H	80H	80 H	80 H	(1) Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. (2) Input stepping signal to pin $31(\mathrm{Y} \operatorname{IN})$ and synchronizing signal of 0.3 V in amplitude to pin 51 (Sync IN). (3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) Set bus data so that contrast and Y sub contrast are maximum. (5) While increasing amplitude of the stepping signal, measure maximum output level just before video signal of pin 13 (G OUT) is distorted (Vmn).

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)																
		SW MODE									SUB-ADDRESS \& BUS DATA						MEASURING METHOD	
		S_{18}	S_{19}	S_{20}	S_{21}	S_{22}	S_{31}	S_{33}	S_{34}	S_{51}	15H	1-CH	-	-	-			
T30	Haltone Ys Level	B	B	B	A	B	B	B	B	A	OOH	80H	-	-	-	-	(1) Input stepping signal whose amplitude is 0.3 V in video period to pin 31 ($\mathrm{Y} \operatorname{IN}$) and pin 51 (Sync \mathbb{N}). (2) Set bus data so that blanking is off and halftone is -3 dB in on status. (3) Connect power supply to pin 21 (Digital Ys). While impressing 0 V to it, measure amplitude and pedestal level of pin 13 (G OUT) in video period (Vm13, Vp13).	
T_{31}	Halftone Gain 1	\uparrow	-	-	-	-												
T_{32}	Halftone Gain 2	\uparrow	01H	\uparrow	-	-	-	-										
T_{3}	Text ON Ys, Low Level	\uparrow	-	-	-	-												
T_{34}	Text / OSD Output, Low Level	\uparrow	-	-	-	-	(4) Raising supply voltage to pin 21 gradually from 0V, measure level (Vtht1) of pin 21 when amplitude of pin 13 output signal changes. At the same time, measure amplitude and pedestal level of pin 13 in video period after the pin 13 output signal changed in amplitude. (Vm13b, Vp13b) (5) According to results of the above steps 3 and 4, calculate gain of -3 dB halftone and variation of pedestal level. G3ht13 = 20log (Vm13b / Vm13) (6) Set bus data so that halftone is -6 dB in on status, and perform the same measurement as the above steps 4 and 5 to find gain of -6 dB halftone and variation of pedestal level (G6th13). (7) Raising supply voltage to pin 21 further from Vtht1, measure level (Vttx1) of pin 21 when output signal of pin 13 (G OUT) changes in amplitude and DC level of pin 13 after the change of its output (Vtx 13). (8) From results of the above steps 3 and 7 , calculate low level of the output in the text mode. Vtx113 = Vtx13 - Vp13 (9) Raising supply voltage to pin 21 by 3 V from that in the above step 7 , confirm that there is no change in output level of pin 13.											

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)															
		SW MODE									SUB-ADDRESS \& BUS DATA						MEASURING METHOD
		S_{18}	S_{19}	S_{20}	S_{21}	S_{22}	S_{31}	S_{33}	S_{34}	S_{51}	-	-	-	-	-	-	
T_{38}	Text Input Threshold Level	A	A	A	A	B	B	B	B	A	-	-	-	-	-	-	(1) Connect power supply to pin 21 (Digital Ys) and impress 1.5 V to it. (2) Connect power supply to pin 19 (Digital G IN). While raising supply voltage gradually from OV , measure supply voltage when output signal of pin 13 (G OUT) changes (Vtxt). (3) Raising the supply voltage to pin 19 furthermore to 4 V , confirm that there is no change in the output signal of pin 13 (G OUT).
T_{39}	OSD Input Threshold Level	\uparrow	-	-	-	-	-	$-$	(1) Connect power supply to pin 21 (Digital Ys) and impress 2.5 V to it. (2) Connect power supply to pin 19 (Digital $G \operatorname{IN}$). While raising supply voltage gradually from OV , measure supply voltage when output signal of pin 13 (G OUT) changes (Vosd). (3) Raising the supply voltage to pin 19 furthermore to 4 V , confirm that there is no change in the output signal of pin 13 (G OUT).								

