

TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

TB1226EN

VIDEO, CHROMA AND SYNCHRONIZING SIGNALS PROCESSING IC FOR PAL / NTSC / SECAM SYSTEM COLOR TV

TB1226EN that is a signal processing IC for the PAL / NTSC / SECAM color TV system integrates video, chroma and synchronizing signal processing circuits together in a 56-pin shrink DIP plastic package.

TB1226EN incorporates a high performance picture quality compensation circuit in the video section, an automatic PAL / NTSC / SECAM discrimination circuit in the chroma section, and an automatic 50 / 60Hz discrimination circuit in the synchronizing section. Besides a crystal oscillator that internally generates 4.43MHz, 3.58MHz and M / N-PAL clock signals for color demodulation, there is a horizontal PLL circuit built in the IC.

Weight: 5.55g (Typ.)

The PAL / SECAM demodulation circuit which is an

adjustment-free circuit incorporates a 1H DL circuit inside for operating the base band signal processing system.

Also, TB1226EN makes it possible to set or control various functions through the built-in I^2C bus line.

FEATURES

Video section

- Built-in trap filter
- Black expansion circuit
- Variable DC regeneration rate
- Y delay line
- Sharpness control by aperture control
- y correction

Chroma section

- Built-in 1H Delay circuit
- PAL / SECAM base band demodulation system
- One crystal color demodulation circuit (4.43MHz, 3.58MHz, M / N-PAL)
- Automatic system discrimination, system forced mode
- 1H delay line also serves as comb filter in NTSC demodulation
- Built-in band-pass filter, SECAM bell filter
- Color limiter circuit

Synchronizing deflecting section

- Built-in horizontal VCO resonator
- Adjustment-free horizontal / vertical oscillation by count-down circuit
- Double AFC circuit
- Vertical frequency automatic discrimination circuit
- Horizontal / vertical holding adjustment
- Vertical ramp output
- Vertical amplitude adjustment
- $\bullet~$ Vertical linearity / S-shaped curve adjustment

Text section

- Linear RGB input
- OSD RGB input
- www.DataSheet4UlackscrewedgeCut / off-drive adjustment
 - RGB primary signal output

BLOCK DIAGRAM

TERMINAL FUNCTIONS

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
1 47	External Video Input TV Video Input	For inputting external / TV composite video signal. Input negative 1V _{p-p} synchronizing signal through a coupling capacitor to these pins.		Negative 1V _{p-p} sync
u.co 2 n	V-AGC	Controls pin 52 to maintain a uniform V-ramp output. Connect a current smoothing capacitor to this pin.		_
3	H-V _{CC} (9V)	V_{CC} for the DEF block (deflecting system). Connect 9V (Typ.) to this pin.	—	_
4	Horizontal Output	Horizontal output terminal.		5.0V 0.2V
5	Picture Distortion Correction	Corrects picture distortion in high voltage variation. Input AC component of high voltage variation. For inactivating the picture distortion correction function, connect 0.01µF capacitor between this pin and GND.		4.5V at Open
6	FBP Input	FBP input for generating horizontal AFC2 detection pulse and horizontal blanking pulse The threshold of horizontal AFC2 detection is set $H.V_{CC} - 2V_f (V_f \approx 0.75V)$. Confirming the power supply voltage, determine the hige level of FBP.		H-V _{CC} (7.5V) H-BLK (1.5V)

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
7	Coincident Det.	To connect filter for detecting presence of H. synchronizing signal or V. synchronizing signal.		_
8	V _{DD} (5V)	V _{DD} terminal of the LOGIC block. Connect 5V (Typ.) to this pin.	—	_
U.com 9	SCL	SCL terminal of I ² C bus.		_
10	SDA	SDA terminal of I ² C bus.		_
11	Digital GND	Grounding terminal of LOGIC block.	_	—
12 13 14	B Output G Output R Output	R, G, B output terminals.		᠂᠂᠂᠂᠂
15	TEXT GND	Grounding terminal of TEXT block.	—	—
16	ABCL	External unicolor brightness control terminal. Sensitivity and start point of ABL can be set through the bus.		6.4V at Open
17	RGB-V _{CC} (9V)	V _{CC} terminal of TEXT block. Connect 9V (Typ.) to this pin.	_	_

	PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
	18 19 20	Digital R Input Digital G Input Digital B Input	Input terminals of digital R, G, B signals. Input DC directly to these pins. OSD or TEXT signal can be input to these pins.		OSD 2.0 V TEXT 1.0V GND
:4U	21	Digital YS / YM	Selector switch of halftone / internal RGB signal / digital RGB (pins 18, 19, 20).		OSD 2.0 V TEXT 1.0V H. T. 0.5V TV TV GND
	22	Analog YS	Selector switch of internal RGB signal or analog RGB (pins 23, 24, 25).		Analog RGB 0.5V TV GND
	23 24 25	Analog R Input Analog G Input Analog B Input	Analog R, G, B input terminals. Input signal through the clamping capacitor. Standard input level : 0.5V _{p-p} (100 IRE).		100IRE = 0.5Vp-p 4.6V GND
	26	Color Limiter	To connect filter for detecting color limit.	26 π π π π π μ μ μ μ μ μ μ μ μ μ μ μ μ	Ι
	27 28	TV Audio Input External Audio Input	Input terminals for monaural audio signal.	28 29 47kΩ 29 47kΩ 28 30 47kΩ 29 30 30 30 30 30 30 30 30 30 30 30 30 30	DC 2.9V AC Max. 6.0V _{p-p}

	PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
	29	Audio Output	Output terminal of audio signal that passes attenuator.		\sim
et4U	.com 30	APC Filter	To connect APC filter for chroma demodulation.		
	31	Y ₂ Input	Input terminal of processed Y signal. Input Y signal through clamping capacitor. Standard input level : 0.7V _{p-p}	(4) (2) (3) (3) (3) (3) (3) (3) (3) (3	0.7V _{p-p} 2.0V GND
	32	Fsc GND	Grounding terminal of VCXO block. Insert a decoupling capacitor between this pin and pin 38 (Fsc V_{DD}) at the shortest distance from both.	_	_
	33 34	B-Y Input R-Y Input	Input terminal of B-Y or R-Y signal. Input signal through a clamping capacitor.	$\begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} DC\\ 2.5V\\ AC\\ B-Y:650mV_{p-p}\\ R-Y:510mV_{p-p}\\ (with input of PAL-75\% color bar signal) \end{array}$

	PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
	35 36	R-Y Output B-Y Output	Output terminal of demodulated R-Y or B-Y signal. There is an LPF for removing carrier built in this pin.	35 36 (180 µ F (1) (1)	$\begin{array}{c} DC \\ 1.9V \\ AC \\ B-Y: 650mV_{p-p} \\ R-Y: 510mV_{p-p} \\ (with input of \\ PAL-75\% \ color \ bar \\ signal) \end{array}$
Sheet4U	.com 37	Y Output	Output terminal of processed Y signal. Standard output level : 0.7V _{p-p}		0.7Vp-p 2.3V GND
	38	Fsc V _{DD}	V _{DD} terminal of DDS block. Insert a decoupling capacitor between this pin and pin 32 (Fsc GND) at the shortest distance from both. If decouping capacitor is inserted at a distance from the pins, it may cause spurious deterioration.	_	_
	39	Black Stretch	To connect filter for controlling black expansion gain of the black expansion circuit. Black expansion gain is determined by voltage of this pin.		_
	40	16.2MHz X'tal	To connect 16.2MHz crystal clock for generating sub-carrier. Lowest resonance frequency (f_0) of the crystal oscillation can be varied by changing DC capacity. Adjust f_0 of the oscillation frequency with the board pattern.		_

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
41	Y / C V _{CC} (5V)	V _{CC} terminal of Y / C signal processing block.	_	_
42	Chroma Input	Chroma signal input terminal. Input negative 1.0V _{p-p} sync composite video signal to this pin through a coupling capacitor.		DC 2.4V AC : 300mV _{p-p} burst
43	Y / C GND	Grounding terminal of Y / C signal processing block.	_	_
44	APL	To connect filter for DC regeneration compensation. Y signal after black expansion can be monitored by opening this pin.		_
45	Y ₁ Input	Input terminal of Y signal. Input negative 1.0V _{p-p} sync composite video signal to this pin through a clamping capacitor.		1.0V _{p-p}
46	S-Demo-Adj.	To connect f ₀ adjustment filter for SECAM demodulation.		DC 3.2V
48	AFC1 Filter	To connect filter for horizontal AFC1 detection. Horizontal frequency is determined by voltage of this pin.		_

	PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
	49	Sync Output	Output terminal of synchronizing signal separated by sync separator circuit. Connect a pull-up resistor to this pin because it is an open-collector output type.	(49) (49)	
aSheet4U	50 .com	V-Sepa. To connect filter for vertical synchronizing separation.			_
	51	Sync Input	Input terminal of synchronizing separator circuit. Input signal through a clamping capacitor to this pin. Negative 1.0Vp-p sync.		GND
	52	V-Ramp	To connect filter for generating V-ramp waveform.		1.9V _{p-p}
	53	53 Vertical Output Output terminal of vertical ramp signal.			JJ
	54	V-NF	Input terminal of vertical NF signal.		\sum

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
55	DEF GND	Grounding terminal of DEF (deflection) block.	—	
56	Video Output	Output terminal of external / TV video input selected by bus. Output level is $2.0V_{p-p}$ (Typ.). Connect a drive resistor to this pin because it is an open-emitter output type. The minimum drive resistance is $1.2k\Omega$.		

/ww.DataSheet4U.com

BUS CONTROL MAP WRITE DATA Slave address : 88H

BLOCK	SUB ADDR	MSB 7	6	5	4	3	2	1	LSB 0	PRE	SET
	00				Uni-0	Color				1 0 0 0	0 0 0 0
	01				BRI	GHT				1 0 0 0	0 0 0 0
	02				COL	OR				1 0 0 0	0 0 0 0
VIDEO / TEXT	03	AV SW				TINT				0 1 0 0	0 0 0 0
	04	P / N KIL	*			SHARF	PNESS			0 0 1 0	0 0 0 0
	05	DTrp-SW	SW R-Mon B-Mon Y SUB CONTRAST							1 0 0 1	0 0 0 0
	06				RGB-CO	NTRAST				1 0 0 0	0 0 0 0
A ATT	07	A MUTE				Audio-ATT Gain				1 0 0 0	0 0 0 0
	08	Υγ	WPL SW	0	BLUE BA	CK MODE		Y-DL SW		0 0 0 0	0 1 0 0
VIDEO / TEXT	09				G DRIV	E GAIN				1 0 0 0	0 0 0 0
	0A				B DRIV	E GAIN				1 0 0 0	0 0 0 0
DEF	0B		HOF	IZONTAL POSI	ΓION		AFC I	NODE	H-CK SW	1 0 0 0	0 0 0 1
	0C				R CU	ΓOFF				0 0 0 0	0 0 0 0
TEXT (P / N)	0D		G CUT OFF						0 0 0 0	0 0 0 0	
	0E			B CUT OFF 0				0 0 0 0	0 0 0 0		
	0F	B. S. OFF	C-TRAP	OFST SW	C-TOF	P / N GP	CLL SW	WBLK SW	WMUT SW	0 0 0 0	0 0 0 0
EVETEM	10	S-INHBT	358 Trap	F-B / W		X'tal MODE COLOR SYSTEM		0 0 0 0	0 0 0 0		
STSTEM	11		R-Y BLAC	K OFFSET		B-Y BLACK OFFSET				1 0 0 0	1 0 0 0
P/N	12	CLL L	EVEL	PN C	D ATT	TO	FQ	TOF	FO	1 0 0 1	1 0 1 0
Vi / C	13	*	*	*	*	C-TR	AP Q	C-TR	AP FO	1 0 1 1	1 0 1 0
	14	BLA	CK STRETCH P	OINT		DC TRAN RATE		APA-CON	IFO/SW	1 0 0 0	0 0 1 0
VIDEO (DEF)	15		ABL POINT			ABL GAIN		HALF T	ONE SW	0 0 0 0	0 0 0 0
	16		H BLK PHASE		V FI	REQ		V OUT PHASE		0 0 0 0	0 0 0 0
	17				V-AMPLITUDE				*	1 0 0 0	0 0 0 0
	18	*	*	*	*	*	*	COINCID	ENT DET	1 0 0 0	0 0 1 0
GEOMETRI	19			V	S-CORRECTIO	N			DRG SW	1 0 0 0	0 0 0 0
	1A			V LINEARITY			V-CD MD	DRV CNT	VAGC SP	0 0 0 0	0 0 0 1
	1B	MUTE	MODE			WIDE V-BLK S	TART PHASE			0 1 1 1	1 1 1 1
	1C	BLK SW			WIDE	V-BLK STOP P	HASE			0 0 0 0	0 0 0 0
	1D	NOISE DE	ET LEVEL			WIDE P-MUTE	START PHASE			1 0 1 1	1 1 1 1
	1E	N COMB			WIDE F	P-MUTE STOP F	PHASE			0 0 0 0	0 0 0 0
SECAM	1F	S-field	SCD ATT	DEMP FO	S GP	V-ID SW	S KIL	BEL	L FO	0 0 0 0	0 0 0 1

Note: *: Data is ignored.

READ-IN DATA Slave address : 89H

	MSB 7	6	5	4	3	2	1	LSB 0
00	PORES	COLOR	SYSTEM	X'	tal	V-FREQ	V-STD	N-DET
01	LOCK	RGBOUT	Y ₁ -IN	UV-IN	Y ₂ -IN	Н	V	V-GUARD

BUS CONTROL FUNCTION

WRITE FUNCTION

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
UNI-COLOR	—	8bit	-18dB~0dB	80h MAX - 5.0dB
BRIGHT	—	8bit	-1V~1V	80h 0V
COLOR	—	8bit	~0dB	80h -6dB
AV SW	Ext Audio and Video SW	1bit	INT / EXT	00h INT
TINT	—	7bit	-45°~45°	40h 0°
P / N KIL	P / N KILLER sensitivity control	1bit	Normal / Low	00h NORMAL
SHARPNESS	—	6bit	-6dB~12dB	20h
DTrp-SW	SECAM double trap ON / OFF	1bit	ON / OFF	01h OFF
R-Mon	TEXT-11 dB pre-amplification UV output	1bit	Normal / Monitor	00h Normal
B-Mon	(Pin 35 : Bo, Pin 36 : Ro)	1bit	Normal / Monitor	00h Normal
Y SUB CONTRAST	—	5bit	-3dB~+3dB	10h 0dB
RGB-CONTRAST	EXT RGB UNI-COLOR control	8bit	-18dB~0dB	80h MAX - 5.0dB
A MUTE	Audio Mute ON / OFF SW	1bit	OFF / ON	01h ON
Audio-ATT Gain	Audio ATT GAIN	7bit	-85dB~1dB	00h -85dB
Yγ	γ ON / OFF	1bit	OFF / 95 IRE	00h OFF
WPL SW	White peak limit level	1bit	130 IRE / OFF	00h 130 IRE
BLUE BACK MODE	Luminance selector switch	2bit	IRE ; OFF, 40, 50, 50	00h OFF
Y-DL SW	Y-DL TIME (28, 33, 38, 43, 48)	3bit	280~480ns after Y IN	04h 480ns
G DRIVE GAIN	—	8bit	-5dB~3dB	80h 0dB
B DRIVE GAIN	—	8bit	-5dB~3dB	80h 0dB
HORIZONTAL POSITION	Horizontal position adjustment	5bit	-3µs~+3µs	10h 0µs

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	Р	PRESET VALUE	
AFC MODE	AFC1 detection sensitivity selector	2bit	dB ; AUTO, 0, −10, −10	00h	AUTO	
H-CK SW	HOUT generation clock selector	1bit	384fh-VCO, FSC-VCXO	01h	FSC-VCXO	
R CUT OFF	_	8bit	-0.5~0.5V	00h	-0.5V	
G CUT OFF	-	8bit	-0.5~0.5V	00h	-0.5V	
B CUT OFF	_	8bit	-0.5~0.5V	00h	-0.5V	
B. S. OFF	Black expansion ON / OFF	1bit	ON / OFF	00h	ON	
C-TRAP	Chroma Trap ON / OFF SW	1bit	ON / OFF	00h	ON	
FST SW	Black offset SECAM discrimination interlocking switch	1bit	SECAM only / All systems	00h	S only	
C-TOF	P / N TOF ON / OFF SW	1bit	ON / OFF	00h	ON	
P / N GP	PAL GATE position	1bit	Standard / 0.5µs delay	00h	Standard	
CL-L SW	COLOR LIMIT ON / OFF	1bit	ON / OFF	00h	ON	
WBLK SW	WIDE V-BLK ON / OFF	1bit	OFF / ON	00h	OFF	
WMUT SW	WIDE Picture-MUTE ON / OFF	1bit	OFF / ON	00h	OFF	
S-INHBT	To detect or not to detect SECAM	1bit	Yes / No	00h	Yes	
3.58 Trap	C Trap-f ₀ , force 3.58MHz switch	1bit	AUTO / Forced 3.58MHz	00h	AUTO	
F-B / W	Force B / W switch	1bit	AUTO / Forced B / W	00h	AUTO	
X'tal MODE	APC oscillation frequency selector switch	3bit	000; European system AUTO 001; 3N 010; 4P 011; 4P (N inhibited) 100: S American system AUTO	00h	European system AUTO	
			101; 3N 110; MP 111; NP			
COLOR SYSTEM	Chroma system selection	2bit	AUTO, PAL, NTSC, SECAM	00h	AUTO	
R-Y BLACK OFFSET	R-Y color difference output black offset adjustment	4bit	-24~21mV STEP 3mV	08h	0mV	
B-Y BLACK OFFSET	B-Y color difference output black offset adjustment	4bit	-24~21mV STEP 3mV	08h	0mV	
CLL LEVEL	Color limit level adjustment	2bit	91, 100, 108, 116%	02h	108%	

Note: 3N ; 3.58-NTSC, 4P ; 4.43-PAL, MP ; M-PAL, NP ; N-PAL European system AUTO ; 4.43-PAL, 4.43-NTSC, 3.58-NTSC, SECAM S.American system AUTO ; 3.58-NTSC, M-PAL, N-PAL

	ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PI	RESET VALUE
	PN CD ATT	P / N color difference amplitude adjustment	2bit	+1~-2dB STEP 1dB	01h	0dB
	TOF Q	TOF Q adjustment	2bit	1.0, 1.5, 2.0, 2.5	02h	2.0
	TOF F0	TOF f ₀ adjustment	2bit	kHz ; 0, 500, 600, 700	02h	600kHz
	C-TRAP Q	Chroma trap Q control	2bit	1.0, 1.5, 2.0, 2.5	02h	2.0
	C-TRAP F ₀	Chroma trap f ₀ control	2bit	kHz ; −100, −50, 0, +50	02h	0kHz
	BLACK STRETCH POI	Black expansion start point setting	3bit	28~70% IRE×0.4	05h	56% IRE
eet4U	DC TRAN RATE	Direct transmission compensation degree selection	3bit	100~130% APL	00h	100%
	APA-CON PEAK F ₀	Sharpness peak frequency selection	2bit	kHz ; 2.5, 3.1, 4.2, OFF	02h	4.2kHz
	ABL POINT	ABL detection voltage	3bit	ABL point ; 6.5V~5.9V	00h	6.5V
	ABL GAIN	ABL sensitivity	3bit	Brightness ; 0~-2V	00h	0V
	HALF TONE SW	Halftone gain selection	2bit	−3dB, −6dB, OFF, OFF	00h	-3dB
	H BLK PHASE	Horizontal blanking end position	3bit	0~3.5µs step 0.5µs	00h	0µs
	V FREQ	EQ Vertical frequency		AUTO, 60Hz, Forced 312.5H, Forced 262.5H	00h	AUTO
	V OUT PHASE	Vertical position adjustment	3bit	0~7H STEP 1H	00h	0H
	V-AMPLITUDE	Vertical amplitude selection	7bit	-50~50%	40h	0%
	COINCIDENT MODE	Discriminator output signal selection	2bit	00 ; DSYNC 01 ; DSYNC×AFC 10 ; Field counting 11 ; VP is present.	02h	Field counting
	V S-CORRECTION	Vertical S-curve correction	7bit	Reverse S-curve, S-curve	40h	_
	DRG SW	Drive reference axis selection	1bit	R/G	00h	R
	V LINEARITY	Vertical linearity correction	5bit	(one side)	00h	_
	V-CD MD	Vertical count-down mode selection	1bit	AUTO / Force synchronization	00h	AUTO
	DRV CNT	All drive gains forced centering switch	1bit	OFF / Force centering	00h	OFF
	VAGC SP	Vertical ramp time constant selection	1bit	Normal / High speed	01h	High speed

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
MUTE MODE	OFF, RGB mute, Y mute, transverse	2bit	OFF, RGB, Y, Transverse	01h RGB
WIDE V-BLK START PH	Vertical pre-position selection	6bit	-64~-1H STEP 1H	3Fh -1H
BLK SW	Blanking ON / OFF	1bit	ON / OFF	00h ON
WIDE V-BLK STOP PH	Vertical post-position selection	7bit	0~128H STEP 1H	00h 0H
NOISE DET LEVEL	Noise detection level selection	2bit	0.15, 0.125, 0.1, 0.075	02h 0.1
WIDE P-MUTE START	Video mute pre-position selection	6bit	-64~-1H STEP 1H	3Fh −1H
N COMB	1H addition selection	1bit	OFF / ADD	00h OFF
WIDE P-MUTE STOP PH	Video mute post-position selection	7bit	0~128H STEP 1H	00h 0H
S-field	SECAM color and Q selection in weak electric field	1bit	Weak electric field control ON / OFF	00h ON
SCD ATT	SECAM color difference amplitude adjustment	1bit	0 / -1dB	00h 0dB
DEMO F ₀	SECAM deemphasis time constant selection	1bit	85kHz / 100kHz	00h 85kHz
S GP	SECAM gate position selection	1bit	Standard / 0.5µs delay	00h Standard
V-ID SW	SECAM V-ID ON / OFF switch	1bit	OFF / ON	00h OFF
S KIL	SECAM KILLER sensitivity selection	1bit	NORMAL / LOW	00h NORMAL
BELL F ₀	Bell f ₀ adjustment	2bit	-46~92kHz STEP 46kHz	01h 0kHz

READ-IN FUNCTION

ITEM	DESCRIPTION	NUMBER OF BITS
PONRES	0 : POR cancel, 1 : POR ON	1bit
	00 : B / W, 01 : PAL	2hit
COLOR STSTEM	10 : NTSC, 11 : SECAM	2011
	00 : 4.433619MHz	
X'tol	01 : 3.579545MHz	2hit
∧ tai	10 : 3.575611MHz (M-PAL)	2011
	11 : 3.582056MHz (N-PAL)	
V-FREQ	0 : 50Hz, 1 : 60Hz	1bit
V-STD	0 : NON-STD, 1 : STD	1bit
N-DET	0 : Low, 1 : High	1bit
LOCK	0 : UN-LOCK, 1 : LOCK	1bit
RGBOUT, Y ₁ -IN	Self-diagnosis	1 hit aaah
UV-IN, Y ₂ -IN, H, V	0 : NG, 1 : OK	TDIL Each
	Detection of breaking neck	1bit
V-GUARD	0 : Abnormal, 1 : Normal	זומו

DATA TRANSFER FORMAT VIA I²C BUS

Bit transfer

Acknowledge

Data transmit format 1

ataSheet4	S ^{CCM} Slave address	0	Α	Sub address	Α	Transmit data	Α	Ρ	
	f f 7bit MSB		1	∮ 8bit MSB		† 8bit MSB		1	
	S : Start Condition		Å	: Acknowledge				Р:	Stop Condition

Data transmit format 2

Data receive format

S	Slave address	1	Α	Received data 01	Α	Received data 02	А	Ρ
	† 7bit MSB			† 8bit MSB				

At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver becomes a slave transmitter. This acknowledge is still generated by the slave. The STOP condition is generated by the master.

Optional data transmit format : Automatic increment mode

S	Slave address	0	A	1	Sub address	Α	Transmit data 1	• •	Transmit data n	А	Р
	† 7bit MSB			† MSB	7bit		† 8bit MSB		f 8bit MSB		

In this transmission method, data is set on automatically incremented sub-address from the specified sub-address. Purchase of TOSHIBA I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	VCCMAX	12	V
Permissible Loss	PDMAX	2190 (Note)	mW
Power Consumption Declining Degree	1 / Qja	17.52	mW / °C
Input Terminal Voltage	Vin	GND - 0.3~VCC + 0.3	V
Input Signal Voltage	ein	7	Vp-p
Operating Temperature	Topr	-20~65	°C
Conserving Temperature	Tstg	-55~150	°C

www.DataSheet4U.Note: In the condition that IC is actually mounted. See the diagram below.

Fig. Power consumption declining curve relative to temperature change

RECOMMENDED OPERATING CONDITION

CHARACTERISTIC	DESCRIPTION	MIN	TYP.	MAX	UNIT
Supply Voltage	Pin 3, pin 17	8.50	9.0	9.25	V
Supply Voltage	Pin 8, pin 38, pin 41	4.75	5.0	5.25	v
TV, External Input Level	Pin 1, pin 47	0.9	1.0	1.1	
Video Input Level		0.9	1.0	1.1	V
Chroma Input Level	100% white, negative sync	0.9	1.0	1.1	v _{p-p}
Sync Input Level		0.9	1.0	2.2	
FBP Width	—	11	12	13	μs
Incoming FBP Current (Note)	—	_	_	1.5	mA
H. Output Current	—	_	1.0	2.0	
RGB Output Current	—	_	1.0	2.0	
Analog RGB Input Level	_	_	0.7	0.8	V
	In TEXT input	0.7	1.0	1.3	
	In OSD input	_	4.2	5.0	
Incoming Current to Pin 49	Sync-out	—	0.5	1.0	mA

Note: The threshold of horizontal AFC2 detection is set $H.V_{CC} - 2V_f (V_f \approx 0.75V)$. Confirming the power supply voltage, determine the high level of EBP.

ELECTRICAL CHARACTERISTIC

(Unless otherwise specified, H, RGB V_{CC} = 0V, V_{DD}, Fsc V_{DD}, Y / C V_{CC} = 5V, Ta = $25\pm3^{\circ}$ C) CURRENT CONSUMPTION

PIN No.	PIN NAME	SYMBOL	TEST CIR- CUIT	MIN	TYP.	MAX	UNIT
3	H.V _{CC} (9V)	I _{CC1}	—	16.0	19.0	23.5	
8	V _{DD} (5V)	I _{CC2}	—	8.8	11.0	14.0	
17	RGB V _{CC} (9V)	I _{CC3}	—	25.0	31.5	39.0	mA
38	Fsc V _{CC} (5V)	I _{CC4}	_	6.8	8.5	11.0	
41	Y / C V _{CC} (9V)	I _{CC5}	-	80	100	130	

TERMINAL VOLTAGE

	PIN No.	PIN NAME	SYMBOL	TEST CIR- CUIT	MIN	TYP.	MAX	UNIT
	1	Ext. Video Input	V ₁	—	2.0	2.8	3.6	V
	16	ABCL	V ₁₆	_	5.9	6.4	6.9	V
	18	OSD R Input	V ₁₈	_		0	0.3	V
	19	OSD G Input	V ₁₉	—	-	0	0.3	V
	20	OSD B Input	V ₂₀	—	-	0	0.3	V
	21	Digital Ys	V ₂₁	—	_	0	0.3	V
	22	Analog Ys	V ₂₂	_		0	0.3	V
ataSheet4U	.com 23	Analog R Input	V ₂₃	_	4.2	4.6	5.0	V
	24	Analog G Input	V ₂₄	—	4.2	4.6	5.0	V
	25	Analog B Input	V ₂₅	—	4.2	4.6	5.0	V
	27	TV Audio Input	V ₂₇	_	2.5	2.9	3.3	V
	28	Ext. Audio Input	V ₂₈	—	2.5	2.9	3.3	V
	29	Audio Output	V ₂₉	—	4.1	4.5	4.9	V
	31	Y ₂ Input	V ₃₁	_	1.7	2.0	2.3	V
	33	B-Y Input	V ₃₃	—	2.2	2.5	2.8	V
	34	R-Y Input	V ₃₄	_	2.2	2.5	2.8	V
	35	R-Y Output	V ₃₅	_	1.5	1.9	2.3	V
	36	B-Y Output	V ₃₆	_	1.5	1.9	2.3	V
	37	Y ₁ Output	V ₃₇	—	1.9	2.3	2.7	V
	40	16.2MHz X'tal Oscillation	V ₄₀	_	3.6	4.1	4.6	V
	42	Chroma Input	V ₄₂	_	2.0	2.4	2.8	V
	47	TV Video Input	V ₄₇	_	2.0	2.8	3.6	V
	50	V-Sepa.	V ₅₀	—	5.4	5.9	6.4	V
	56	Video Output	V ₅₆	—	2.6	3.1	3.6	V

AC CHARACTERISTIC

Video switch section ((Note) T = TV mode, E = Ext. mode)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Min Linear Video Innut	TVdi1	_	(Note)(/)		15	2.0	
ivini. Linear video input	EVdi1	_			1.5	2.0	
May Linear Video Input	TVdi2	_	(Note Va)	4.0	5.0	_	
Max. Linear video input	EVdi2	_	(10010 12)	4.0	5.0		
Video Input Dynamic Rango	TVdiA	_	(Noto Va)	2.0	35	_	V
Video input Dynamic Range	EVdiA	_	(Note V3)	2.0	5.5	_	v
.com Min. Output	TVdo1	_	(Noto V/)		0.1	0.5	
	EVdo1	_	(Note V4)	_	0.1	0.5	
Max Output	TVdo2	_	(Note V/r)	6.0	73		
	EVdo2	_	(Note V5)	0.0	7.5	_	
	TGv1	_	(Noto Va)	17	2.0	2.1	
	EGv1		(14016-146)	1.7	2.0	2.1	
Froquency Characteristic	TGf1		(Noto)/-)	-1.0	0	1.0	timos
	EGf1	_		-1.0	0	1.0	umes
Crosstalk between TV and EVT	TVcr	—	(Noto)/s)	-82	-70	-60	
	EVcr	—		-02	-70	-00	

Video section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Y Input Pedestal Clamping Voltage	VYclp		(Note Y ₁)	2.0	2.2	2.4	V
	ftr3	_	(Noto Ye)	3.429	3.58	3.679	MU-
	ftr4	_	(Note 12)	4.203	4.43	4.633	
Chroma Trap Attenuation	Gtr3a	_	(Noto Ye)	20	26	52	
(3.58MHz)	Gtr3f	_	(Note 13)	20	20	52	dB
(4.43MHz)	Gtr4	_	(Note Y ₄)	20	26	52	uв
(SECAM)	Gtrs	—	(Note Y ₅)	18	26	52	
Yy Correction Point	γp		(Note Y ₆)	90	95	99	_
Yy Correction Curve	γc		(Note Y ₇)	-2.6	-2.0	-1.3	dB
APL Terminal Output Impedance	Z044	_	(Note Y ₈)	15	20	25	kΩ
DC Transmission Compensation	Adrmax	_	(Noto Xa)	0.11	0.13	0.15	times
Amplifier Gain	Adrcnt		(Note 1g)	0.44	0.06	0.08	
Maximum Gain of Black Expansion Amplifier	Ake	—	(Note Y ₁₀)	1.20	1.5	1.65	

	CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
		VBS9MX	—		65	77.5	80	
		VBS9CT	—		55	62.5	70	
	Black Expansion Start Point	VBS9MN	—	(Note Yzz)	48	55.5	63	IDE
		VBS2MX	—	(Note 111)	35	42.5	50	
		VBS2CT	—		25	31.5	38	
		VBS2MN	—		19	25.5	32	
	Black Peak Detection Period (Horizontal)	TbpH	Ι	(Note Y ₁₂)	15	16	17	μs
taSheet4U	.com (Vertical)	TbpV	_		33	34	35	Н
	Picture Quality Control Peaking Frequency	fp25	—		1.5	2.5	3.4	
		fp31		(Note Y ₁₃)	1.9	3.1	4.3	MHz
		fp42			3.0	4.2	5.4	
	Disture Quality Control	GS25MX	_	(Note Y ₁₄)	12.0	14.5	17.0	
	Maximum Characteristic	GS31MX	_		12.0	14.5	17.0	_
		GS42MX	_		10.6	13.5	16.4	
	Picture Quality Control	GS25MN	_		-22.0	-19.5	-17.0	
		GS31MN	_	(Note Y ₁₅)	-22.0	-19.5	-17.0	
		GS42MN	_		-19.5	-16.5	-13.5	dB
	Picture Quality Control	GS25CT	_		6.0	8.5	11.0	
-	Center Characteristic	GS31CT	—	(Note Y ₁₆)	6.0	8.5	11.0	
		GS42CT	—		4.6	7.5	10.4	
	Y Signal Gain	Gy	—	(Note Y ₁₇)	-1.0	0	1.0	
	Y Signal Frequency Characteristic	Gfy	—	(Note Y ₁₈)	-6.5	0	1.0	
	Y Signal Maximum Input Range	Vyd	_	(Note Y ₁₉)	0.9	1.2	1.5	V

Chroma section

	CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
		3N _{eAT}	_		30	35	90	m)/
		3N _{F1T}	_		68	85	105	шv _{p-p}
	ACC Characteristic f = 2.59	3N _{AT}	_		0.9	1.0	1.1	
	ACC Characteristic $I_0 = 3.50$	3N _{eAE}	_		18	35	_	41.000
		3N _{F1E}	_		71	85	102	times
		3N _{AE}	_	(Nata C.)	0.9	1.0	1.1	
		4N _{eAT}	_		18	35	_	m\/
411		4N _{F1T}	_		71	85	102	шүр-р
4 U	.com	4N _{AT}	_		0.9	1.0	1.1	
	$1_0 = 4.43$	4N _{eAE}	_		18	35	_	41.000
		4N _{F1E}	_		71	85	102	times
		4N _{AE}	_		0.9	1.0	1.1	
		3Nfo ₀	_		3.43	3.579	3.73	
	Band Pass Filter Characteristic	3Nfo ₅₀₀	_		3.93	4.079	4.23	
	f _o = 3.58	3Nfo ₆₀₀	_		4.03	4.179	4.33	
		3Nfo ₇₀₀	_	(Nata C)	4.13	4.279	4.43	
		4Nfo ₀	_	$(NOTE C_2)$	4.28	4.433	4.58	
	f _o = 4.43	4Nfo ₅₀₀	_		4.78	4.933	4.58	
		4Nfo ₆₀₀	—		4.88	5.033	5.18	
		4Nfo ₇₀₀	_		4.98	5.133	5.28	
		fo ₀	_					
	Band Pass Filter, −3dB Band	fo ₅₀₀	_		4.04	4 70	4.04	
	Characteristic $f_0 = 3.58$	fo ₆₀₀	—		1.64	1.79	1.94	
		fo ₇₀₀	—					N 41 1-
		fo ₀	_	(Note C ₃)				MHZ
		fo ₅₀₀	_		0.07	0.00	0.07	
	$t_0 = 4.43$	fo ₆₀₀	_		2.07	2.22	2.37	
		fo ₇₀₀	_					
		Q ₁	_		_	3.58	_	
	Band Pass Filter, Q Characteristic	Q _{1.5}	_		_	2.39	_	
	Check $f_0 = 3.58$	Q _{2.0}	_		1.64	1.79	1.94	
		Q _{2.5}	_		_	1.43	_	
		Q ₁	 _	(Note C ₄)	_	4.43	_	
		Q _{1.5}	_		_	2.95	_	_
	f _o = 4.43	Q _{2.0}	 _		2.07	2.22	2.37	
		Q _{2.5}	_	_	_	1.77	_	1

	CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
		fo ₀	_		1.45	1.60	1.75	
	1 / 2 f _c Trap Characteristic	fo ₅₀₀	_		1.70	1.85	2.00	
	f _o = 3.58	fo ₆₀₀			1.75	1.90	2.06	
		fo ₇₀₀		(Note Cr)	1.80	1.95	2.10	MHz
		fo ₀	—	(1010 05)	1.85	2.00	2.15	1411 12
	f _o = 4 43	fo ₅₀₀	—		2.00	2.15	2.30	
		fo ₆₀₀			2.05	2.20	2.35	
		fo ₇₀₀			2.10	2.25	2.40	
w.DataSheet4U	.com	3NΔθ1			35.0	45.0	55.0	
	Tint Control Range	3ΝΔθ2		(Note Co)	-55.0	-45.0	-35.0	
	(f _o = 600kHz)	4NΔθ1		(1006 06)	35.0	45.0	55.0	0
		4ΝΔθ2			55.0	40.0	55.0	
	Tint Control Variable Range	3NΔθΤ	—	(Note Cz)	70.0	90.0	110.0	
	$(f_0 = 600 \text{kHz})$	4ΝΔθΤ	—	(1010 07)	10.0	50.0	110.0	
		3T0Tin	—		30	40	47	bit
		3E0Tin	—	(Note C ₈)	55	40	-1	Dit
	Tint Control Characteristic	3N∆Tin	—		73	80	87	Step
		4TθTin	—		39	40	47	bit
		4EθTin	—		00	-10	-17	Dit
		4N∆Tin			73	80	87	Step
		4.433PH			350	500	1500	
	APC Lead-In Range	4.433PL	—		-350	-500	-1500	
	(Lead-In Range)	3.579PH			350	500	1700	
		3.579PL		(Note Co)	-350	-500	-1700	H7
		4.433HH	—	(Note Og)	400	500	1100	112
	(Variable Range)	4.433HL			-400	-500	-1100	
APC Cor	(Variable range)	3.579HH	_		400	500	1100	
		3.579HL			-400	-500	-1100	
		3.58β3	—		1.50	2.2	2.90	
	APC Control Sensitivity	4.43β3	—	— (Note C ₁₀) —	1.70	2.4	3.10	
		M-PALβM	_		1 50	22	2 00	
		N-PALβN			1.50	2.2	2.30	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	3N-VTK1	-		1.8	2.5	3.2	
	3N-VTC1	_		2.2	3.2	4.0	
	3N-VTK2	_		2.5	3.6	4.5	
	3N-VTC2	_		3.2	4.5	5.6	
	4N-VTK1	_		1.8	2.5	3.2	
	4N-VTC1	_		2.2	3.2	4.0	
	4N-VTK2	_		2.5	3.6	4.5	
	4N-VTC2	_		3.2	4.5	5.6	
Lcom	4P-VTK1	_		1.8	2.5	3.2	
	4P-VTC1	_	(Nata C)	2.2	3.2	4.0	
Killer Operation Input Level	4P-VTK2	_	(Note C_{11})	2.5	3.6	4.5	
	4P-VTC2	_		3.2	4.5	5.6	
	MP-VTK1	_		1.8	2.5	3.2	
	MP-VTC1	_		2.2	3.2	4.0	
	MP-VTK2	_		2.5	3.6	4.5	mV _{p-p}
-	MP-VTC2	_		3.2	4.5	5.6	
	NP-VTK1	_		1.8	2.5	3.2	
	NP-VTC1	_		2.2	3.2	4.0	
	NP-VTK2	_		2.5	3.6	4.5	
	NP-VTC2	_		3.2	4.5	5.6	
	3NeB-Y	_		320	380	460	-
	3NeR-Y	_		240	290	350	
Color Difference Output	4NeB-Y	_		320	380	460	
(Rainbow Color Bar)	4NeR-Y	_		240	290	350	
	4PeB-Y	_	(Note C_{12})	360	430	520	
	4PeR-Y	_		200	240	290	
(750) (Oplan Dar)	4Peb-y	_		540	650	780	
(75% Color Bar)	4Per-y	_		430	510	610	
	3NG _{R/B}	_		0.69	0.77	0.86	
Demodulation Relative Amplitude	4NG _{R/B}	_	(Note C ₁₃)	0.70	0.77	0.85	times
	4PG _{R/B}	_		0.49	0.56	0.64	
Demodulation Relative Phase	3N0R-B	_		85	93	100	
	4NθR-B	_	(Note C ₁₄)	87	93	99	۰
	4P0R-B	_		85	90	95	
	3N-SCB	_					
	3N-SCR	_		0	E	15	m\/
	4N-SCB	—	(Note C ₁₅)	U	5	15	шv _{p-p}
	4N-SCR	_					