NOTE	ITEM	TEST CONDITION (Unless otherwis SW MODE									spec	ified	H, R	V_{C}	$=9 \mathrm{~V}$	$V_{\text {DD }}$	$\mathrm{Y} / \mathrm{C} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)
											SUB-ADDRESS \& BUS DATA						MEASURING METHOD
		S18	S19	S_{20}	S_{21}	S_{22}	S_{31}	S_{33}	S34	S_{51}	-	-	-	-	-	-	
T_{40}	OSD Mode Switching Rise-Up Time	A	A	A	A	B	B	B	B	A	-	-	-	-	-	-	(1) Input a Signal Shown by (a) in the following figure to pin 21 (Digital Ys). (2) According to (b) in the figure, measure $T_{\text {Rosd }}$, tpRos , $T_{\text {Fosd }}$ and tpFos for output signals of pin 14 (R OUT), pin 13 (G OUT) and pin 12 (B OUT)
T_{41}	OSD Mode Switching Rise-Up Transfer Time	\uparrow	-	-	-	-	-	-	respectively. (3) Find maximum values of tpRos and tpFos respectively (Δ tpRos , $\Delta t_{\text {PFos }}$).								
T42	OSD Mode Switching Rise-Up Transfer Time, 3 Axes Difference	\uparrow	-	-	-	-	-	-	(a)								
T_{43}	OSD Mode Switching Breaking Time	\uparrow	-	-	-	-	-	-									
T_{44}	OSD Mode Switching Breaking Transfer Time	\uparrow	-	-	-	-	-	-	(b)								
T45	OSD Mode Switching Breaking Transfer Time, 3 Axes Difference	\uparrow	-	-	-	-	-	-	 (c) tPR.								

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)															
		SW MODE										U-AD	DRES	\& BU	S DA		MEASURING METHOD
T_{53}	Analog RGB AC Gain	B	A	B	B	B	A	-	-	-	-	-	-	-	-	-	In the setting condition of the Note T_{52}, calculate output / input gain (double) with contrast data being set maximum. $\mathrm{G}=\mathrm{Vc} 13 \mathrm{mx} / 0.5 \mathrm{~V}$
T_{54}	Analog RGB Frequency Characteristic	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	FFH	-	-	-	-	-	(1) Input 0.3 V synchronizing signal to pin 51 (Sync IN). (2) Supply 5 V of external supply voltage to pin 22 (Analog Ys). (3) Input TG7 sine wave signal ($\mathrm{f}=100 \mathrm{kHz}$, video amplitude $=0.5 \mathrm{~V}$) to pin 24 (Analog G IN). (4) Set bus data so that contrast is maximum and drive is set at center value. (5) Measure video amplitude of pin 13 (G OUT) and calculate output / input gain (double) (G6M). (6) From measurement results of the above step 5 and the preceding Note 53 , find frequency characteristic. $\mathrm{Gf}=20 \log (\mathrm{G} 6 \mathrm{M} / \mathrm{G})$

NOTE	ITEM	TEST CONDITIO									spe	cified	, R	V	9	,	(SC ${ }^{\text {a }}$
											SUB-ADDRESS \& BUS DATA						
T60	Analog RGB Switching Rise-Up Time	B	A	B	B	B	A	-	-	-	-	-	-	-	-	-	(1) Supply signal ($2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) shown by (a) in the following figure to pin 22 (Analog Ys).
T61	Analog RGB Switching Rise-Up Transfer Time	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	tpFan for outputs of pin 14 (R OUT), pin 13 (G OUT) and pin 12 (B OUT). (3) Find maximum values of tpRan and tpFan respectively ($\Delta \mathrm{t}_{\mathrm{PR} \text { Ran }, ~}^{\mathrm{\Delta t} \text { PFan })}$).
T62	Analog RGB Switching Rise-Up Transfer Time, 3 Axes Difference	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	
T_{63}	Analog RGB Switching Breaking Time	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	(a) 50\%
T_{64}	Analog RGB Switching Breaking Transfer Time	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	(b)
T65	Analog RGB Switching Breaking Transfer Time, 3 Axes Difference	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	(c)