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	3N-HCB	_					
Demodulation Output Residual Higher	3N-HCR		(Note Circ)	0	10	30	
Harmonic	4N-HCB	_	(Note C16)	0	10		шүр-р
	4N-HCR						
	B-Y - 1dB			-1.20	-0.9	-0.60	
Color Difference Output ATT Check	B-Y - 2dB		(Note C ₁₇)	-2.30	-1.7	-1.55	dB
	B-Y+1dB			0.60	0.8	1.20	
16.2MHz Oscillation Frequency	ΔfoF		(Note C ₁₈)	-2.0	0	2.0	kHz
16.2MHz Oscillation Start Voltage	VFon1		(Note C ₁₉)	3.0	3.2	3.4	V
f _{sc} Free-Run Frequency (3.58M)	3fr			-100	50	200	
(4.43M)	4fr	_	(Note Car)	-125	25	175	⊔ →
(M-PAL)	Mfr		(Note C ₂₀)	-125	25	175	ΠΖ
(N-PAL)	Nfr	_		-140	10	160	

DEF section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
H. Reference Frequency	FHVCO		(Note DH1)	5.95	6.0	6.10	MHz
H. Reference Oscillation Start Voltage	VSHVCO	_	(Note DH2)	2.3	2.6	2.9	V
H. Output Frequency 1	fH1		(Note DH3)	15.5	15.625	15.72	
H. Output Frequency 2	fH2	-	(Note DH4)	15.62	15.734	15.84	KI IZ
H. Output Duty 1	Ηφ1	_	(Note DH5)	39	41	43	0/_
H. Output Duty 2	Ηφ2	_	(Note DH6)	35	37	39	70
H. Output Duty Switching Voltage 1	V ₅₋₁		(Note DH7)	1.2	1.5	1.8	
	VHH	-		4.5	5.0	5.5	V
	VHL			_	-	0.5	
H. Output Oscillation Start Voltage	VHS	_	(Note DH9)	_	5.0	_	
H. FBP Phase	φFBP	_	(Note DH10)	6.2	6.9	7.6	
H. Picture Position, Maximum	HSFTmax	_	(Note DH11)	17.7	18.4	19.1	110
H. Picture Position, Minimum	HSFTmin	—	(Note DH12)	12.4	13.1	13.8	μs
H. Picture Position Control Range	ΔHSFT	_	(Note DH13)	4.5	5.3	6.1	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
H. Distortion Correction Control Range	ΔΗCC	_	(Note DH14)	0.5	1.0	1.5	µs / V
H. BLK Phase	φBLK		(Note DH15)	6.2	6.9	7.6	
H. BLK Width, Minimum	BLKmin		(Note DH16)	9.8	10.5	11.3	
H. BLK Width, Maximum	BLKmax	—	(Note DH17)	13.2	14.0	14.7	
P / N-GP Start Phase 1	SPGP1		(Note DH18)	3.45	3.68	3.90	
P / N-GP Start Phase 2	SPGP2		(Note DH19)	3.95	4.18	4.40	
P / N-GP Gate Width 1	PGPW1		(Note DH20)	1.65	1.75	1.85	μs
P / N-GP Gate Width 2	PGPW2		(Note DH21)	1.70	1.75	1.85	
SECAM-GP Start Phase 1	SSGP1	—	(Note DH22)	5.2	5.4	5.6	
SECAM-GP Start Phase 2	SSGP2	—	(Note DH23)	5.7	6.0	6.2	
SECAM-GP Gate Width 1	SGPW1		(Note DH24)	1.9	2.0	2.1	
SECAM-GP Gate Width 2	SGPW2		(Note DH25)	1.9	2.0	2.1	
Noise Detection Level 1	NL1		(Note DH26)	0.15	0.2	0.25	
Noise Detection Level 2	NL2	_	(Note DH27)	0.1	0.18	0.26	
Noise Detection Level 3	NL3		(Note DH28)	0.1	0.15	0.2	v
Noise Detection Level 4	NL4		(Note DH29)	0.08	0.13	0.2	
V. Ramp Amplitude	Vramp		(Note DV1)	1.62	2.0	2.08	
V. NF Maximum Amplitude	VNFmax	—	(Note DV2)	3.2	3.5	3.8	V _{p-p}
V. NF Minimum Amplitude	VNFmin	—	(Note DV3)	0.8	1.0	1.2	
V. Amplification Degree	GVA		(Note DV4)	20	26	32	dB
V. Amplifier Max. Output	Vvmax		(Note DV5)	5.0	_	_	V
V. Amplifier Min. Output	Vvmin	-	(Note DV6)	0	-	1.5	v
V. S-Curve Correction, Max. Correction Quantity	VS	_	(Note DV7)	0	11	12	
V. Reverse S-Curve Correction, Max. Correction Quantity	V _{SR}	_	(Note DV8)	9		13	%
V. Linearity Max. Correction Quantity	VL		(Note DV9)	9	20	31	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
AFC-MASK Start Phase	φAFCf	_	(Note DV10)	2.6	3.2	3.8	
AFC-MASK Stop Phase	φAFCe	_	(Note DV11)	4.4	5.0	5.6	
VNFB phase	φVNFB		(Note DV12)	0.45	0.75	1.05	
V. Output Maximum Phase	Vømax	_	(Note DV13)	7.3	8.0	8.7	
V. Output Minimum Phase	Vφmin	_	(Note DV14)	0.5	1.0	1.5	
V. Output Phase Variable Range	ΔVφ	_	(Note DV15)	6.3	7.0	7.7	
50 System VBLK Start Phase	V50BLKf	_	(Note DV16)	0.4	0.55	0.7	
50 System VBLK Stop Phase	V50BLKe	_	(Note DV17)	20	23	26	
60 System VBLK Start Phase	V60BLKf	_	(Note DV18)	0.4	0.55	0.7	
60 System VBLK Stop Phase	V60BLKe	_	(Note DV19)	15	18	21	
V Load In Pango 1	VAcaL		(Noto DV20)	_	232.5		
	VAcaH			_	344.5		U-7
V Load In Pango 2	V60caL	_	(Noto DV21)	—	232.5	-	
V. Leau-III Range 2	V60caH	_		—	294.5	-	
W-VBLK Start Phase	SWVB		(Note DV22)	0		00	
W-PMUTE Start Phase	SWP		(Note DV23)	9	_	00	ц
W-VBLK Stop Phase	STWVB		(Note DV24)	10		120	п
W-PMUTE Stop Phase	STWP		(Note DV25)	10		120	

1H DL section

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1HDI Dynamic Pange Direct	VNBD	—	(Note Ha)	0.8	12		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	The Dynamic Range, Direct	VNRD	_	(Note H1)	0.0	1.2		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14DL Dynamic Pango, Dolay	VPBD	_	(Noto Ha)	0.8	1.2		V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	The Dynamic Range, Delay	VPRD	_	(Note H2)	0.0	1.2		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1HDI Dynamic Range Direct+Delay	VSBD		(Note Ha)	0 9	12		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	The Dynamic Range, Direct Delay	VSRD	_	(Note 113)	0.5	1.2		
$ \begin{array}{c} \mbox{(Note Hq}) & 3.3 & -2.3 & 0.3 \\ \hline \mbox{(Note Hq}) & -3.3 & -2.0 & 0.3 \\ \hline \mbox{(Note Hq}) & -3.3 & -2.0 & 0.3 \\ \hline \mbox{(Note Hq}) & -3.3 & -2.0 & 0.3 \\ \hline \mbox{(Note Hq}) & -3.3 & -2.0 & 0.3 \\ \hline \mbox{(Note Hq}) & -8.2 & -6.5 & -4.3 \\ \hline \mbox{(Note Hq}) & -2.0 & -0.5 & 2.0 \\ \hline \mbox{(Note Hq}) & -2.0 & -0.5 & 2.0 \\ \hline \mbox{(Note Hq}) & -2.0 & -0.5 & 2.0 \\ \hline \mbox{(Note Hq}) & -2.4 & -0.5 & 1.1 \\ \hline \mbox{(Note Hq}) & -2.4 & -0.5 & 1.1 \\ \hline \mbox{(Note Hq}) & -2.4 & -0.5 & 1.1 \\ \hline \mbox{(Note Hq}) & -1.0 & 0.0 & 1.0 \\ \hline \mbox{(Note Hq}) & -5 & 0.0 & 5 \\ \hline \mbox{(Note Hq}) & -5 & 0.0 & 5 \\ \hline \mbox{(Note Hq)} & -5 & 0.0 & 5 \\ \hline \mbox{(Note Hq)} & -5 & 0.0 & 5 \\ \hline \mbox{(Note Hq)} & -5 & 0.0 & 5 \\ \hline \mbox{(Note Hq)} & -5 & 0.0 & 5 \\ \hline \mbox{(Note Hq)} & -5 & -36 & -22 \\ \hline \mbox{(Note Hq)} & -5 & -55 & -36 & -22 \\ \hline \mbox{(Note Hq)} & -5 & -55 & -36 & -22 \\ \hline \mbox{(Note Hq)} & -5 & -55 & -36 & -22 \\ \hline \mbox{(Note Hq)} & -5 & -55 & -36 & -22 \\ \hline \mbox{(Note Hq)} & -5 & -55 & -36 & -22 \\ \hline \mbox{(Note Hq)} & -5 & -55 & -36 & -22 \\ \hline \mbox{(Note Hq)} & -5 & -55 & -36 & -22 \\ \hline \mbox{(Note Hq)} & -5 & -55 & -36 & -22 \\ \hline \mbox{(Note Hq)} & -5 & -5$	Fraguancy Characteristic Direct	GHB1		(Noto H.)	-3.0	-2.0	0.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Trequency Characteristic, Direct	GHR1		(Note H4)	-3.0	-2.0	0.5	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Frequency Characteristic Dolog	GHB2		(Noto H-)	_0 0	-6.5	_1 2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Frequency Characteristic, Delay	GHR2			-0.2	-0.5	-4.3	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AC Cain Direct	GBY1		(Noto H.)	-2.0	-0.5	2.0	dD
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AC Gain, Direct	GRY1			-2.0	-0.5	2.0	uБ
AC Gain, Delay GRY2 - (Note H7) -2.4 -0.5 1.1 Direct-Delay AC Gain Difference GBYD - (Note H8) -1.0 0.0 1.0 Color Difference Output DC Stepping VBD - (Note H9) -5 0.0 5 mV H Delay Quantity BDt - (Note H10) 63.7 64.0 64.4 μ s Color Difference Output Bomin - (Note H10) 63.7 64.0 64.4 μ s DC-Offset Control Bomax - (Note H11) 63.7 64.0 64.4 μ s Bus-Max Data Romin - (Note H11) 63.7 64.0 64.4 μ s Color Difference Output Bomax - (Note H11) 63.7 64.0 64.4 μ s Bus-Max Data Romax - (Note H11) 63.7 64.0 64.4 μ s Color Difference Output DC-Offset Control / Min. Control Quantity Ro1 - (Note H12) 1 4 8 NTSC Mode Gain / NTSC-COM Gain GNB -<		GBY2	—	(Note H ₇)	0.4	0.5	1 1	
$ \frac{\text{Direct-Delay AC Gain Difference}}{\text{GRYD} - \frac{\text{GBYD} - \frac{\text{GRYD} - \frac{1}{\text{GRYD} - \frac{1}{G$	AC Gain, Delay	GRY2			-2.4	-0.5	1.1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Direct Dolou AC Coin Difference	GBYD		(Note LL.)	10	0.0	1.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Direct-Delay AC Gain Direcence	GRYD			-1.0	0.0	1.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Color Difference Output DC Stepping	VBD		(Noto H.)	-5	0.0	5	m\/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Color Difference Output DC Stepping	VRD	—		-5	0.0	5	mv
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		BDt	_		00.7	04.0	C4 4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TH Delay Quantity	RDt		(Note H ₁₀)	63.7	64.0	04.4	μs
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Color Difference Output	Bomin	—		22	36	55	
Bus-Min Data Romin - (Note H11) 22 36 55 mV Bus-Max Data Romax - -55 -36 -22 -55 -36 -22 -22 -55 -36 -22 -1 4 8 -1 1 -1 1 -1 <td>DC-Offset Control</td> <td>Bomax</td> <td>—</td> <td></td> <td>-55</td> <td>-36</td> <td>-22</td> <td></td>	DC-Offset Control	Bomax	—		-55	-36	-22	
Bus-Max Data Romax Color Difference Output DC-Offset Control / Min. Control Quantity Bo1 (Note H12) 1 4 8 NTSC Mode Gain / NTSC-COM Gain GNB (Note H13) -0.90 0 1.20	Bus-Min Data	Romin	—	(Note H ₁₁)	22	36	55	
Color Difference Output DC-Offset Control / Min. Control Quantity Bo1 — (Note H12) 1 4 8 NTSC Mode Gain / NTSC-COM Gain GNB — (Note H13) -0.90 0 1.20 dE	Bus-Max Data	Romax	—		-55	-36	-22	mv
Control / Min. Control Quantity Ro1 - (Note H12) 1 4 8 NTSC Mode Gain / NTSC-COM Gain GNB - (Note H13) -0.90 0 1.20	Color Difference Output DC-Offset	Bo1	—		1	4	0	
NTSC Mode Gain / NTSC-COM Gain GNB - (Note H13) -0.90 0 1.20 dE	Control / Min. Control Quantity	Ro1	—	(Note H ₁₂)	I	4	ð	
		GNB	—	(blat-11-)	-0.90	0	1.20	40
	NTSC Mode Gain / NTSC-COM Gain	GNR	—	(Note H ₁₃)	0.92	0	1.58	aв

Text section

	CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
		Vcp31	—		1.7	2.0	2.3	
	Y Color Difference Clamping Voltage	Vcp33	—	(Note T ₁)	22	25	2.8	
		Vcp34	—		2.2	2.0	2.0	
		Vc12mx	_		2.50	3.00	3.50	
		Vc12mn	_		0.21	0.31	0.47	
		D12c80	-		0.83	1.24	1.86	V
		Vc13mx	_		2.50	3.00	3.50	v
:4U	Contrast Control Characteristic	Vc13mn	_	(Note T ₂)	0.21	0.31	0.47	
		D13c80	_		0.83	1.24	1.86	
		Vc14mx	_		2.50	3.00	3.50	
		Vc14mn	_		0.21	0.31	0.47	
		D14c80	_		0.83	1.24	1.86	
		Gr	_					
	AC Gain	Gg	_	(Note T ₃)	2.8	4.0	5.2	times
		Gb	_					
	Frequency Characteristic	Gf	_	(Note T ₄)		-1.0	-3.0	dB
	Y Sub-Contrast Control Characteristic	∆Vscnt	_	(Note T ₅)	3.0	6.0	9.0	
	Y ₂ Input Range	Vy2d	_	(Note T ₆)	0.7	_	_	
	2	Vn12mx	_		1.6	2.3	4.3	
		Vn12mn	_		0.17	0.35	0.42	v
		D12n80	_		0.67	1.16	1.68	
		Vn13mx	_		1.6	2.3	4.3	
	Unicolar Control Characteristic	Vn13mn	_	(Niete T.)	0.17	0.35	0.42	
	Unicolor Control Characteristic	D13n80	_	(Note 17)	0.67	1.16	1.68	
		Vn14mx	—		1.6	2.3	4.3	
		Vn14mn	_		0.17	0.26	0.42	
		D14n80	_		0.67	1.16	1.68	
		∆V13un	_		16	20	24	dB
	Deletive Amelitude (NTCC)	Mnr-b	_	(Nista T.)	0.70	0.77	0.85	4i
	Relative Amplitude (NTSC)	Mng-b	_		0.30	0.34	0.38	umes
	Deletive Dhase (NTSC)	θnr-b	_	(Nista T.)	87	93	99	0
	Relative Phase (NTSC)	θng-b	_	(Note 19)	235	241.5	248	
	Deletive Ameritade (DAL)	Mpr-b	_	(Nista T.)	0.50	0.56	0.63	4i
		Mpg-b	_	(Note 1 ₁₀)	0.30	0.34	0.38	- times
		θpr-b	—		86	90	94	0
	Relative Fliase (FAL)	θpg-b	—	(Note 1 ₁₁)	232	237	242	1

	CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
		Vcmx	_		1.50	1.80	2.10	V _{p-p}
	Color Control Characteristic	e _{col}	_	(Note T ₁₂)	80	128	160	
		Δ_{col}			142	192	242	step
		e _{cr}	_					
	Color Control Characteristic, Residual	e _{cg}	_	(Note T ₁₃)	0	12.5	25	
		e _{cb}	_					mv _{p-p}
	Chroma Input Range	Vcr	—	(Note T ₁₄)	700	_	—	
	Drightness Central Characteristic	Vbrmx	—	(Neta T)	3.05	3.45	3.85	
:4U	Com	Vbrmn	_	(Note 1 ₁₅)	1.05	1.35	1.65	V
	Brightness Center Voltage	Vbcnt	—	(Note T ₁₆)	2.05	2.30	2.55	
	Brightness Data Sensitivity	ΔVbrt	_	(Note T ₁₇)	6.3	7.8	9.4	
	RGB Output Voltage Axes Difference	ΔVbct	—	(Note T ₁₈)	-150	0	150	mv
	White Peak Limit Level	Vwpl	—	(Note T ₁₉)	2.63	3.25	3.75	
	Outoff October Observation	Vcomx	—		2.55	2.75	2.95	
	Cuton Control Characteristic	Vcomn	—	(Note 1 ₂₀)	1.55	1.75	1.95	v
	Cutoff Center Level	Vcoct	_	(Note T ₂₁)	2.05	2.3	2.55	
	Cutoff Variable Range	ΔDcut	_	(Note T ₂₂)	2.3	3.9	5.5	mV
		DR+	_	(Nista T.)	2.7	3.85	5.0	
	Drive Variable Range	DR-	—	(Note 1 ₂₃)	-6.5	-5.6	-4.7	αв
	DC Regeneration	TDC		(Note T ₂₄)	0	50	100	mV
	RGB Output S / N Ratio	SNo		(Note T ₂₅)		-50	-45	dB
	Planking Dulas Output Loval	Vv		(Neta T)	0.7	1.0	1.2	V
	Blanking Pulse Output Level	Vh	_	(Note 1 ₂₆)	0.7	1.0	1.5	v
	Planking Dulas Dalay Tima	t _{don}	_	(Niete T)	0.05	0.25	0.45	
	Blanking Pulse Delay Time	t _{doff}		(Note 127)	0.05	0.35	0.85	μs
	RGB Min. Output Level	Vmn		(Note T ₂₈)	0.8	1.0	1.2	
	RGB Max. Output Level	Vmx	—	(Note T ₂₉)	6.85	7.15	7.45	V
	Halftone ON Ys Level	Vthtl		(Note T ₃₀)	0.3	0.5	0.7	
	Halftone Gain 1	G3htl3		(Note T ₃₁)	-4.5	-3.0	-1.5	dD
	Halftone Gain 2	G6htl3		(Note T ₃₂)	-7.5	-6.0	-4.5	αв
	Text ON Ys Level	Vttxl	—	(Note T ₃₃)	0.8	1.0	1.2	
	Text / OSD Output, Low Level	Vtxl13		(Note T ₃₄)	-0.45	-0.25	-0.05	
	Text RGB Output, High Level	Vmt13	—	(Note T ₃₅)	1.15	1.4	1.85	
	OSD Ys ON Level	Vtosl		(Note T ₃₆)	1.8	2.0	2.2	V
	OSD RGB Output, High Level	Vmos13	_	(Note T ₃₇)	1.75	2.15	2.55	
ŀ	Text Input Threshold Level	Vtxtg	—	(Note T ₃₈)	0.7	1.0	1.3	-
	OSD Input Threshold Level	Vosdg		(Note T ₃₉)	1.7	2.0	2.3	

	CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
		T _{Rosr}	—					
	OSD Mode Switching Rise-Up Time	T _{Rosg}	—	(Note T ₄₀)	—	40	100	ns
		T _{Rosb}	—					
		t _{PRosr}	_					
	OSD Mode Switching Rise-Up Transfer Time	t _{PRosg}	—	(Note T ₄₁)	—	40	100	ns
		t _{PRosb}	_					
	OSD Mode Switching Rise-Up Transfer Time, 3 Axes Difference	Δt _{PRos}	_	(Note T ₄₂)		15	40	ns
4U	.com	T _{Fosr}	_					
	OSD Mode Switching Breaking Time	T _{Fosg}	_	(Note T ₄₃)	—	30	100	ns
		T _{Fosb}	_					
		t _{PFosr}	_					
	OSD Mode Switching Breaking Transfer Time	t _{PFosg}	_	(Note T ₄₄)	_	30	100	ns
		t _{PFosb}	_					
	OSD Mode Switching Breaking Transfer Time, 3 Axes Difference	Δt _{FRos}	_	(Note T ₄₅)	_	20	40	ns
		T _{Roshr}	—					
	OSD Hi DC Switching Rise-Up Time	T _{Roshg}	_	(Note T ₄₆)	_	20	100	ns
		T _{Roshb}	_					
		t _{PRohr}	—					
	OSD Hi DC Switching Rise-Up Transfer Time	t _{PRohg}	_	(Note T ₄₇)	—	20	100	ns
		t _{PRohb}	_					
	OSD Hi DC Switching Rise-Up Transfer Time, 3 Axes Difference	∆t _{PRoh}	_	(Note T ₄₈)	_	0	40	ns
		T _{Foshr}	_					
	OSD Hi DC Switching Breaking Time	TFoshg	_	(Note T ₄₉)	_	20	100	ns
		TFoshb	_					
		tPFohr	_					
	OSD Hi DC Switching Breaking Transfer Time	tPFohg	_	(Note T ₅₀)	—	20	100	ns
	-	t _{PFohb}	—					
	OSD Hi DC Switching Breaking Transfer Time, 3 Axes Difference	Δt_{PFoh}	_	(Note T ₅₁)	_	0	40	ns

/.DataSheet4U	CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
		Vc12mx	_	(Note T ₅₂)	2.10	2.5	2.97	
		Vc12mn	—		0.21	0.31	0.47	
		D12c80	_		0.84	1.25	1.87	
		Vc13mx	—		2.10	2.5	2.97	
	RGB Contrast Control Characteristic	Vc13mn	_		0.21	0.31	0.47	
		D13c80	_		0.84	1.25	1.87	
		Vc14mx	—		2.10	2.5	2.97	
		Vc14mn	_		0.21	0.31	0.47	
	.com	D14c80	_		0.84	1.25	1.87	
	Analog RGB AC Gain	Gag	—	(Note T ₅₃)	4.0	5.1	6.3	times
	Analog RGB Frequency Characteristic	Gfg	_	(Note T ₅₄)	-0.5	-1.75	-3.0	dB
	Analog RGB Dynamic Range	Dr24	—	(Note T ₅₅)	0.5	_		
	RGB Brightness Control Characteristic	Vbrmxg	—	(Noto T _{ac})	3.05	3.25	3.45	V
		Vbrmng	—	(10010-156)	1.05	1.25	1.45	
	RGB Brightness Center Voltage	Vbcntg	_	(Note T ₅₇)	2.05	2.25	2.45	
	RGB Brightness Data Sensitivity	ΔVbrtg	—	(Note T ₅₈)	6.3	7.8	9.4	mV
	Analog RGB Mode ON Voltage	Vanath	—	(Note T ₅₉)	0.8	1.0	1.2	V
	Analog RGB Switching Rise-Up Time	T _{Ranr}	—	(Note T ₆₀)	_	50	100	-
		T _{Rang}	—					
		T _{Ranb}	—					
		t _{PRanr}	_	(Not T ₆₁ e)	_	20	100	
	Analog RGB Switching Rise-Up Transfer Time	t _{PRang}	—					
		t _{PRanb}	_					
	Analog RGB Switching Rise-Up Transfer Time, 3 Axes Difference	∆t _{PRas}		(Note T ₆₂)		0	40	ne
	Analog RGB Switching Breaking Time	T _{Fanr}	—	(Note T ₆₃)		50	100	- 115
		T _{Fang}	_					
		T _{Fanb}	—					
		t _{PFanr}	—	(Note T ₆₄)	_	30	100	
	Analog RGB Switching Breaking Transfer Time	tPFang	—					
		t _{PFanb}	_					
	Analog RGB Switching Breaking Transfer Time, 3 Axes Difference	∆t _{PFas}	_	(Note T ₆₅)	_	0	40	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	T _{Ranhr}	—	(Note T ₆₆)	_	50	100	. ns
Analog RGB Hi Switching Rise-Up Time	T _{Ranhg}	—					
	TRanhb	—					
	t _{PRahr}	_	(Note T ₆₇)	_	20	100	
Analog RGB Hi Switching Rise-Up Transfer Time	t _{PRahg}	—					
	t _{PRahb}	_					
Analog RGB Hi Switching Rise-Up Transfer Time, 3 Axes Difference	Δt_{PRah}	_	(Note T ₆₈)		0	40	
l.com	t _{Fanhr}	—	(Note T ₆₉)	_	50	100	
Analog RGB Hi Switching Breaking Time	t _{Fanhg}	—					
	t _{Fanhb}	—					
	t _{PFahr}	_	(Note T ₇₀)	_	20	100	
Analog RGB Hi Switching Breaking Transfer Time	t _{PFahg}	_					
	t _{PFahb}	_					
Analog RGB Hi Switching Breaking Transfer Time, 3 Axes Difference	Δt_{PFah}	_	(Note T ₇₁)		0	40	
TV-Analog RGB Crosstalk	Crtvag	—	(Note T ₇₂)	_00	-50	-40	dB
Analog RGB-TV Crosstalk	Crantg	—	(Note T ₇₃)	-00	-50	-40	ü
	Vablpl	—	(Note T ₇₄)	5.5	5.6	5.7	V
ABL Point Characteristic	Vablpc	—		5.7	5.8	5.9	
	Vablph	—		5.9	6.0	6.1	
ACL Characteristic	Vcal	—	(Note T ₇₅)	-19	-16	-13	dB
	Vabll	—	(Note T ₇₆)	-0.3	0	0.3	v
ABL Gain Characteristic	Vablc	—		-1.3	-1.0	-0.7	
	Vablh	—		-2.3	-2.0	-1.7	

Audio section

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Attenuator Max, Cain	TV	Gmxt	_	(Noto A.)	0	1	2	
Alteritator Max. Gain	EXT	Gmxe	—	(NOLE A1)	0		2	dB
Attenuator Contar Cain	TV	Gcntt	_	(Nista A.) 20	_17	17 –14	uВ	
Altendator Center Gain	EXT	Gcnte	—	(Note A2)	-20	-17	-14	
Attenuator Residual	TV	Vmnt	—	(Noto As)	(Note A ₃) — —		70	ΨV
Sound	EXT	Vmne	_	(Note A3)		_		
Audio Mute Residual	TV	Vmutt	_	(Noto A .)			70	
Sound	EXT	Vmute	_	(Note A4)	_	_	70	
Attenuator Gain	TV	ATToft	—	(Noto A-)	-100	0	100	- mV
Switching Offset	EXT	ATTofe	—	(Note A5)	-100	U	100	
Audio Muto Offect	TV	AMToft	_	(Noto A.)	-20	0	30	
Addio Male Olisel	EXT	AMTofe	_	(Note A ₆)	-30	U	30	
Audio Crosstalk	TV→EXT	CRtv	—	(Note A-		-75	-70	dB
Audio Crosstaik	EXT→TV	CRext	_			75	70	uв
Attenuator Max. Input	TV	DItv	—	(Noto A-)	6.0	_	_	V _{p-p}
Voltage	EXT	Dlext	_	(Note Ag)				
A-SW Switching Offset		VSWof	_	—	-30	0	30	mV
Attenuator Breaking	TV	fctv	—	(Note A ₁₀)	500			kHz
Frequency	EXT	fcext	_		500			
Audio S / N Patio	TV	SNtv	_	(Note A ₁₁)	60			dD
	EXT	SNext	_		00			uВ
Attenuator Max. Output	TV	DOtv	—	(NI=+- A)	5.5			N
Voltage	EXT	DOext	_	(Note A ₁₂)	5.5	_	_	v _{p-p}
SECAM section

	CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	Bell Monitor Output Amplitude	embo	_	(Note S ₁)	200	300	400	mV _{p-p}
	Bell Filter f _o	foB-C	—	(Note S ₂)	-23	0	23	
	Roll Filter f Variable Pange	foB-L	_	(Noto Sa)	-69	-46	-23	kHz
		foB-H	—	(Note 33)	69	92	115	
	Bell Filter Q	QBEL	_	(Note S ₄)	14	16	18	_
	Color Difference Output Amplitude	VBS	—	(Noto S-)	0.50	—	0.91	
		VRS	_	(Note 35)	0.39	_	0.73	V _{p-p}
	Color Difference Relative Amplitude	R / B-S	_	(Note S ₆)	0.70	_	0.90	_
:14 L	Color Difference Attenuation Quantity	SATTB	—	(Noto S-)	-1 50		-0.50	
	Color Difference Attendation Quantity	SATTR	_		-1.50	_	-0.50	٩D
	Color Difference S / N Patio	SNB-S	_	(Noto Sa)	-95		-25	uБ
	Color Difference 37 N Ratio	SBR-S	_	(14018-38)	-05	_	-25	
	Lipoprity	LinB	—	(Noto Se)	75	—	117	0/_
	Linearity	LinR	_	(Note 39)	85	—	120	70
	Rising-Fall Time	trfB	_	(Noto S co)		1 2	15	
	(Standard De-Emphasis)	trfR	_	(Note 310)		1.5	1.5	
	Rising-Fall Time	trfBw	-	(Note S)		1 1	1 2	μο
	(Wide-Band De-Emphasis)	trfRw	—	(Note 311)	_	1.1	1.5	
	Killer Operation Input Level	eSK	_	(Note Suc)				
	(Standard Setting)	eSC	_	(Note 312)	0.5	1	2	
		eSFK	_	(Note Sur)	0.5	1	2	m) (
	Killer Operation input Level (VID ON)	eSFC	_	(Note 3 ₁₃)				шv _{p-p}
	Killer Operation Input Level	eSWK	_	(Note Sur)	0.7	15	2	
	(Low Sensitivity, VID OFF)	eSWC	_	(NOLE 514)	0.7	1.5	3	

TEST CONDITION

VIDEO SWITCH SECTION

				TE	ST CONDITION (L	Inless otherwise specified : H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	5	SW MOD	E	SUB-ADDRESS & BUS DATA	MEASURING METHOD
		S1	S47	S51	03H	
V ₁ V ₂ V ₃	Min. Linear Video Input Max. Linear Video Input Video Input Dynamic Range	В	В	А	40H ↓ B0H	 (1) While supplying DC voltage to pin 47 (TVin), measure voltage change at pin 56 (Video Out) to find values of Vdi1 and Vdi2. (2) Find dynamic range from Vdi1 and Vdi2. VdiA = Vdi1 - Vdi2 (3) Perform the same measurement in the EXT. mode as well as the TV mode. (EXT. IN : pin 1). Note: T = TV mode, E = EXT. mode
V ₄ V ₅	Min. Output Max. Output	ſ	¢	¢	40H ↓ B0H	 In the same measurement as the preceding item V₁, find minimum output voltage (Vdo1) and maximum output voltage (Vdo2) at pin 56 (Video OUT). Perform the same measurement in the EXT. mode as well as the TV mode. (EXT. IN : pin 1).
V ₆	AC Gain	A	A	Ť	40H ↓ B0H	 Input 10kHz, 0.5V_{p-p} TG7 sine wave signal to pin 47 (TV IN). Measure amplitude of video output at pin 56. Calculate gain of the input and output (output / input). Calculation result shall be expressed as Gv1. Gv1 = v56 / v47 Perform the same measurement and calculation in the EXT. mode as well as the TV mode. (EXT. IN : pin 1)
V ₇	Frequency Characteristic	ţ	Ť	Ť	40H ↓ B0H	 Input 100kHz, 0.5V_{p-p} and 6MHz, 0.5V_{p-p} TG7 sine wave signals to pin 47 (TV IN). Measure amplitude of the respective video output at pin 56. Measurement results shall be expressed as V100k and V6M respectively, and difference in the frequency characteristic between those outputs shall be expressed as Gf1. Gf1 = 20log (V6M / V100k) Perform the same measurement in the EXT. mode as well as the TV mode. (EXT. IN : pin 1)
V ₈	Crosstalk between TV and EXT	B ↓ A	B ↓ A	A	40H ↓ B0H	 Input 3MHz, 0.7V (video portion) TG7 sine wave signal to pin 47 (TV IN). Short circuit pin 1 (EXT. IN) in AC coupling. Measure amplitude of the video output at pin 56 in both the TV mode and EXT. mode, and express the measurement results as VTV and VEXT respectively. Vcr = 20log (VEXT / VTV) Perform the same measurement in the EXT. mode as well as the TV mode. (EXT. IN : pin 1)

38

<u>TOSHIBA</u>

VIDEO SECTION

				Т	EST CO	NDITION	(Unles	s otherv	wise sp	ecified	: H, RG	B V _{CC}	= 9V	; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	620	642	SW MOD	E S45	SE1	041						_	MEASURING METHOD
		339	342	344	345	331	0411	0011	UIII	1011	1311	1411	(1)	Chart size it size (C. IN) is AC sources
													(1)	Short circuit pin 45 (Y ₁ IN) in AC coupling.
Y ₁	Y Input Pedestal	А	С	В	А	А	20H	04H	80H	00H	BAH	03H	(2)	Input synchronizing signal to pin 51 (SYNC IN).
	Clamping Voltage												(3)	Measure DC voltage at pin 45, and express the measurement result as VYclp.
													(1)	Set the 358 TRAP mode to AUTO by setting the bus data.
													(2)	Set the bus data so that chroma trap is ON and $f_{0}\xspace$ is 0.
													(3)	Input TG7 sine wave signal whose frequency is 3.58MHz (NTSC) and video amplitude is 0.5V to pin 45 (Y $_{\rm 1}$ IN).
Y ₂	Chroma Trap Frequency	Ţ	Ť	A	В	Ţ	¢	Ť	Ť	Ť	Ť	Ţ	(4)	While observing waveform at pin 37 (Y _{1out}), find a frequency with minimum amplitude of the waveform. The obtained frequency shall be expressed as flr3.
													(5)	Change the frequency of the signal 1 to 4.43MHz (PAL) and perform the same measurement as the preceding step 4. The obtained frequency shall be expressed as flr4.
													(1)	Set the 358 TRAP mode to AUTO by setting bus data
													(2)	Set the bus data so that Q of chroma trap is 1.5.
													(3)	Set the bus data so that f_0 of chroma trap is 0.
													(4)	Input TG7 sine wave signal whose frequency is 3.58MHz (NTSC) and video amplitude is 0.5V to pin 45 (Y $_{\rm 1}$ IN).
Y	Chroma Trap Attenuation								Vari-	Vari-	Vari-		(5)	While turning on and off the chroma trap by controlling the bus, measure chroma amplitude (VTon) at pin 37 (Y_{1out}) with the chroma trap being turned on and measure chroma amplitude (VToff) at pin 37 (Y_{1out}) with the chroma trap being turned off.
۲ ₃	(3.58MHz)	ſ	Ť	Ť	Ť	Ť	Ť	Ť	able	able	able	Ť		Gtr = 20log (VToff / VTon)
													(6)	Change f_0 of the chroma trap to –100kHz, –50kHz, 0 and +50kHz, and perform the same measurement as the preceding steps 4 and 5 with the respective f_0 settings.
													(7)	Change Q of the chroma trap to 1, 1.5, 2 and 2.5, and perform the same measurement as the preceding steps 4 through 6. The maximum Gtr shall be expressed as Gtr3a.
													(8)	Set the 358 TRAP mode to the forces 358 mode by setting bus data, and perform the same measurement as the preceding steps 2 through 7 (Gtr3f).