NOTE	ITEM	TEST CONDITION (Unless otherw									sp	fied:	,	V_{C}	9 V	V_{D}	Fsc $\mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)
											SUB-ADDRESS \& BUS DATA						MEASURING METHOD
		S_{21}	S_{22}	S_{31}			S_{51}	-	-	-	-	-	-	-	-	-	
T66	Analog RGB Hi Switching Rise-Up Time	B	A	B	B	B	A	-	-	-	-	-	-	-	-	-	(1) Supply 2 V to pin 22 (Analog Ys). (2) Input $0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ signal shown by (a) in the following figure to pin 23 (Analog $\mathrm{R} \operatorname{IN}$).
T67	Analog RGB Hi Switching Rise-Up Transfer Time	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	(3) Referring to (b) of the following figure, measure TRanh , tpRah , $\mathrm{T}_{\text {Fanh }}$ and tpFah for output of pin 14 (R OUT). (4) Input $0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ signal shown by (a) in the following figure to pin 24 (Analog
T68	Analog RGB H Switching Rise-Up Transfer Time, 3 Axes Difference	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	G IN). (5) Referring to (b) of the following figure, perform the same measurement as the above step 3 for output of pin 13 (G OUT).
T69	Analog RGB Hi Switching Breaking Time	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	(6) Input $0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ signal shown by (a) in the following figure to pin 25 (Analog B $\mathrm{IN})$. (7) Referring to (b) of the following figure, perform the same measurement as
T70	Analog RGB Hi Switching Breaking Transfer Time	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	the above step 3 for output of pin 12 (B OUT). (8) Find maximum axes difference in tpRoh and tpFoh among the three outputs (Δ tpRah, Δ tpFah).
T_{71}	Analog RGB Hi Switching Breaking Transfer Time, 3 Axes Difference	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	(a)

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{VCC}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{CV} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)SW MODE															
		S_{21}	S_{22}	S_{31}	S_{33}	S_{34}	S_{51}	-	-	-	-	-	-	-	-	-	MEASURING METHOD
T_{72}	TV-Analog RGB Crosstalk	B	A	B	B	B	A	-	-	-	-	-	-	-	-	-	(1) Input TG7 sine wave signal ($\mathrm{f}=4 \mathrm{MHz}$, video amplitude $=0.5 \mathrm{~V}$) to pin 31 $\left(\mathrm{Y}_{2} \mathrm{IN}\right)$.
																	(2) Short circuit pin 25 (Analog GIN) in AC coupling.
																	(3) Input 0.3 V synchronizing signal to pin 51 (Sync IN).
																	(4) Set bus data so that contrast is maximum, Y sub contrast and drive are set at center value.
																	(5) Supply pin 22 (Analog Ys) with OV of external power supply.
																	(6) Measure video voltage of output signal of pin 13 (G OUT) (Vtg).
																	(7) Supply pin 22 (Analog Ys) with 2 V of external power supply.
																	(8) Measure video voltage of output signal of pin 13 (G OUT) (Vana).
																	(9) From measurement results of the above steps 5 and 7, calculate crosstalk from TV to analog RGB.
																	$\text { Crtva }=20 \ell \circ \mathrm{~g}(\text { Vana } / \text { Vtv })$
T_{73}	Analog RGB-TV Crosstalk	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	$-$	(1) Short circuit pin $31\left(\mathrm{Y}_{2} \mathrm{IN}\right)$, pin $34(\mathrm{R}-\mathrm{Y} \operatorname{IN})$ and pin $33(\mathrm{~B}-\mathrm{Y} \operatorname{IN})$ in $A C$ coupling. (2) Input 0.3 V synchronizing signal to pin 51 (Sync IN). (3) Set bus data so that contrast is maximum and drive is set at center value. (4) Input TG7 sine wave signal ($\mathrm{f}=4 \mathrm{MHz}$, video amplitude $=0.5 \mathrm{~V}$) to pin 24 (Analog G IN). (5) Supply pin 22 (Analog Ys) with OV of external power supply. (6) Measure video voltage of output signal of pin 13 (G OUT) (Vant). (7) Supply pin 22 (Analog Ys) with 2V of external power supply. (8) Measure video voltage of output signal of pin 13 (G OUT) (Vtan). (9) From measurement results of the above steps 6 and 8, calculate crosstalk from analog RGB to TV. Crant $=20 \log ($ Vant $/$ Vtan $)$	