				Т	EST COI	NDITION	(Unles	s other	wise sp	ecified	: H, RG	B V _{CC}	= 9V ; V _{DD} , Fsc V _{DD} , Y / C ¥ _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	\$39	S42	SW MOD	E .S45	S51	04H	SUB-AI	DDRES	S & BU	S DATA	А 14Н	MEASURING METHOD
			012										 Set the 358 TRAP mode to AUTO by setting bus data. Set the bus data so that Q of chroma trap is 1.5.
													(3) Set the bus data so that f_0 of chroma trap is 0.
Y ₄	Chroma Trap Attenuation (4.43MHz)	А	С	A	В	A	20H	04H	Vari- able	Vari- able	Vari- able	03H	(4) Input TG7 sine wave signal whose frequency is 4.43MHz and video amplitude is 0.5V to pin 45 (Y ₁ IN).
													(5) Perform the same measurement as the steps 5 through 7 of the preceding item Y ₃ . The measurement result shall be expressed as Gtr4.
													(1) Set the bus data so that the 358 TRAP mode is AUTO and the Dtrap is ON.
													(2) Set the bus data so that Q of chroma trap is 1.5.
Y ₅	Chroma Trap Attenuation	¢	¢	↑	¢	↑	↑ (↑	¢	¢	↑ (Ŷ	(3) Set the bus data so that f_0 of chroma trap is 0.
	(SECAM)												(4) Input SECAM signal whose amplitude in video period is 0.5V to pin 45 (Y ₁ IN).
													(5) Perform the same measurement as the steps 5 through 7 of the preceding item Y ₃ to find the maximum attenuation (Gtrs).
													(1) Connect the power supply to pin 45 (Y ₁ IN).
													(2) Turn off Yγ by setting the bus data.
Y ₆	Yy Correction Point	Ť	Ť	↑	Ť	Ť	↑	Vari-	80H	00H	ВАН	Ť	(3) While raising the supply voltage from the level measured in the preceding item Y ₁ , measure voltage change characteristic of Y ₁ output at pin 37.
								able					(4) Set the bus data to turn on Yγ.
													(5) Perform the same measurement as the above step 3.
													(6) Find a gamma (γ) point from the measurement results of the steps 3 and 5.
													$\gamma p = Vr \div 0.7 V$
Y ₇	Yy Correction Curve	¢	¢	¢	¢	¢	¢	↑	¢	¢	1	Ŷ	From the measurement in the above item Y_6 , find gain of the portion that the γ correction has an effect on.

				Т	EST CO	NDITION	(Unles	s other	wise sp	ecified	: H, RG	B V _{CC}	= 9V ; V _{DD} , Fsc V _{DD} , Y / C <mark>V_{CC} = 5</mark> V ; Ta = 25±3°C)
NOTE	ITEM	\$30	S42	SW MOD	E \$45	Q51	04日	SUB-AD				A	MEASURING METHOD
Y ₈	APL Terminal Output Impedance	A	C	В	A	A	20H	04H	80H	00H	BAH	03H	 (1) Short circuit pin 45 (Y₁ IN) in AC coupling. (2) Input synchronizing signal to pin 51. (3) Connect power supply and an ammeter to the APL of pin 44 as shown in the figure, and adjust the power supply so that the ammeter reads 0 (zero). (4) Raise the voltage at pin 44 by 0.1V, and measure the current (lin) at that time. Zo44 (Ω) = 0.1V+lin (A)
Y9	DC Transmission Compensation Amplifier Gain	Ť	Ť	Ť	Ť	ţ	Ť	ţ	ţ	Î	Î	Vari- able	 (1) Set the bus data so that DC transmission factor correction gain is maximum. (2) In the condition of the Note Y₈, observe Y_{1out} waveform at pin 37 and measure voltage change in the video period. (3) Set the bus data so that DC transmission factor correction gain is centered, and measure voltage in the same manner as the above step 2. Pin 19 waveform
Y ₁₀	Maximum Gain of Black Expansion Amplifier	Ť	Ť	A	В	Ť	Î	ţ	00H	ţ	ſ	E3H	 Set the bus data so that black expansion is on and black expansion point is maximum. Input TG7 sine wave signal whose frequency is 500kHz and video amplitude is 0.1V to pin 45 (Y₁ IN). While impressing 1.0V to pin 39 (Black Peak Hold), measure amplitude (Va) of Y_{1out} signal at pin 37. While impressing 3.5V to pin 39 (Black Peak Hold), measure amplitude (Vb) of Y_{1out} signal at pin 37. Akc = Va+Vb

TB1226EN

				Т	EST CO	NDITION	(Unless	s other	<i>w</i> ise sp	ecified	: H, RG	B V _{CC}	= 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM		0	SW MOD	E		0,	SUB-AD	DDRES	S & BU	IS DAT	A	MEASURING METHOD
		S39	S42	S44	S45	S51	04H	08H	0FH	10H	13H	14H	
Y ₁₁	Black Expansion Start Point	A	С	A	A	A	20Н	04H	00H	00H	BAH	Vari- able	 (1) Set the bus data so that black expansion is on and black expansion point is maximum. (2) Supply 1.0V to pin 39 (Black Peak Hold). (3) Supply 2.9V to the APL of pin 44. (4) Connect the power supply to pin 45 (Y₁ IN). While raising the supply voltage from the level measured in the preceding item Y₁,measure voltage change at pin 37 (Y_{1out}). (5) Set the bus data to center the black expansion point, and perform the same measurement as the above steps 2 through 4. (6) Set the black expansion point to the minimum by setting the bus data, and perform the same measurement as the above steps 2 through 4. (7) While supplying 2.2V to the APL of pin 44, perform the same measurement as the above step 4 with the black expansion point set to maximum, center and minimum.
Y ₁₂	Black Peak Detection Period (Horizontal) Black Peak Detection Period (Vertical)	В	Î	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	ЕЗН	In the condition of the Note Y ₁ , measure waveform at pin 39 (Black Peak Hold).

				Т	EST CO	NDITION	l (Unles	s other	vise spe	cified :	H, RGB	V _{CC} =	9V ;	V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S39	S42	SW MODI	E S45	S51	04H	SUB-A		S & BU:	S DATA	14H		MEASURING METHOD
													(1) (2)	Set the bus data so that picture quality control frequency is 2.5MHz. Input TG7 sine wave (sweeper) signal whose video level is 0.1V to pin 45 (Y ₁ IN) and pin 51 (Sync. IN).
Y ₁₃	Picture Quality Control Peaking Frequency	A	С	A	В	A	3FH	04H	80H	00H	BAH	Vari- able	(3) (4) (5)	Maximize the picture quality control data. While observing Y _{1out} of pin 37, find an SG frequency as the waveform amplitude is maximum (fp25). Set the bus data so that picture quality control frequency is 3.1MHz
														and 4.2MHz, and perform the same measurement as the above steps 2 through 4 at the respective frequencies (fp31, fp42).
													(1)	Input TG7 sine wave (sweeper) signal whose video level is 0.1V to pin 45 (Y $_1$ IN) and pin 51 (Sync. IN).
													(2)	Set the picture quality control data to maximum.
													(3)	Set the picture quality control frequency is 2.5MHz by setting the bus data
													(4)	Measure amplitude (V100k) of the output of pin 37 (Y ₁ OUT) as the SG frequency is 100kHz, and the amplitude (Vp25) of the same as the SG frequency is 2.5MHz.
														GS25MX = 20log (Vp25 / V100k)
Y ₁₄	Picture Quality Control Maximum Characteristic	↑	Ŷ	Ŷ	¢	¢	Ŷ	¢	¢	Ŷ	¢	¢	(5)	Set the picture quality control frequency data to 3.1MHz by setting the bus data.
													(6)	Measure amplitude (V100k) of the output of pin 37 (Y ₁ OUT) as the SG frequency is 100kHz, and the amplitude (Vp31) of the same as the SG frequency is 3.1 MHz.
														GS31MX = 20log (Vp31 / V100k)
													(7)	Set the picture quality control frequency to 4.2MHz by setting the bus data.
													(8)	Measure amplitude (V100k) of the output of pin 37 (Y ₁ OUT) as the SG frequency is 100kHz, and the amplitude (Vp42) of the same as the SG frequency is 4.2MHz.
														GS42MX = 20log (Vp42 / V100k)

				Т	EST COI	NDITION	(Unless	s otherv	vise spe	ecified	: H, RG	B V _{CC}	= 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM		5	SW MOD	E	a- (5	SUB-AD	DRES	S & BU	S DAT	Α	
		S39	S42	S44	S45	S51	04H	08H	0FH	10H	13H	14H	
Y ₁₅	Picture Quality Control Minimum Characteristic	A	С	A	В	A	00H	04H	80H	00H	ВАН	Vari- able	 In the condition of the Note Y₁₄, set the picture quality control bus data to minimum. Perform the same measurement as the steps 3 through 8 of the Note Y₁₄ to find respective gains as the picture quality control frequency is set to 2.5MHz, 3.1MHz and 4.2MHz. GS25MN = 20log (Vp25 / V100k) GS31MN = 20log (Vp31 / V100k) GS42MN = 20log (Vp42 / V100k)
													(1) In the condition of the Note Y got the nicture quality control hub data
													to center.
Y ₁₆	Picture Quality Control Center Characteristic	Ť	Ť	Ť	Ť	Ť	20H	Ţ	Ť	ſ	¢	¢	(2) Perform the same measurement as the steps 3 through 8 of the Note Y ₁₄ to find respective gains as the picture quality control frequency is set to 2.5MHz, 3.1MHz and 4.2MHz.
													GS25CT = 20log (Vp25 / V100k)
													GS31CT = 20log (Vp31 / V100k)
													GS42CT = 20log (Vp42 / V100k)
													(1) Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum.
Y ₁₇	Y Signal Gain	¢	¢	¢	¢	¢	¢	ſ	¢	ſ	¢	03H	(2) Input TG7 sine wave signal whose frequency is 100kHz and video level is 0.5V to pin 45 (Y ₁ IN) and pin 51 (Sync. IN). (Vyi100)
													(3) Measure amplitude of Y ₁ output at pin 37 (Vyout).
													Gy = 20łog (Vyout / Vyi100)
													 Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum.
													(2) Input TG7 sine wave signal whose frequency is 6MHz and video level is 0.5V to pin 45 (Y ₁ IN) and pin 51 (Sync. IN). (Vyi6M)
Y ₁₈	Y Signal Frequency Characteristic	1	↑	↑	↑	↑	↑	↑	↑	↑	↑	\uparrow	(3) Measure amplitude of Y ₁ output at pin 37 (Vyo6M).
													Gy6M = 20log (Vyo6M / Vyi6M)
													(4) Find Gfy from the result of the Note Y ₁₇ .
													Gfy = Gy6M - Gy

					Т	EST COI	NDITION	(Unles	s other	<i>w</i> ise sp	ecified	: H, RG	B V _{CC}	= 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
Ν	IOTE	ITEM			SW MOD	E			SUB-AI	DDRES	S & BU	IS DAT	Ą	
			S39	S42	S44	S45	S51	04H	08H	0FH	10H	13H	14H	WIEASON ING WIE THOD
	Y ₁₉	Y Signal Maximum Input Range	A	С	A	В	А	20H	04H	80H	00Н	ВАН	03H	 Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum. Input TG7 sine wave signal whose frequency is 100kHz to pin 45 (Y₁ IN) and pin 51 (Sync. IN). While increasing the amplitude Vyd of the signal in the video period, measure Vyd just before the waveform of Y₁ output (pin 37) is distorted.

CHROMA SECTION

					TES	T CONI	DITION	(Unless	otherwis	se speci	fied : H,	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = $25\pm3^{\circ}$ C)
NOTE	ITEM	000				SW N	NODE	040	044	045	054	MEASURING METHOD
		520	51	531	533	534	539	542	544	545	551	1
1												(1) Activate the test mode (S26-ON, Sub Add 02; 01h).
												(2) Set as follows : band pass filter Q = 2, f _o = 600kHz, crystal clock = conforming to European, Asian system.
												(3) Set the gate to the normal status.
												(4) Input 3N rainbow color bar signal to pin 42 (Chroma IN).
C ₁	ACC Characteristic	ON	А	В	в	В	А	А	А	А	В	(5) When input signal to pin 42 is the same in the burst and chroma levels $(10mV_{p-p})$, burst amplitude of B-Y output signal from pin 36 is expressed as eAT. When the level of input signal to pin 42 is $100mV_{p-p}$ or $300mV_{p-p}$, burst amplitude of the B-Y output signal is expressed as F1T or F2T. The ratio between F1T and F2T is expressed as AT.
												F2T / F1T = AT
												(6) Perform the same measurement in the EXT. mode ($f_0 = 0$).
												(eAE, F1E, AE) Pin 36 B-Y burst amplitude eAT
												 (7) Input 4N rainbow color bar signal to pin 42 (Chroma IN), and perform the same measurement as the above-mentioned steps with 3N rainbow color bar signal input.

					TES	ST CONE	DITION	(Unless	otherwis	se specif	fied : H,	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM			~ ~ · ·		SW N	10DE					MEASURING METHOD
		S26	S1	S31	S33	S34	S39	S42	S44	S45	S51	
												(1) Activate the test mode (S26-ON, Sub Add 02 ; 01h).
												(2) Set as follows : band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43MHz, gate = normal status.
												(3) Input 3N composite sine wave signal (1V _{p-p}) to pin 42 (Chroma IN).
												(4) Measure frequency characteristic of B-Y output of pin 36 and measure the peak frequency, too.
												(5) Changing f_0 to 0, 500, 600 and 700 by the bus control and measure peak frequencies respectively with different f_0 .
	Pand Doop Filter											(6) For measuring frequency characteristic as f _o is 4.43, use 4.43MHz crystal clock. Measure the following items in the same manner.
C ₂	Characteristic	ON	A	В	В	В	A	В	A	A	В	$f_0 = 3.58$ $f_0 = 4.43$
												Pin 36 Peak of Pin 36 Peak of frequency
												Bottom of frequency frequency
												Pin 42 sine wave signal Pin 42 sine wave signal

TB1226EN

					TES	T CONI	DITION	(Unless	otherwis	se speci	fied : H,	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S26	S1	S31	S33	SW N S34	AODE S39	S42	S44	S45	S51	MEASURING METHOD
								_	_			(1) Activate the test mode (S26-ON, Sub Add 02 ; 01h).
												(2) Set as follows : band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43MHz.
												(3) Set the gate to the normal status.
												(4) Input 3N composite sine wave signal $(1V_{p-p})$ to pin 42 (Chroma IN).
	Band Pass Filter,	01		_	_							(5) Measure frequency characteristic of B-Y output of pin 36, and measure peak frequency in the −3dB band.
03	Characteristic	ON	А	в	В	В	А	В	А	А	В	(6) Changing f ₀ to 0, 500, 600 and 700 by the bus control and measure peak frequencies in the −3dB band respectively with different f ₀ .
												$f_{o} = 3.58$ $f_{o} = 4.43$ $f_{o} = 4.43$ $Fin 36$ $Fin 42 \text{ sine wave signal}$ $Fin 42 \text{ sine wave signal}$
												 (1) Activate the test mode (S26-ON, Sub Add 02; 01h). (2) Set as follows: TV mode (f. = 600). Operatel mode = conforming to 2 570 /
												4.43MHz, gate = normal status.
												(3) Input 3N composite sine wave signal $(1V_{p-p})$ to pin 42 (Chroma IN).
	Band Dass Filter											(4) Measure frequency characteristic of B-Y output of pin 36, and measure peak frequency in the −3dB band.
C ₄	Q Characteristic Check	¢	¢	¢	¢	¢	¢	Ŷ	¢	¢	¢	(5) Changing f_0 of the band pass filter to 0, 500, 600 and 700 by the bus control and measure peak frequencies in the $-3dB$ band respectively with different f_0 .
												$f_0 = 3.58$ Pin 36 Pin 42 sine wave signal $f_0 = 4.43$ Pin 36 Pin 36 Pin 42 sine wave signal

					TES	ST CON	DITION	(Unless	otherwis	se specit	ied : H,	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM					SW N	/ODE					
		S26	S1	S31	S33	S34	S39	S42	S44	S45	S51	
												(1) Activate the test mode (S26-ON, Sub Add 02; 01h).
												(2) Set as follows : band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43MHz, gate = normal status.
												(3) Input 3N composite sine wave signal $(1V_{p-p})$ to pin 42 (Chroma IN).
												(4) Measure frequency characteristic of B-Y output of pin 36, and measure bottom frequency.
C ₅	1 / 2 f _o Trap Characteristic	ON	А	В	В	В	А	В	А	А	В	(5) Changing f ₀ to 0, 500, 600 and 700 by the bus control and measure bottom frequencies respectively with different f ₀ .
												$f_0 = 3.58$ $f_0 = 4.43$
												Pin 36 Bottom Pin 42 sine freq. wave signal

					TES	ST CONI	DITION	(Unless	otherwis	se speci	fied : H,	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	6.26	61	621	622	SW N	AODE	642	611	S15	QE1	MEASURING METHOD
		320	51	331	333	334	339	342	344	345	301	(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h).
												 (2) Connect band pass filter (Q = 2), set crystal mode to conform to European, Asian system and set the gate to normal status.
												(3) Input 3N rainbow color bar signal (100mV_{p-p}) to pin 42 (Chroma IN).
Ce	Tint Control Sharing	ON	А	в	в	в	А	А	А	А	в	(4) Measure phase shift of B-Y color difference output of pin 36.
0	Range (f _o =600kHz)											(5) While shifting color phase (tint) from minimum to maximum by the bus control, measure phase change of B-Y color difference output of pin 36. On the condition that 6 bars in the center have the peak level (regarded as center of color phase), the side of 5 bars is regarded as positive direction while the side of 7 bars is regarded as penative direction when the 5
C ₇	Tint Control Variable Range (f _o =600kHz)	Î	Ť	Ť	Ť	Ť	Ť	Ţ	Ť	ţ	Ť	 bars or the 7 bars are in the peak level. Based on this assumption, open angle toward the positive direction is expressed as Δθ₁ and that toward the negative direction is expressed as Δθ₂ as viewed from the phase center. Δθ₁ and Δθ₂ show the tint control sharing range. (6) Variable range is expressed by sum ofΔθ₁ sharing range and Δθ₂ sharing range. Δθ_T =Δθ₁+Δθ₂ (7) While shifting color phase from minimum to maximum with the bus control, measure phase shift of B-Y color difference output of pin 36. When center 6 bars have peak
												level, value of color phase bus step is expressed as θ_{Tin} .
C ₈	Tint Control Charactristic	Î	Î	ſ	Î	Î	Î	Î	¢	Î	Î	(8) While shifting color phase from minimum to maximum with the bus control, measure values of color phase bus step corresponding to 10% and 90% of absolutely variable phase shift of B-Y color difference output of pin 36. The range of color phase shifted by the bus control is expressed as While shifting color phase from minimum to maximum with the bus control, measure phase shift of B-Y color difference output of pin 36. When center 6 bars have peak level, value of color phase bus step is expressed as Δ_{Tin} (conforming to TV mode, for e 600kHz).
												(9) Input 4N rainbow color bar signal to pin 42 (Chroma IN), and perform the same measurement as the 3N signal.

					TES	ST CONE	DITION	(Unless	otherwis	e specit	fied : H,	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = $25\pm3^{\circ}$ C)
NOTE	ITEM	S26	S1	S31	S33	SW N S34	NODE S39	S42	S44	S45	S51	MEASURING METHOD
												 Connect band pass filter (Q = 2), set to TV mode (f_o = 600kHz) with X'tal clock conforming to European, Asian system.
1												(2) Set the gate to normal status.
												(3) Input 3N CW signal of $100mV_{p-p}$ to pin 42 of the chroma input terminal.
												(4) While changing frequency of the CW (continuous waveform) signal, measure its frequency when B-Y color difference signal of pin 36 is colored.
												(5) Input 4N CW (continuous waveform) 100mV _{p-p} signal to pin 42 (Chroma IN).
C ₉	APC Lead-In Range	OFF↓ ON	A	В	В	В	A	A ↓	A	A	В	(6) While changing frequency of the CW signal, measure frequencies when B-Y color difference output of pin 36 is colored and discolored. Find difference between the measured frequency and f_c (4.433619MHz) and express the differences as fPH and fPL, which show the APC lead-in range.
								C				(7) Variable frequency of VCXO is used to cope with lead-in of 3.582MHz / 3.575MHz PAL system.
												(8) Activate the test mode (S26-ON, Sub Add 02 ; 02h).
												(9) Input nothing to pin 42 (Chroma IN).
												(10) While varying voltage of pin 30 (APC Filter), measure variable frequency of VCXO at pin 35 (R-Y OUT) while observing color and discoloring of R-Y color difference signal. Express difference between the high frequency (fH) and f _o center as 3.582HH, and difference between the low frequency (fL) and f _o center as 3.582HH, and measurement for the NP system (3.575MHz PAL).
												(1) Activate the test mode (S26-ON, Sub Add 02 ; 02h).
												(2) Connect band pass filter as same as the Note C ₉ .
												(3) Change the X'tal mode properly to the system.
C ₁₀	APC Control Sensitivity	ON	↑	↑	¢	Ŷ	¢	С	Ŷ	↑	¢	(4) Input nothing to pin 42 (Chroma IN).
	Constanty											(5) When V ₃₀ 's APC voltage ±50mV is impressed to pin 30 (APC Filter) while its voltage is being varied, measure frequency change of pin 35 output signal as frH or frL and calculate sensitivity according to the following equation.
												b = (frH - frL) / 100

TB1226EN

					TES	ST CON	DITION	(Unless	otherwis	se specit	ied : H,	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = $5V$; Ta = $25\pm3^{\circ}$ C)
NOTE	ITEM	S26	S1	S31	S33	SW N S34	IODE S39	S42	S44	S45	S51	MEASURING METHOD
												(1) Connect band pass filter (Q = 2) and set to TV mode ($f_0 = 600$ kHz).
												(2) Set the crystal mode to conform to European, Asian system and set the gate to normal status.
												(3) Input 3N color signal having 200mV_{p-p} burst to pin 42 (Chroma IN).
												(4) While attenuating chroma input signal, measure input burst amplitudes of the signal when B-Y color difference output of pin 36 is discolored and when the same signal is colored. Measured input burst amplitudes shall be expressed as 3N-VTK1 and 3NVTC1 respectively (killer operation input level).
												(5) Killer operation input level in the condition that P / N killer sensitivity is set to LOW with the bus control is expressed as 3N-VTK2 or 3N-VTC2.
	Killer Operation											(6) Perform the same measurement as the above step 4 with different inputs of 4N, 4P, MP, NP color signals having 200mV _{p-p} burst to pin 42 (Chroma IN). (When measuring with MP / NP color signal, set the crystal system to conform to South American system.)
C ₁₁	Input Level	OFF	A	В	В	В	A	A	A	A	В	(7) Killer operation input level at that time is expressed as follows. Normal killer operation input level in the 4N system is expressed as 4N-VTK1, 4N-VTC1
												Normal killer operation input level in the 4P system is expressed as 4P-VTK1,
												Killer operation input level with low killer sensitivity is expressed as 4P-VTK2, 4P-VTC2
												Normal killer operation input level in the MP system is expressed as MP-VTK2,
												Normal killer operation input level in the NP system is expressed as NP-VTK1, NP-VTC1
												Killer operation input level with low killer sensitivity is expressed as NP-VTK2, NP-VTC2.
												[Reference] 3N system : 3.579545MHz NTSC 4N system : 4.433619MHz False NTSC 4P system : 4.433619MHz PAL MP system : 3.575611MHz M-PAL NP system : 3.582056MHz N-PAL

					TES	T CON	DITION	(Unless	otherwis	se speci	fied : H,	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM					SW N	IODE					
		S26	S1	S31	S33	S34	S39	S42	S44	S45	S51	
												(1) Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2) Connect band pass filter (Q = 2), set to TV mode ($f_0 = 600$ kHz) with 0dB attenuation.
												(3) Set the crystal mode to conform to European, Asian system and set the gate to normal status.
C:12	Color Difference	ON	Δ	в	B	В		Δ	Δ		B	(4) Input 3N, 4N and 4P rainbow color bar signals having 100mV _{p-p} burst to pin 42 of the chroma input terminal one after another.
012	Output											(5) Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express them as 3NeB-Y / R-Y, 4NeB-Y / R-Y and 4PeB-Y / R-Y respectively.
												(6) While inputting 4P 75% color bar signal (100mV _{p-p} burst) to pin 42 of the chroma input terminal, measure amplitudes of color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively. (Ratio of those amplitudes is expressed as 4Peb-y / r-y for checking color level of SECAM system.)
												(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h).
												(2) Connect band pass filter (Q = 2), set to TV mode ($f_0 = 600$ kHz) with 0dB attenuation.
												(3) Set the crystal mode to conform to European, Asian system and set the gate to normal status.
C ₁₃	Demodulation Relative Amplitude	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	(4) Input 3N, 4N and 4P rainbow color bar signals having 100mV _{p-p} burst to pin 42 of the chroma input terminal one after another.
												(5) Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express ratio between the two amplitudes as 3NG R / B, 4NG R / B and 4PG R / B respectively.
												(Note) Relative amplitude of G-Y color difference signal shall be checked later in the Text section.

					TES	ST CONI	DITION	(Unless	otherwis	se speci	fied : H,	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM					SW N	/ODE					MEASURING METHOD
		S26	S1	S31	S33	S34	S39	S42	S44	S45	S51	MEACONING METHOD
												(1) Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2) Connect band pass filter (Q = 2), set to TV mode ($f_0 = 600$ kHz) with 0dB attenuation.
												(3) Set the crystal mode to conform to European, Asian system and set the gate to normal status.
0	Demodulation				_							(4) Input 3N, 4N and 4P rainbow color bar signals having 100mV _{p-p} burst to pin 42 of the chroma input terminal one after another.
C ₁₄	Relative Phase	ON	A	В	в	В	A	A	A	А	В	(5) Measure phases of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express them as 3N0R-B, 4N0R-B and 4P0R-B respectively.
												(6) For measuring with 3N and 4N color bar signals in NTSC system, set six bars of the B-Y color difference waveform to the peak level with the Tint control and measure its phase difference from phase of R-Y color difference signal of pin 35 (R-Y OUT).
												(Note) Relative phase of G-Y color difference signal shall be checked later in the Text section.
												(1) Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2) Connect band pass filter (Q = 2), set to TV mode ($f_0 = 600$ kHz) with 0dB attenuation.
												(3) Set the crystal mode to conform to European, Asian system.
C:15	Demodulation	↑	↑	↑					↑	↑	↑	(4) Set the gate to normal status.
015	Carrier	I	I		I			I			1	(5) Input 3N and 4N rainbow color bar signals having 100mV _{p-p} burst to pin 42 of the chroma input terminal one after another.
												(6) Measure subcarrier leak of 3N and 4N color bar signals appearing in color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively, and express those leaks as 3N-SCB / R and 4N-SCB / R.

					TES	ST CONI	DITION	(Unless	otherwis	se speci	fied : H,	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	000	0.1	004	000	SW N	NODE	0.40	0.11	0.45	054	MEASURING METHOD
		S26	S1	S31	\$33	S34	\$39	S42	S44	S45	S51	
												(1) Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2) Connect band pass filter (Q = 2), set to TV mode ($f_0 = 600$ kHz) with 0dB attenuation.
	Demodulation											(3) Set the crystal mode to conform to European, Asian system and set the gate to normal status.
C ₁₆	Output Residual Higher Harmonic	ON	A	В	В	В	A	A	A	A	В	(4) Input 3N and 4N rainbow color bar signals having 100mV _{p-p} burst to pin 42 of the chroma input terminal one after another.
												(5) Measure higher harmonic (2f _c = 7.16MHz or 8.87MHz) of 3N and 4N color bar signals appearing in color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively, and express them as 3N-HCB / R and 4N-HCB / R.
												(1) Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2) Connect band pass filter (Q = 2) and set bus data for the TV mode ($f_0 = 600$ kHz).
												(3) Set the X'tal clock mode to conform to European, Asian system and set the gate to normal status.
C ₁₇	Color Difference Output ATT Check	¢	¢	¢	¢	¢	¢	¢	¢	↑	¢	(4) Input 3N rainbow color bar signal whose burst is 100mV _{p-p} to pin 42 of the chroma input terminal.
												(5) Measure amplitude of color difference output signal of pin 36 (B-Y OUT) with 0dB attenuation set by the bus control. Set the amplitude of the color difference output of pin 36 (B-Y OUT) to 0dB, and measure amplitude of the same signal with different attenuation of -2dB, -1dB and +1dB set by the bus control.

							٦	TEST	00	NDITI	ON (Unles	ss otł	nerwi	se sp	ecified : H, RGB V _{CC}	. = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S		B	US : '	TEST	' MOI	DE			В	US :	NOR	MAL	CON	TROL MODE	
NOTE		Ŭ		02	2H			07H				1(OH			OTHER	MEASURING METHOD
		26	D5	D2	D1	D0	D7	D4	D3	D5	D4	D3	D2	D1	D0	CONDITION	
																	(1) Input nothing to pin 42.
C ₁₈	16.2MHz Oscillation Frequency	ON	0	0	0	1	0	0	0	0	0	0	0	0	0	_	(2) Measure frequency of CW signal of pin 35 as fr, and find oscillation frequency by the following equation.
																	$\Delta foF = (fr - 0.05MHz) \times 4$
C ₁₉	16.2MHz Oscillation Start Voltage	ON	0	0	0	1	0	0	0	0	0	0	0	0	0	Impress pin 38 individually with separate power supply.	While raising voltage of pin 38, measure voltage when oscillation waveform appears at pin 40.
																	(1) Input nothing to pin 42.
	fac Free-Run																(2) Change setting of SUB (10H) D ₄ , D ₃ and D ₂ according to respective frequency modes, and measure frequency of CW signal of pin 35.
C ₂₀	Frequency	ON	0	0	0	1	0	0	0	0	V	ariab	le	0	0	—	Detail of D_4 , D_3 and D_2
																	3.58M = 1 : (001), 4.43M = 2 : (010)
																	M-PAL = 6 : (110), N-PAL = 7 : (111)

DEF SECTION

											TEST CONDITION
NOTE				٢	Jnless	otherv	vise sp	ecified	1 : H, R	GB Vo	$_{CC}$ = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ;
NOTE				l				(N	lote)	"x" in tl	he data column represents preset value at power ON.
			S	UB-AD	DRES	S & Bl	JS DA	TA		-	MEASURING METHOD
											(1) Supply 5V to pin 26.
DH1	H. Reference Frequency	Sub 02H	0	0	0	0	0	0	0	1	(2) Set bus data as indicated on the left.
											(3) Measure the frequency of sync. output of pin 49.
DH2	H. Reference Oscillation Start Voltage	Sub 02⊢	0	0	0	0	0	0	0	1	In the test condition of the Note DH1, turning down the voltage supplied to pin 26 from 5V, measure the voltage when oscillation of pin 49 stops.
											(1) Set bus data as indicated on the left.
DH3	H. Output Frequency 1	Sub 10F	×	×	×	×	×	×	0	1	(2) In the condition of the above step 1, measure frequency (TH1) at pin 4.
											(1) Set the input video signal of pin 51 to the 60 system.
DH4	H. Output Frequency 2	Sub 10H	×	×	×	×	×	×	1	0	(2) Set bus data as indicated on the left.
											(3) In the above-mentioned condition, measure frequency (TH2) at pin 4.
DUE											(1) Supply 4.5V DC to pin 5 (or, make pin 5 open-circuited).
DH5	H. Output Duty 1	—	_	-	_	—	-			-	(2) Measure duty of pin 4 output.
DHE	LL Output Duty 2										(1) Make a short circuit between pin 5 and ground.
		_	_	-		_	_			_	(2) Measure duty of pin 4 output.
DH7	H. Output Duty Switching Voltage	_	—	_	_	_	_	_	_	_	Supply 2V DC to pin 5. While turning down the voltage from 2V, measure voltage when the output duty ratio becomes 41 to 37%.
											Measure the low voltage and high voltage of pin 4 output whose waveform is shown below.
DH8	H. Output Voltage	_	_	_	_	_	_	_	_	_	<
DH9	H. Output Oscillation Start Voltage	_	_	_	_	_	_	_	_	_	While raising H. V_{CC} (pin 3) from 0V, measure voltage when pin 4 starts oscillation.

											TEST CONDITION
NOTE	ITEM			ſ	Unless	otherv	vise sp	ecified	I : H, R	GB V	_{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin 51 input video signal = 50 system
			6					(N	ote)	"x" in 1	the data column represents preset value at power ON.
<u> </u>			3								
											(2) Input video signal to pin 51.
											(3) Set the width of pin 6 input pulse to 8µs.
											(4) Measure φFBP shown in the figure below (φFBP).
											(5) Adjust the phase of pin 6 input pulse so that the center of pin 4's output pulse corresponds to the trailing edge of input sync. signal.
											(6) Set bus data as indicated on the left and measure the horizontal picture position with respective bus data settings (HSFTmax, HSFTmin).
											(7) Find HP difference between the conditions mentioned in the above step 6 (Δ HSFT).
											(8) Reset bus data to the preset value.
DH10	H. FBP Phase										(9) While impressing 5V DC to pin 5, measure HP.
DH11	H. Picture Position, Maximum										(10) While impressing 4V DC to pin 5, measure HP.
			0	0	0	0	0	×	×	×	(11) Find difference between the two measurement results obtained in the preceding steps 9 and 10
DITIZ	Minimum	Sub 0BH									(ΔHCC).
DH13	H. Picture position Control Range		1	1	1	1	1	×	×	×	
DH14	H. Distortion Correction Control Range										
											€ ^{9V}
											(51) SYNC input
											(6) Input
											(4) Output

NOTE	ITEM			SI	JB-AD	Jnless	otherv	vise sp	ecified (N	I : H, F ote)	RGB V ₍ "x" in t	TEST CONDITION _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin 51 input video signal = 50 system he data column represents preset value at power ON. MEASURING METHOD
DH15	H. BLK Phase	Sub 02	2H	0	0	0	0	0	1	0	0	(1) In the condition of the steps 1 through 4 of the Note DH10, perform the following measurement.
												(2) Supply 5V DC to pin 26.
												(3) Set bus data as indicated on the left.
												(4) Measure phase difference between pin 51 and pin 49 as shown below.
DH16	H BLK Width Minimum			0	0	0	×	×	×	×	×	(5) Change the bus data as shown on the left and measure BLK width.
DH17	H. BLK Width, Maximum	Sub 16	6H	1	1	1	×	×	×	×	×	(5) SYNC input (4) Output 4 Output 4 BLK
												(1) Supply 5V to pin 26.
												(2) Set bus data as indicated on the left.
DH18	P / N-GP Start Phase 1											(3) With the respective bus data settings mentioned above, measure the phase and gate width as shown in the figure below
DH19	P / N-GP Start Phase 2			×	×	×	×	0	×	×	×	
DH20	P / N-GP Gate Width 1	Sub OI	-H					4				
DH21	P / N-GP Gate Width 2			×	×	×	×	1	×	×	×	(4) SPGP1, 2 PGPW
DUIDO	SECAM-GP Start											(1) Supply 5V to pin 26.
DH22	Phase 1											(2) Set bus data as indicated on the left.
DH23	SECAM-GP Start Phase 2			×	×	×	0	×	×	×	×	(3) With the respective bus data settings mentioned above, measure the phase and gate width as shown in the figure below.
DH24	SECAM-GP Gate Width 1	Sub 11	FH	×	×	×	1	×	×	×	×	
DH25	SECAM-GP Gate Width 2											SSGP1, 2 SGPW

NOTE	ITEM			(^ι	Jnless	otherv	vise sp	ecified (N	I : H, F	RGB V ₍ "x" in t	TEST CONDITION $CC = 9V$; V_{DD} , Fsc V_{DD} , Y / C $V_{CC} = 5V$; Ta = $25\pm3^{\circ}C$; BUS = preset value ; pin 51 input video signal = 50 system he data column represents preset value at power ON.
			SI	JB-AD	DRES	S & Bl	JS DA	TA	ŕ		MEASURING METHOD
											(1) Input such a signal as shown by "a" of the following figure to pin 51.
											(2) Set bus data as indicated in the first line of the left table.
											(3) Measure NLX when amplitude of pin 41 changes. \rightarrow NL1
											(4) Set bus data as indicated in the second line of the left table.
			0	0	×	×	×	×	×	×	(5) Measure NLX when amplitude of pin 41 changes. \rightarrow NL2
DH26	Noise Detection Level 1										(6) Set bus data as indicated in the third line of the left table.
	Noise Detection Level 2		0	1	×	×	×	×	×	×	(7) Measure NLX when amplitude of pin 41 changes. \rightarrow NL3
	Noise Detection Level 2	Sub 1DH									(8) Set bus data as indicated in the fourth line of the left table.
	Noise Detection Level 3		1	0	×	×	×	×	×	×	(9) Measure NLX when amplitude of pin 41 changes. \rightarrow NL4
DH29	Noise Detection Level 4		1	1	×	×	×	×	×	×	sync 2MHz 2MHz MLX AFC1 filter
											(1) Measure amplitude of V. ramp waveform of pin 52.
DV1	V. Ramp Amplitude	_	_	_	_	_	_	_	_	_	Vramp
	V. NF Maximum	Cub 1711	1	1	1	1	1	1	1	~	(1) Set data bus as indicated on the left.
0v2	Amplitude	SUD 17H						1		×	(2) Measure amplitude of pin 54's signal.
	V. NF Minimum	0				0		•			(1) Set data bus as indicated on the left.
DV3	Amplitude	SUD 1/H	U	U	U	U	0	U	U	×	(2) Measure amplitude of pin 54's signal.

NOTE	ITEM			((Jnless	otherw	ise sp	ecified (N	:H, R ote)	GB V ₍ "x" in t	TEST CONDITION _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin 51 input video signal = 50 system he data column represents preset value at power ON.
			Sl	JB-AD	DRES	S & BL	JS DA	ΓA	,		MEASURING METHOD
											(1) Set bus data as indicated on the left.
											(2) Change 5.0V of pin 54 voltage by +0.1V and −0.1V, and measure V ₅₃ output voltage in both the conditions.
											(3) Find GVA shown in the figure below.
											(4) Measure Vvmax and Vvmin shown in the figure below.
DV4 DV5 DV6	V. Amplification Degree V. Amplifier Max. Output V. Amplifier Min. Output	Sub 1BH	1	1	×	×	×	×	×	×	Vymax Vvmax VvmiN
											 Adjust the oscilloscope's amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each other as the bus data is set to the preset value. Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below. Find V_S according to the equation that V_S = (X / Y)×100%.
DV7	V. S-Curve Correction, Max. Correction Quantity	Sub 19H	1	1	1	1	1	1	1	×	Pin 52 ramp output Pin 54 Y X V. HF output

NOTE	ITEM		SI	JB-AD	Jnless DRES	otherw S & Bl	vise sp JS DA ⁻	ecified (N TA	:H, R ote) '	GB V ₍ "x" in t	TEST CONDITION CC = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin 51 input video signal = 50 system he data column represents preset value at power ON. MEASURING METHOD
DV8	V. Reverse S-Curve Correction, Max. Correction Quantity	Sub 19H	0	0	0	0	0	0	0	×	 (1) Adjust the oscilloscope's amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each other as the bus data is set to the preset value. (2) Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below. (3) Find V_S according to the equation that V_S = (X / Y)×100%.
DV9	V. Linearity Max. Correction Quantity	Sub 1AH	1	1	1	1	1	×	×	×	 (1) Adjust the oscilloscope's amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each other as the bus data is set to the preset value. (2) Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below. (3) Find V_S according to the equation that V_S = (X / 2Y)×100%.