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)																
		SW MODE									SUB-ADDRESS \& BUS DATA						MEASURING METHOD	
		S_{21}	S_{22}	S_{31}	S_{33}	S_{34}	S_{51}	-	-	-	01H	15H	-	-	-	-		
T_{74}	ABL Point Characteristic	B	B	B	B	B	A	-	-	-	FFH	$\begin{array}{\|l\|} \hline \\ \hline 10 \mathrm{H} \\ 90 \mathrm{H} \\ \mathrm{FOH} \end{array}$	-	-	-	-	(1) Input TG7 sine wave signal $(f=4 \mathrm{MHz}$, video amplitude $=0.5 \mathrm{~V})$ to pin 31 ($\mathrm{Y}_{2} \mathrm{IN}$). (2) Short circuit pin 23 (Analog R IN), pin 25 (Analog G IN) and pin 26 (Analog $B \mathrm{IN}$) in AC coupling. (3) Set bus data so that brightness is maximum and ABL gain is at center value, and supply pin 16 with external supply voltage. While turning down voltage supplied to pin 16 gradually from 7 V , measure voltage at pin 16 when the voltage supplied to pin 12 decreases by 0.3 V in three conditions that data on ABL point is set at minimum, center and maximum values respectively. (Vablpl, Vablpc, Vablph)	
T_{75}	ACL Characteristic	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	(1) Input TG7 sine wave signal $(f=4 \mathrm{MHz}$, video amplitude $=0.5 \mathrm{~V})$ to pin 31 ($\mathrm{Y}_{2} \mathrm{IN}$). (2) Input 0.3 V synchronizing signal to pin 51 (Sync IN). (3) Measure video amplitude at pin 12. (Vacl1) (4) Measure DC voltage at pin 16 (ABCL). (5) Supply pin 16 with a voltage that the voltage measured in the above step 4 minus 2 V . (6) Measure video amplitude at pin 12 (Vacl 2) and its ratio to the amplitude measured in the above step 3. $\text { Vacl = 20log (Vacl2 / Vacl1 })$	
T_{76}	ABL Gain Characteristic	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	FFH	$\begin{aligned} & 00 \mathrm{H} \\ & 10 \mathrm{H} \\ & 1 \mathrm{CH} \end{aligned}$	-	-	-	-	(1) Short circuit pin $31\left(Y_{2} \mathrm{IN}\right)$, pin $34(\mathrm{R}-\mathrm{Y} \operatorname{IN})$ and pin $33(\mathrm{~B}-\mathrm{Y} \operatorname{IN})$ in $A C$ coupling. (2) Input 0.3 V synchronizing signal to pin 51 (Sync IN). (3) Set bus data on brightness at maximum and measure video DC voltage at pin 12 (Vmax). (4) Measure voltage at pin 16 which is being supplied with the voltage measured in the step 5 of the preceding Note 75. (5) Changing setting of bus data on ABL gain at minimum, center and maximum values one after another, measure video DC voltage at pin 12. (Vabl1, Vabl2, Vabl3) (6) Find respective differences of Vabl1, Vabl2 and Vabl3 from the voltage measured in the above step 3. $\begin{aligned} & \text { Vabll }=\text { Vmax }- \text { Vabl1 } \\ & \text { Vablc }=\text { Vmax }- \text { Vabl2 } \\ & \text { Vablh }=\text { Vmax }- \text { Vabl3 } \end{aligned}$	