NOTE	ITEM		S	UB-AD	Inless o	otherwi	ise spe	ecified (No	:H, R(ote) "	GB V _C x" in th	TEST CONDITION CC = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin 51 input video signal = 50 system te data column represents preset value at power ON. MEASURING METHOD
DV10 DV11 DV12	AFC-MASK Start Phase AFC-MASK Stop Phase VNFB Phase	Sub 02H Sub 16H	0 ×	0 ×	0 ×	0 ×	0 ×	0	0	1	 (1) Supply 5V DC to pin 26. (2) Set bus data as indicated on the left and activate the test mode. (3) Measure the AFC-MASK start phase (X) and AFC-MASK stop phase (Y) of pin 49. (4) Set the Sub 16H as indicated on the left. (5) Measure the VNFB start phase (Z) of pin 54. (5)
DV13 DV14 DV15	V. Output MaximumPhase V. Output Minimum Phase V. Output Phase Variable Range	Sub 16H	×	×	×	×	×	0	0	0	 (1) Input video signal to pin 51. (2) Measure both phases (Xmax, Xmin) of pin 52 and pin 54 with the respective bus data settings shown on the left. (3) Find difference between the two phases measured in the above step 2. Y = Xmax - Xmin

NOTE	ITEM	TEST CONDITION TEST CONDITION Unless otherwise specified : H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin 51 input video signal = 50 system
		SUB-ADDRESS & BUS DATA MEASURING METHOD
DV16	50 System VBLK Start Phase 50 System VBLK Stop	Sub 1BH 0 1 × × × × (1) Input such a video signal of the 50 system as shown in the figure to pin 51. Sub 1BH 0 1 × × × (2) Set bus data as indicated on the left. (3) Measure the VBLK start phase (X) and VBLK stop phase (Y) of pin 12. (3) (3)
DV17	Phase	Sub 1CH 0 × × × × × 10
DV18	60 System VBLK Start Phase	Sub 1BH 0 1 × × × × (1) Input such a video signal of the 60 system as shown in the figure to pin 51. Sub 1BH 0 1 × × × (1) Input such a video signal of the 60 system as shown in the figure to pin 51. Sub 1BH 0 1 × × × × (2) Set bus data as indicated on the left. (3) Measure the VBLK start phase (X) and VBLK stop phase (Y) of pin 12. (3)
DV19	60 System VBLK Stop Phase	Sub 1CH 0 × × × × × × × × Sub 1CH 0 × × × × × × × × × × × × × × × × × ×
DV20	V. Lead-In Range 1	Sub 16H × × × 0 </td

				ر ا	Jnless	otherv	vise sp	ecified	I : H, R	GB V ₍	TEST CONDITION _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; ₎
NOTE	ITEM			l				(N	ote)	"x" in t	pin 51 input video signal = 50 system he data column represents preset value at power ON.
			S	UB-AD	DRES	S & Bl	JS DA	TA	,		MEASURING METHOD
											(1) Set bus data as indicated on the left.
											(2) Input 262.5 H video signal to pin 51.
											(3) Set a certain number of field lines in which signals of pin 51 and pin 54 completely synchronize with each other as shown in the figure below.
											(4) Decrease the field lines in number and measure number of lines in which pin 51 and pin 54 signals do not synchronize with each other.
DV21	V. Lead-In Range 2	Sub 16H	×	×	×	0	1	0	0	0	(5) Again set a certain number of field lines in which pin 51 and pin 52 signals synchronize with each other.
			(6) Increase the field lines in number and measu signals do not synchronize with each other.	(6) Increase the field lines in number and measure number of lines in which pin 51 and pin 52 signals do not synchronize with each other.							
											54
DV22	W-VBLK Start Phase										(1) Set bus data as specified for the Sub 1BH in the left columns, and measure the value of X
DV23	W-PMUTE Start Phase		×	×	0	0	0	0	0	0	shown in the figure below. W-VBLK start phase : MAX, MIN
	(Note) Only the 60 system is	SUD 1BH	×	×	1	1	1	1	1	1	 Set bus data as specified for the Sub 1DH in the left columns, and measure the value of X shown in the figure below. W-PMUTE start phase : MAX, MIN
	subject to evaluation.										
			×	×	0	0	0	0	0	0	52
		Sub 1DH	×	×	1	1	1	1	1	1	

NOTE	ITEM		SI	UB-AD	Jnless	otherv S & Bl	vise sp JS DA	ecified (N TA	I : H, R lote)	GB V ₍ "x" in t	TEST CONDITION _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin 51 input video signal = 50 system he data column represents preset value at power ON. MEASURING METHOD
DV24 DV25	W-VBLK Stop Phase W-PMUTE Stop Phase Note: Only the 60 system is subject to evaluation.	Sub 1CH	×	0	0	0	0	0	0	0	 Set bus data as specified for the Sub 1CH in the left columns, and measure the value of Y shown in the figure below. W-VBLK stop phase : MAX, MIN Set bus data as specified for the Sub 1EH in the left columns, and measure the value of Y shown in the figure below. W-PMUTE stop phase : MAX, MIN
		Sub 1EH	×××	0	0	0	0	0	0	0	

1H DL SECTION

NOTE	ITEM	TE	EST CONE	DITION (Ur	nless othei	rwise specified : H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ⊟Ta = 25±3°C ; BUS = preset value ; pin 3 = 9V ; pin 8 ⋅ 38 ⋅ 41 = 5V)
NOTE	ITEM	SW MODE	SUB-A	DDRESS &	& DATA	MEASURING METHOD
H ₁	1HDL Dynamic Range Direct	ON	94H	<u> </u>		 (1) Input waveform 1 to pin 33 (B-Yin), and measure VNBD, that pin 36 (B-Yout) is saturated input level. (2) Measure VNRD of R-Y input in the same way as VNBD.
						H.BLK
На	1HDL Dynamic Range	†	8CH			(1) Input waveform 1 to pin 33 (B-Yin), and measure VPBD, that pin 36 (B-Yout) is saturated input level.
112	Delay		0011			(2) Measure VPRD of R-Y input in the same way as VPBD.
Ho	1HDL Dynamic Range,	↑.	A4H		_	(1) Input waveform 1 to pin 33 (B-Yin), and measure VSBD, that pin 36 (B-Yout) is saturated input level.
	Direct+Delay	1	,,,,,,			(2) Measure VNRD of R-Y input in the same way as VSBD.
H ₄	Frequency Characteristic, Direct	Ť	94H	_	_	 In the same measuring as H₁, set waveform 1 to 0.3V_{p-p} and f = 100kHz. Measure VB100, that is pin 36 (B-Yout) level. And set waveform 1 to f = 700kHz. Measure VB700, that is pin 36 (B-Yout) level. GHB1 = 20log (VB700 / VB100)
						(2) Measure GHR1 of R-Y out in the same way as GHB1.
	Frequency Characteristic					(1) In the same measuring as H ₁ , set waveform 1 to 0.3V _{p-p} and f = 100kHz. Measure VB100, that is pin 36 (B-Yout) level. And set waveform 1 to f = 700kHz. Measure VB700, that is pin 36 (B-Yout) level.
H ₅	Delay	↑ 1	8CH	—	—	GHB2 = 20log (VB700 / VB100)
						(2) Measure GHR2 of R-Y out in the same way as GHB2.
						(1) In the same measuring as H_1 , set waveform 1 to 0.7 V_{p-p} . Measure VByt1, that is pin 36 (B-Yout) level.
H ₆	AC Gain Direct	1	94H	—	—	GBY ₁ = 20log (VByt1 / 0.7)
						(2) Measure GRY1 of R-Y out in the same way as GBY1.
						(1) In the same measuring as H_1 , set waveform 1 to $0.7V_{p-p}$. Measure VByt2, that is pin 36 (B-Yout) level.
H ₇	AC Gain Delay	1	8CH	—	—	GBY ₂ = 20log (VByt2 / 0.7)
						(2) Measure GRY2 of R-Y out in the same way as GBY2.

NOTE		TE	EST CONE	DITION (Ur	DN (Unless otherwise specified : H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V pin 3 = 9V ; pin 8 · 38 · 41 = 5V)							
NOTE	IIEM	SW MODE	SUB-A	DDRESS &	& DATA	MEASURING METHOD						
		S26	07H	0FH	11H							
H ₈	Direct-Delay	↑	94H	_	_	(1) GBYD = GBY1 - GBY2						
			8CH			(2) GRYD = GRY1 - GRY2						
H9	Color Difference Output DC	Ť	8CH	_	_	(1) Measure pin 36 (B-Yout) DC stepping of the picture period.						
	Stepping					(2) Measure pin 35 (R-Yout) DC stepping of the picture period.						
						(1) Input waveform 2 to pin 33 (B-Yin). And measure the time deference BDt of pin 36 (B-Yout).						
H ₁₀	1H Delay Quantity	ON	8CH	_	_	(2) Input waveform 2 to pin 34 (R-Yin). And measure the time diference RDt of pin 36 (B-Yout).						
						H.BLK						
						(1) Set Sub-Address 11h ; data 88h. Measure the pin 36 DC voltage, that is BDC1.						
						(2) Set Sub-Address 11h ; data 88h. Measure the pin 35 DC voltage, that is RDC1.						
	Color Difference Output				00H	(3) Set Sub-Address 11h ; data 00h. Measure the pin 36 DC voltage, that is BDC2.						
H ₁₁	DC-Offset Control	1	8CH	20H	88H	(4) Set Sub-Address 11h ; data 00h. Measure the pin 35 DC voltage, that is RDC2.						
					FFH	(5) Set Sub-Address 11h ; data FFh. Measure the pin 36 DC voltage, that is BDC3.						
						(6) Set Sub-Address 11h ; data FFh. Measure the pin 35 DC voltage, that is RDC3.						
						(7) Bomin = BDC2 - BDC1, Bomax = BDC3 - BDC1, Romin = RDC2 - RDC1, Romax = RDC3 - RDC1						
	Color Difference Output					(1) Measure the pin 36 DC voltage, that is BDC4.						
H ₁₂	DC-Offset Control / Min.	↑	A4H	00H	89H	(2) Measure the pin 35 DC voltage, that is RDC4.						
	Control Quantity					(3) Bo1 = BDC4 - BDC1, Ro1 = RDC4 - RDC1						
						(1) Input waveform 1, that is set $0.3V_{p-p}$ and f=100kHz, to pin 33. Measure pin 36 output level, that is VBNC.						
Huo	NTSC Mode Gain /	*	олн	80H		(2) GNB = 20log (VBNC / VB100)						
113	NTSC-COM Gain	1	3-+11	0011	_	(3) In the same way as (1) and (2), measure the pin 36 output level, that is VRNC.						
						GNR = 20log (VRNC / VR100)						

TEXT SECTION

					TEST	CON	DITIO	N (Unl	ess ot	herwis	se spe	cified :	H, R	GB V _C	c = 9∖	/ ; V _{DE}	_D , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta $\stackrel{<}{=}$ 25±3°C ; BUS = preset value)
NOTE	ITEM	Sec.	8	8	S\ See	N MOI	DE	1	1	1	SU	B-AD	DRES	S & B	JS DA	TA	MEASURING METHOD
T ₁	Y Color Difference Clamping Voltage	<u>В</u>	В	B	B	B	A	_	_	_	FFH	00H	_	_	_	_	 Short circuit pin 31 (Y IN), pin 34 (R-Y IN) and pin 33 (B-Y IN) in AC coupling. Input 0.3V synchronizing signal to pin 51 (Sync IN). Measure voltage at pin 31, pin 34 and pin 33 (Vcp31, Vcp34, Vcp33).
T ₂	Contrast Control Characteristic	ţ	Ţ	Ť	Ţ	ſ	Ť				FFH 80H 00H	00Н					 Input TG7 sine wave signal whose frequency is 100kHz and video amplitude is 0.7V to pin 31 (Y IN). Input 0.3V Synchronizing Signal to pin 51 (Sync IN). Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that Y sub contrast and drive are set at each center value and color is minimum. Varying data on contrast from maximum (FF) to minimum (00), measure maximum and minimum amplitudes of respective outputs of pin 14 (R OUT), pin 13 (G OUT) and pin 12 (B OUT) in video period, and read values of bus data at the same time. Also, measure the respective amplitudes with the bus data set to the center value (80). (Vc12mx, Vc12mn, D12c80) (Vc14mx, Vc14mn, D14c80) Find ratio between amplitude with maximum unicolor and that with minimum unicolor in conversion into decibel (ΔV13ct).
T ₃	AC Gain	¢	¢	¢	¢	î	¢	_	_	_	_	_	_	_	_	_	In the test condition of Note T ₂ , find output / input gain (double) with maximum contrast. G = Vc13mx / 0.7V

					TEST	CON	IDITIO	N (Unl	less ot	herwis	se spe	cified	: H, R	GB V _C	c = 9\	/ ; V _{DI}	, Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta $= 25\pm3^{\circ}$ C ; BUS = preset value)
NOTE	ITEM				SV	N MO	DE				SL	JB-AD	DRES	S & B	US DA	ΔTA	
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	—	—	-	00H	02H	—	—	—	-	
T ₄	Frequency Characteristic	в	в	в	в	в	A	_	_	_	FFH	оон	_	_	_	_	 Input TG7 sine wave signal whose frequency is 6MHz and video amplitude is 0.7V to pin 31 (Y IN). Input 0.3V synchronizing signal to pin 51 (Sync IN). Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that contrast is maximum, Y sub contrast and drive are set at each center value and color is minimum. Measure amplitude of pin 13 signal (G OUT) and find the output / input gain (double) (G6M). From the results of the above step 5 and the Note T₃, find the frequency characteristic. Gf = 20log (G6M / G)

					TEST	CON	DITIO	N (Unl	ess ot	herwis	se spe	cified :	: H, R	GB V _C	c = 9∖	' ; V _{DI}	D, Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta $= 25\pm3^{\circ}$ C ; BUS = preset value)
NOTE	ITEM				SV	N MO	DE				SL	JB-AD	DRES	S & B	US DA	TA	
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	S ₄₂	—	—	00H	02H	05H	1BH	08H	—	MEAGONING METHOD
T ₅	Y Sub-Contrast Control Characteristic	В	В	В	В	В	A				FFH	оон	1FH 00Н		_		 Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Input TG7 sine wave signal whose frequency is 100kHz and video amplitude is 0.7V to pin 31 (Y IN). Input 0.3V synchronizing signal to pin 51 (Sync IN). Set bus data so that contrast is maximum, drive is set at center value and color is minimum. Set bus data on Y sub contrast at maximum (FF) and measure amplitude (Vscmx) of pin 14 output (R OUT). Then, set data on Y sub contrast at minimum (00), measure the same (Vscmn). From the results of the above step 5, find ratio between Vscmx and Vscmn in conversion into decibel (AVscnt).
ļ																	
																	(1) Set bus data so that contrast is maximum, Y sub contrast and drive are at each center value.
Т ₆	Y ₂ Input Level	¢	¢	Ŷ	¢	¢	¢	_	_	_	¢	-	-	BFH	44H	_	(2) Input 0.3V synchronizing signal to pin 51 while inputting TG7 sine wave signal whose frequency is 100kHz to pin 31 (TY IN).
																	(3) While increasing the amplitude of the sine wave signal, measure video amplitude of signal 1 just before R output of pin 14 is distorted. (Vy2d)

					TEST	CON	DITIO	N (Unl	ess ot	herwis	se spe	cified :	H, R	GB V _C	c = 9∖	/;V _D	D, Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta \exists 25±3°C ; BUS = preset value)
NOTE	ITEM	Sad	Sec	Sad	SN Soc		DE	Sic	1	<u> </u>	SU	JB-ADI		S&BU	JS DA	TA	
Τ ₇	Unicolor Control Characteristic	B	В	В	В	В	A				FFH 80H 00H			BFH			 (1) Input 0.3V synchronizing signal to pin 51 (Sync IN). (2) Input 100kHz, 0.3V_{p-p} sine wave signal to both pin 33 (B-Y IN) and pin 34 (R-Y IN). (3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) Set bus data so that drive is at center value and Y mute is on. (5) While changing bus data on unicolor from maximum (FF) to minimum (00), measure maximum and minimum amplitudes of pin 13 (G OUT) and pin 12 (B OUT) in video period respectively, and read the bus data together with., Also, measure respective amplitudes as unicolor data is set at center value (80). (Vn12mx, Vn12mn, D12n80) (Vn13mx, Vn13mn, D13n80) (Vn14mx, Vn14mn, D14n80) (6) Find ratio between amplitude with maximum unicolor data and that with minimum unicolor data in conversion into decibel (ΔV13un).
т ₈	Relative Amplitude (NTSC)	Ť	¢	А	А	А	¢	A	_	_	FFH	_	_	Ť	_	_	While inputting rainbow color bar signal (3.58MHz for NTSC) to pin 42 and 0.3V synchronizing signal to pin 51 so that video amplitude of pin 33 is 0.38V _{p-p} , find the relative amplitude. (Mnr-b = Vu14mx / Vu12mx, Mng-b = Vu13mx / Vu12mx)
Т ₉	Relative Phase (NTSC)	¢	¢	Ţ	¢	Ť	¢	Ť	_	_	¢	_	_	¢	_	_	 In the test condition of the Note T₈, adjust bus data on tint so that output of pin 12 (B OUT) has the peak level in the 6th bar. Regarding the phase of pin 12 (B OUT) as a reference phase, find comparative phase differences of pin 14 (R OUT) and pin 13 (G OUT) from the reference phase respectively (θnr-b, θng-b).
					TEST	CON	DITIO	N (Unl	ess ot	herwis	se sper	cified :	H, RC	B V _C	c = 9∖	′; V _D	, Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta $= 25\pm3^{\circ}$ C ; BUS = preset value)
-----------------	--	-----------------	---	---	------	-----	-------	--------	-------------	-------------	---------	----------	-------	------------------	--------	-------------------	--
NOTE	ITEM				SV		DE				SU	B-ADI	DRES	5 & BI	US DA	TA	
T ₁₀	Relative Amplitude (PAL)	<u>Б21</u> В	В	A	A	A	A	A	_	_	FFH	<u>-</u>	BFH	_	_	_	While inputting rainbow color bar signal (4.43MHz for PAL) to pin 42 and 0.3V synchronizing signal to pin 51 so that video amplitude of pin 33 is $0.38V_{p-p}$, find the relative amplitude.
T ₁₁	Relative Phase (PAL)	¢	¢	¢	¢	¢	¢	¢	_	_	¢	_	_	_	_		 (Mpr-b - Vultimix / Vultimix, Mpg-b - Vultimix / Vultimix) (1) In the test condition of the Note T₁₀, adjust bus data on tint so that output of pin 12 (B OUT) has the peak level in the 6th bar. (2) Regarding the phase of pin 12 (B OUT) as a reference phase, find comparative phase differences of pin 14 (R OUT) and pin 13 (G OUT) from the reference phase respectively (θpr-b, θpg-b).
T ₁₂	Color Control Characteristic	î	¢	В	В	В	¢	_		_	Ť	FFH	Ţ	_	_	_	 Input 0.3V synchronizing signal to pin 51 (Sync IN). Input 100kHz, 0.1V_{p-p} sine wave signal to both pin 33 (B-Y IN) and pin 34 (R-Y IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that unicolor is maximum, drive is at center value and Y mute is on. Measure amplitude of pin 12 (B OUT) as bus data on color is set maximum (EE) (V(cmx))
T ₁₃	Color Control Characteristic, Residual Color	Ţ	Î	Ţ	Î	Î	Î	_			Î	00Н	Ţ				 (FF). (VCHX) (6) Read bus data when output level of pin 12 is 10%, 50% and 90% of Vcmx respectively (Dc10, Dc50, Dc90). (7) From results of the above step 6, calculate number of steps from Dc10 to Dc90 (Δcol) and that from 00 to Dc50 (ecol). (8) Measure respective amplitudes of pin 12 (B OUT), pin 13 (G OUT) and pin 14 (R OUT) with color data set at minimum, and regard the results as color residuals (ecb, ecg, ecr). Pin 12 Vcmn 00 80 FF

					TEST	CON	DITIO	N (Unl	ess ot	herwis	se spe	cified	: H, R0	GB V _C	c = 9\	′; V _{DE}), Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta
NOTE	ITEM				SI	N MO	DE				SL	JB-AD	DRES	S & B	US DA	ΤA	
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	S ₄₂	—	—	00H	02H	1BH	—	—	—	MEAGONING METHOD
																	 Input rainbow color bar signal (3.58MHz for NTSC or 4.43MHz for PAL) to pin 42 (C IN) and 0.3V synchronizing signal to pin 51 (Sync IN). Connect pin 36 (B-Y OUT) and pin 33 (B-Y IN), pin 35 (R-Y OUT) and pin 34 (R-Y IN) in AC coupling respectively.
T ₁₄	Chroma Input Range	В	В	A	A	A	A	A	_	_	FFH	88H	BFH	-	_	_	 (3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) Set bus data so that unicolor is maximum, drive and color are set at each center value (80) and mute is on.
																	(5) While increasing amplitude of chroma signal input to pin 42, measure amplitude just before any of pin 12 (B OUT), pin 13 (G OUT) and pin 14 (R OUT) output signals is distorted (Vcr).