AUDIO SECTION

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)					
		SW MODE			SUB-ADDRESS \&BUS DATA		MEASURING METHOD
		S27	S28	S29	03H	07H	
A_{1}	Attenuator Max. Gain	A $\stackrel{\downarrow}{\text { b }}$	$\begin{aligned} & \mathrm{B} \\ & \downarrow \\ & \text { A } \end{aligned}$	B	$\begin{aligned} & 40 \mathrm{H} \\ & \stackrel{\downarrow}{\mathrm{C}} \mathrm{H} \end{aligned}$	7FH	(1) Input $1 \mathrm{kHz}, 500 \mathrm{mV}$ rms signal to pin 27 (TV Audio IN). (2) Set bus data so that the audio switch is set at TV mode and ATT gain is maximum (7F). (3) Measure audio output level at pin 29 and find the gain (Gmxt). (4) Set bus data on the audio switch to EXT mode. While inputting $1 \mathrm{kHz}, 500 \mathrm{mV} \mathrm{V}_{\mathrm{rms}}$ signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 3. (Gmxe)
A_{2}	Attenuator Center Gain	\uparrow	\uparrow	\uparrow	\uparrow	40H	(1) Input $1 \mathrm{kHz}, 500 \mathrm{mV}$ rms signal to pin 27 (TV Audio IN). (2) Set bus data so that the audio switch is set at TV mode and ATT gain is center value (40). (3) Measure audio output level at pin 29 and find the gain (Gcntt). (4) Set bus data on the audio switch to EXT mode. While inputting $1 \mathrm{kHz}, 500 \mathrm{mV} \mathrm{rms}$ signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 3. (Gcnte)
A_{3}	Attenuator Residual Sound	\uparrow	\uparrow	\uparrow	\uparrow	00H	(1) Input $1 \mathrm{kHz}, 500 \mathrm{mV}$ rms signal to pin 27 (TV Audio IN). (2) Set bus data so that the audio switch is set at TV mode and ATT gain is minimum (00). (3) Measure audio output level at pin 29 and find the audio output level (Vmnt). (4) Set bus data on the audio switch to EXT mode. While inputting $1 \mathrm{kHz}, 500 \mathrm{mV} \mathrm{V}_{\text {rms }}$ signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 3. (Vmne) (Note) For measuring signal level, use 1 kHz band pass filter.
A_{4}	Audio Mute Residual Sound	\uparrow	\uparrow	\uparrow	\uparrow	FFH	(1) Input $1 \mathrm{kHz}, 500 \mathrm{mV}$ rms signal to pin 27 (TV Audio IN). (2) Set bus data so that the audio switch is set at TV mode and ATT gain is maximum (7F). (3) Set bus data on audio mute to ON . (4) Measure audio output level at pin 29 (Vmutt) (5) Set bus data on the audio switch to EXT mode. While inputting $1 \mathrm{kHz}, 500 \mathrm{mV} \mathrm{V}_{\mathrm{rms}}$ signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 4. (Vmute) (Note) For measuring signal level, use 1 kHz band pass filter.
A_{5}	Attenuator Gain Switching Offset	$\begin{aligned} & \text { A } \\ & \downarrow \\ & \text { B } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \downarrow \\ & \text { A } \end{aligned}$	B	$\begin{aligned} & 40 \mathrm{H} \\ & \stackrel{\downarrow}{\mathrm{C}} \end{aligned}$	$\begin{gathered} 7 \mathrm{FH} \\ \downarrow \\ \mathrm{O} \mathrm{H} \end{gathered}$	(1) Short circuit pin 27 (TV Audio IN) in AC coupling. (2) Set bus data on the audio switch to TV mode. (3) Changing bus data on ATT gain from maximum (7F) to minimum (00), measure change in DC level of audio output of pin 29 (Audio OUT) at that time (ATToft). (4) Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition perform the same measurement as the above step 3 (ATTofe).
A_{6}	Audio Mute Offset	B	B	\uparrow	$\begin{gathered} 40 \mathrm{H} \\ \downarrow \\ \mathrm{C} \mathrm{H} \end{gathered}$	$\begin{gathered} 7 F H \\ \downarrow \\ \text { FFH } \end{gathered}$	(1) Short circuit pin 27 (TV Audio IN) in AC coupling. (2) Set bus data on the audio switch to TV mode. (3) Changing bus data on audio mute from OFF to ON, measure change in DC level of audio output of pin 29 (Audio OUT) at that time (AMToft). (4) Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition perform the same measurement as the above step 3 (AMTofe).

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)					
		SW MODE			SUB-ADDRESS \&BUS DATA		MEASURING METHOD
		S27	S28	S29	03H	07H	
A_{7}	Audio Crosstalk	$\begin{aligned} & \mathrm{B} \\ & \downarrow \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \downarrow \\ & \mathrm{~B} \end{aligned}$	\uparrow	\uparrow	7FH	(1) Input $1 \mathrm{kHz}, 500 \mathrm{mV} \mathrm{rms}_{\text {s }}$ signal to pin 28 (Ext. Audio IN). (2) Changing bus data on the audio switch from EXT. mode to TV mode, measure output level of pin 29 (Audio OUT) to find ratio between two outputs in the EXT mode and TV mode (CRtv). (3) Change bus data on the audio switch from TV to EXT. mode and input $1 \mathrm{kHz}, 500 \mathrm{mV} \mathrm{rms}_{\text {rm }}$ signal to pin 27 (TV Audio IN). In this condition measure output level of pin 29 (Audio OUT) to find ratio of this output to the output level measured in the above step 2. (Crext) (Note) For measuring signal level, use 1 kHz band pass filter.
A_{8}	Attenuator Max. Input Voltage	$\begin{aligned} & \text { A } \\ & \downarrow \\ & \text { B } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \downarrow \\ & \mathrm{~A} \end{aligned}$	\uparrow	\uparrow	4 H	(1) Input 1 kHz signal to pin 27 (TV Audio IN). (2) Set bus data so that the audio switch is set at TV mode and ATT gain is set at center value (40). (3) While increasing amplitude of the signal, measure input amplitude just before output waveform of pin 29 (Audio OUT) is distorted (DItv). (4) Set bus data on the audio switch to EXT mode. While inputting 1 kHz signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 3. (Dlext).
A9	A-SW Switching Offset	B	B	B	$\begin{gathered} 40 \mathrm{H} \\ \downarrow \\ \mathrm{C} 0 \mathrm{H} \end{gathered}$	7FH	(1) Short circuit pin 27 (TV Audio IN) and pin 28 (Ext. Audio IN) in AC coupling. (2) Changing bus data on the audio switch from TV mode to EXT. mode, measure change in DC level of output signal of pin 29 (Audio OUT) at that time (VSWof).
A_{10}	Attenuator Breaking Frequency	$\begin{aligned} & A \\ & \perp \\ & \text { B } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \downarrow \\ & \text { A } \end{aligned}$	\uparrow	\uparrow	\uparrow	(1) Input $500 \mathrm{mV} \mathrm{V}_{\mathrm{rms}}$ signal to pin 27 (TV Audio IN). (2) Set bus data on the audio switch to TV mode. (3) While increasing the signal frequency from 1 kHz , measure frequency when amplitude of pin 29 output (Audio OUT) is -3 dB as low as the amplitude at 1 kHz frequency (fctv). (4) Set bus data on the audio switch to EXT mode. While inputting 500 mV rms signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 3. (fcext)
A_{11}	Audio S / N Ratio	\uparrow	\uparrow	\uparrow	$\begin{gathered} 40 \mathrm{H} \\ \downarrow \\ \mathrm{\downarrow CH} \end{gathered}$	\uparrow	(1) Input $500 \mathrm{mV} \mathrm{V}_{\text {rms }}$ signal to pin 27 (TV Audio IN). (2) Set bus data on the audio switch to TV mode and measure output level of pin 29 (Audio OUT) (Vs). (3) Short circuit pin 27 in AC coupling and measure noise level at pin $29(\mathrm{Vn})$. $(S N t v=20 \log (\mathrm{Vs} / \mathrm{Vn}))$ (4) Change the setting of bus data on the audio switch to EXT. mode and change the $500 \mathrm{~m} V_{\text {rms }}$ input from pin 27 to pin 28. Peform the same measurement as the above step 3. (SNext) (Note) For measuring output level, use 15 kHz low pass filter.

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)					
		SW MODE			$\begin{gathered} \hline \text { SUB-ADDRESS \& } \\ \text { BUS DATA } \end{gathered}$		MEASURING METHOD
		S27	S28	S29	03H	07H	
A_{12}	Attenuator Max. Output Voltage	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	(1) Input 1 kHz signal to pin 27 (TV Audio IN). (2) Set bus data so that the audio switch is set to TV mode and ATT gain is maximum (7F). (3) While increasing the signal amplitude, measure output amplitude just before output signal of pin 29 (Audio OUT) is distorted. (DO1v) (4) Set bus data so that the audio switch is set to EXT. mode and ATT gain is maximum (7F). While inputting 1 kHz signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 3. (DOext) (Note) Output must be loaded with $5 \mathrm{k} \Omega$ or more resistance.

SECAM SECTION

NOTE	ITEM								ON	ITI	(U			,	sp	,	,	,	C	C $=9$		DD, F	c V	, Y		C $\left.=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}\right)$
									BUS : NORMAL CONTROL MODE																MEASURING METHOD	
									0FH	10H							1FH									
		26	D4	D3	D2	D7	D5	D4	D4	D7	D5	D4	D3	D2	D1	D0	D7	D6	D5	D4	D3	D2	D1	D0		
S_{1}	Bell Monitor Output Amplitude	ON	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1		Input $200 \mathrm{mV} \mathrm{V}_{\text {p-p }}$ (R-Y ID), 75\% chroma color bar signal (SECAM system) to pin 42. Measure amplitude of R-Y ID output of pin 36 as ebmo.
S_{2}	Bell Filter f_{o}	\uparrow		While supplying 20 mV p-p CW sweep signal from network analyzer to pin 42 and monitoring output signal of pin 36 with the network analyzer, measure frequency having maximum gain as foBEL of the bell frequency characteristic. Find difference between foBEL and 4.286 MHz as foB-C.																						
S_{3}	Bell Filter f_{0} Variable Range	\uparrow	$\begin{array}{\|l} \text { Vari- } \\ \text { able } \end{array}$	$\begin{aligned} & \text { Vari- } \\ & \text { able } \end{aligned}$	(2)	The same procedure as the steps 1 and 2 of the Note S_{2}. Measure foBEL in different condition that SUB (IF) $D_{1} D_{0}=(00)$ or (11), and find difference of each measurement result from 4.286 MHz as foB-L or foB-H.																				
S_{4}	Bell Filter Q	\uparrow	0	1	(2)	The same procedure as the step 1 of the Note S_{2}. While monitoring output signal of pin 36 with network analyzer, measure Q of bell frequency characteristic as QBEL. QBEL $=(\mathrm{QMAX}-3 \mathrm{~dB}$ band width $) /$ FoBEL																				
S_{5}	Color Difference Output Amplitude	OFF	-	-	-	-	-	-	0	\uparrow		Input 200 mV p-p (R-Y ID), 75\% chroma color bar signal (SECAM system) to pin 42.														
S_{6}	Color Difference Relative Amplitude	\uparrow	-	-	-	-	-	-	\uparrow		with signals of pin 35 and pin 36. Calculate relative amplitude from VRS / VBS.															

TEST CIRCUIT

PACKAGE DIMENSIONS

SDIP56-P-600-1.78
Unit : mm

Weight: 5.55 g (Typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