					TEST	CON	DITIO	N (Unl	ess ot	herwis	se spe	cified :	H, RG	BB V _C	c = 9V	' ; V _{DE}	D, Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta \exists 25±3°C ; BUS = preset value)
NOTE	ITEM	_		_	SV		DE	r	r	r	SL	B-AD	DRES	S&B	JS DA	TA	MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁			_	01H	05H		-			
T ₁₅	Brightness Control Characteristic	В	в	В	в	в	А	_	_	_	FFH 00H	10H	_	_	_	_	 Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
					-			-									(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).
T ₁₆	Voltage	ſ	î	ſ	î	î	ſ	-	-	-	80H	î		—	-	—	(3) Set bus data so that R, G, B cut off data are set at center value.
																	(4) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
																	(5) While changing bus data on brightness from maximum to minimum, measure video voltage of pin 13 (G OUT) to find maximum and minimum voltages (max : Vbrmx, min : Vbrmn).
T ₁₇	Brightness Data	Ŷ	¢	Ŷ	¢	Ŷ	Ŷ	_	_	_	_	_	_	_	_	_	(6) With bus data on brightness set at center value, measure video voltage of pin 13 (G OUT) (Vbcnt).
	Constanty																(7) On the conditon that bus data with which Vbrmx is obtained in measurement of the above step 5 is Dbrmx and bus data with which Vbrmn is obtained in measurement of the above step 5 is Dbrmn, calculate sensitivity of brightness data (ΔVbrt).
																	ΔVbrt = (Vbrmxg – Vbrmng) / (Dbrmxg – Dbrmng)
T ₁₈	RGB Output Voltage Axes	¢	¢	¢	¢	¢	¢	_	_	_	_	_	_	_	_	_	 In the same manner as the Note T₁₆, measure video voltage of pin 12 (B OUT) with bus data on brightness set at center value.
	Difference																(2) Find maximum axes difference in the brightness center voltage.
																	 Set bus data so that contrast and Y sub contrast are maximum and brightness is minimum.
T ₁₉	White Peak Limit Level	ţ	ţ	ţ	Ť	ţ	ţ	_	_	_	00Н	1FH	_	_	_	_	 (2) Input TG7 sine wave signal whose frequency is 100kHz and amplitude in video period is 0.9V to pin 31 (Y IN). (3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) While turning on / off WPL with bus, measure video amplitude of pin 14 (R OUT) with WPL being activated (Ywpl)
																	Pin 14 output waveform

					TEST	CON	DITIO	N (Unl	ess ot	herwis	se spe	cified :	H, RG	B V _{CC}	c = 9V	; V _{DD}	, Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta $= 25\pm3^{\circ}$ C ; BUS = preset value)
NOTE	ITEM		-	_	SV	N MOI	DE		1		SI	UB-AD	DRES	S & BI	JS DA	TA	MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	—	—	—	09H	0AH	0CH	0DH	0EH	—	
T ₂₀	Cutoff Control	в	в	в	в	в	А	_	_		80H	80H	FFH	FFH	FFH	_	(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
	Characteristic												00H	00H	00H		(2) Input 0.3V synchronizing signal to pin 51 (Sync IN)
T ₂₁	Cutoff Center	î	Ŷ	Ŷ	Ŷ	î	Ŷ	_	_	_	¢	¢	80H	80H	80H	_	 (3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
																	 (4) Set bus data on brightness at center value.
																	(5) While changing data on cutoff from maximum to minimum, measure video voltage of pin 13 (G OUT) to find maximum and minimum values (max : Vcomx, min : Vcomn).
T ₂₂	Cutoff Variable Range	¢	¢	¢	¢	¢	¢	_	_	_	_	_	_	_	_	_	 (6) Set cutoff data at center value and measure video voltage of pin 13 (G OUT) (Vcoct).
																	(7) On the condition that bus data with which Vcomx is obtained in measurement of the above step 5 is Dcomx and bus data with which Vcomn is obtained in the same is Dcomn, calculate number of steps (ΔDcut).
																	ΔDcut = Dcomn
																	(1) Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
																	(2) Input a stepping signal whose amplitude in video period is 0.3V to pin 31 (Y IN).
																	(3) Input 0.3V synchronizing signal to pin 51 (Sync IN).
																	(4) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
T ₂₃	Drive Variable	↑	↑	↑	↑	↑	↑	_	_	_	FFH	FFH	80H	80H	80H	_	(5) Set bus data so that contrast is maximum and Y sub contrast is minimum.
	Kange										00H	00H					(6) While changing drive data from minimum to maximum, measure video amplitude of pin 13 (G OUT) to find maximum and minimum values (max : Vdrmx, min : Vdrmn).
																	(7) Set drive data at center value and measure video amplitude of pin 13 (G OUT) (Vdrct). Calculate amplitude ratio of the measured value to the maximum and minimum amplitudes measured in the above step 6 respectively (DR+, DR-).

					TEST	CON	DITIO	N (Unl	ess ot	herwis	se spe	cified :	H, RO	BB V _{CC}	; = 9V	; V _{DD}	Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	Sec	S 200	S	SN	N MOI	DE	<u> </u>	S	<u> </u>	SI	JB-AD	DRES	<u>S & Bl</u>	JS DA	TA	MEASURING METHOD
T ₂₄	DC Regeneration	B	В	A	В	В	A	В	A	A							 Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input such the step-up signal as shown below to pin 45 (Y IN) and pin 51 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that contrast is maximum and DC transmission correction factor is minimum. Adjust data on Y sub contrast so that video amplitude of pin 13 (G OUT) is 2.5V. While varying APL of the step-up signal from 10% to 90%, measure change in voltage at the point A.
T ₂₅	RGB Output S / N Ratio	Ť	Ţ	В	Ţ	Ť	Ţ	_	_	_	_	_	_	_	_	_	 Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data on contrast at maximum. Set bus data on Y sub contrast at center value. Measure video noise level of pin 13 (G OUT) with oscilloscope (no). SNo = -20log (2.5 / (1 / 5) ×no)

					TEST	CON	DITIO	N (Unl	ess ot	herwis	se spe	cified :	H, RG	B V _{CC}	; = 9V	; V _{DD} ,	, Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta
NOTE	ITEM	<u> </u>	<u> </u>		SV		DE	1	1		SL	JB-AD	DRES	S & BL	JS DA	TA	MEASURING METHOD
		S ₂₁	522	S31	533	534	551	_	_	_	UIH	05H	08H	UCH	UDH	UEH	(4) Least an abarateira airead at 0.07/in analituda ta air 54 (0ma IN)
																	(1) Input synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN).
	Planking Dulas																(2) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
T ₂₆	Output Level	В	В	В	В	В	А	—	—	—	80H	10H	04H	80H	80H	80H	(3) Set bus data so that blanking is on.
	-																(4) Measure voltage of pin 13 (G OUT) in V. blanking period (Vy).
																	(5) Measure voltage of pin 13 (G OUT) in H. blanking period (Vh).
																	In the setting condition of the Note T_{26} , find "t _{don} " and "t _{doff} " (see figure below) between the signal impressed to pin 6 (BFP IN) and output signal of pin 13 (G
																	OUT).
T ₂₇	Blanking Pulse Delay Time	Ţ	¢	¢	¢	¢	î	_	_	_	¢	¢	¢	¢	¢	¢	Signal impressed to pin 6
																	Pin 13 output signal
																	 Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
-	RGB Min Output																(2) Input synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN).
128	Level	Î	Î	Î	Î	Î	Î	—	—	—	00H	Î	Î	00H	00H	00H	(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
																	(4) Set bus data so that brightness and RGB cutoff are minimum.
																	(5) Measure video voltage of pin 13 (G OUT) (Vmn).
																	(1) Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
																	(2) Input stepping signal to pin 31 (Y IN) and synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN).
	RGB Max Output																(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
T ₂₉	Level	Ť	Î	Î	Î	Î	Î	—	—	_	80H	1fH	44H	80H	80H	80H	(4) Set bus data so that contrast and Y sub contrast are maximum.
																	(5) While increasing amplitude of the stepping signal, measure maximum output level just before video signal of Pin 13 output waveform
																	pin 13 (G OUT) is distorted (Vmn).

					TEST	CON	DITIO	N (Unl	ess ot	herwis	se spe	cified :	H, RG	B V _{CC}	; = 9V	; V _{DD}	, Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta $= 25\pm3^{\circ}$ C ; BUS = preset value)
NOTE	ITEM				SV	V MOI	DE				SL	JB-ADI	DRES	S & Bl	JS DA	TA	MEASURING METHOD
		S ₁₈	S ₁₉	S ₂₀	S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	15H	1CH	—	—	—	—	
T ₃₀	Halftone Ys Level	В	В	В	Α	В	В	В	В	Α	00H	80H	—	—	—	_	(1) Input stepping signal whose amplitude is 0.3V in video period to pin 31
T ₃₁	Halftone Gain 1	1	Ť	Ŷ	Ť	Ŷ	1	Ť	1	1	Ť	Ŷ	—	—	—	—	(1 IIV) and pin 51 (Sync IIV). (2) Set hus data as that blacking is off and halfford is $-2dP$ is an atotus
T ₃₂	Halftone Gain 2	Ť	Ť	Ŷ	Ť	1	Ŷ	¢	Ť	↑	01H	Ŷ	—	—	—	—	 (2) Set bus data so that blanking is on and handone is -sub in on status. (0) Operated as a set of the status of the
T ₃₃	Text ON Ys, Low Level	î	¢	Ŷ	¢	¢	Ŷ	¢	¢	¢	¢	Ŷ	_	_	_		(3) Connect power supply to pin 21 (Digital Ys). While impressing UV to it, measure amplitude and pedestal level of pin 13 (G OUT) in video period (Vm13, Vp13).
																	(4) Raising supply voltage to pin 21 gradually from 0V, measure level (Vtht1) of pin 21 when amplitude of pin 13 output signal changes. At the same time, measure amplitude and pedestal level of pin 13 in video period after the pin 13 output signal changed in amplitude. (Vm13b, Vp13b)
																	(5) According to results of the above steps 3 and 4, calculate gain of -3dB halftone and variation of pedestal level.
																	G3ht13 = 20log (Vm13b / Vm13)
Т ₃₄	Text / OSD Output, Low Level	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	_	_	_	_	(6) Set bus data so that halftone is −6dB in on status, and perform the same measurement as the above steps 4 and 5 to find gain of −6dB halftone and variation of pedestal level (G6th13).
																	(7) Raising supply voltage to pin 21 further from Vtht1, measure level (Vttx1) of pin 21 when output signal of pin 13 (G OUT) changes in amplitude and DC level of pin 13 after the change of its output (Vtx13).
																	(8) From results of the above steps 3 and 7, calculate low level of the output in the text mode.
																	Vtxl13 = Vtx13 - Vp13
																	(9) Raising supply voltage to pin 21 by 3V from that in the above step 7, confirm that there is no change in output level of pin 13.

					TEST	CON	DITIO	N (Unl	ess ot	herwis	se spe	cified :	H, RO	BB V _{CC}	; = 9V	; V _{DD}	Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	_		-	SV		DE				SI	JB-AD	DRES	S & Bl	JS DA	TA	
		S ₁₈	S ₁₉	S ₂₀	S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₅₁	—	15H	1CH	—	—	—	—	
T ₃₅	Text RGB Output, High Level	А	A	А	A	В	В	В	А	_	02H	80H	_	—	_	_	 Input stepping signal whose amplitude is 0.3V in video period to pin 31 (Y IN) and pin 51 (Sync IN).
T ₃₆	OSD Ys ON, Low	¢	¢	¢	¢	¢	¢	¢	¢	-	¢	↑	-	_			(2) Set bus data so that blanking and halftone are off.
																	(3) Connect power supply to pin 21 (Digital Ys). While impressing 0V to it, measure pedestal level of pin 13 output signal (G OUT) (Vpl13).
																	(4) Connect power supply to pin 19 (Digital G IN) and impress it with 2V.
																	(5) Raising supply voltage to pin 21 gradually from 0V, measure video level of pin 21 after output signal of pin 13 changed (VIx13).
																	(6) From measurement results of the above steps 3 and 5, calculate high level in the text mode.
	OSD RGB																Vmt13 = Vtx13 - Vpt13
Т ₃₇	Output, High Level	¢	Ţ	¢	Ţ	¢	Ţ	Ť	¢	_	¢	Ţ	_	-	_	_	(7) Raising supply voltage to pin 21 further from that in the step 5, measure level (Vtost) of pin 21 when the level of pin 13 output signal changes from that in the step 5 to -6dB as halftone data is set to ON (the 6th step of Notes T ₃₀ to T ₃₄).
																	(8) In the condition of the above step 7, raise voltage impressed to pin 19 to 3V and measure output voltage of pin 13 (Vos13).
																	(9) From results of the above steps 3 and 7, calculate high level of the output in the OSD mode.
																	Vmos13 = Vos13 - Vpt13

					TEST	CON	DITIO	N (Unl	ess ot	herwis	e spe	cified :	: H, R0	BB V _{CC}	; = 9V	; V _{DD}	_D , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta $= 25\pm3^{\circ}$ C ; BUS = preset value)
NOTE	ITEM				SI	N MO	DE				SI	JB-AD	DRES	S & BI	JS DA	TA	MEASURING METHOD
		S ₁₈	S ₁₉	S ₂₀	S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁			—	_	—	_	MEASONING METHOD
																	(1) Connect power supply to pin 21 (Digital Ys) and impress 1.5V to it.
т ₃₈	Text Input Threshold Level	A	А	A	A	В	в	В	В	А	_	_	_	_	_	_	 (2) Connect power supply to pin 19 (Digital G IN). While raising supply voltage gradually from 0V, measure supply voltage when output signal of pin 13 (G OUT) changes (Vtxt).
																	(3) Raising the supply voltage to pin 19 furthermore to 4V, confirm that there is no change in the output signal of pin 13 (G OUT).
																	(1) Connect power supply to pin 21 (Digital Ys) and impress 2.5V to it.
T ₃₉	OSD Input Threshold Level	¢	¢	¢	¢	¢	¢	¢	¢	¢	_	_	_	_	_	_	(2) Connect power supply to pin 19 (Digital G IN). While raising supply voltage gradually from 0V, measure supply voltage when output signal of pin 13 (G OUT) changes (Vosd).
																	(3) Raising the supply voltage to pin 19 furthermore to 4V, confirm that there is no change in the output signal of pin 13 (G OUT).

					TEST	CON	DITIO	N (Unl	ess ot	herwis	se spe	cified :	H, RG	B V _{CC}) = 9V	; V _{DD}	, Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM				S\		DE				รเ	JB-AD	DRES	S & Bl	JS DA	TA	MEASURING METHOD
T ₄₀	OSD Mode Switching Rise-Up Time	A	A	A	A	В	<u>531</u> В	В	5 ₃₄ В	A	_	_	_	_	_	_	 Input a Signal Shown by (a) in the following figure to pin 21 (Digital Ys). According to (b) in the figure, measure T_{Rosd}, t_{PRos}, T_{Fosd} and t_{PFos} for output signals of pin 14 (P, OUT) pin 13 (C, OUT) and pin 12 (P, OUT).
T ₄₁	OSD Mode Switching Rise-Up Transfer Time	¢	¢	¢	¢	¢	¢	¢	¢	¢	_	_	_	_	_	_	 (3) Find maximum values of t_{PRos} and t_{PFos} respectively (Δt_{PRos}, Δt_{PFos}).
T ₄₂	OSD Mode Switching Rise-Up Transfer Time, 3 Axes Difference	ţ	ţ	ţ	Ť	Ť	ţ	ţ	Ţ	Ť	_	_	_	_	_	_	(a)
T ₄₃	OSD Mode Switching Breaking Time	î	¢	Ŷ	¢	¢	¢	î	Ŷ	¢	_	_	_	_	_	_	50%
T ₄₄	OSD Mode Switching Breaking Transfer Time	¢	¢	¢	¢	¢	¢	¢	¢	¢	_	_	_	_	_	_	(b) <u>tpp</u> <u>tpp</u>
T ₄₅	OSD Mode Switching Breaking Transfer Time, 3 Axes Difference	Ţ	Ţ	ţ	Î	Î	Ţ	ţ	Ţ	Î							50% 90% (c) t_{PR} t_{PF} 90% 50% τ_{R} τ_{F} τ_{F}

					TEST	CON	DITIO	N (Unl	ess ot	herwis	se spe	cified :	H, RG	BB V _{CC}	; = 9V	; V _{DD}	, Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta $= 25\pm3^{\circ}$ C ; BUS = preset value)
NOTE	ITEM	_			S۱		DE				SI	JB-AD	DRES	S & Bl	JS DA	TA	MEASURING METHOD
		S ₁₈	S ₁₉	S ₂₀	S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	_		_	—	—	_	
Т ₄₆	OSD Hi DC Switching Rise-Up Time	A	A	А	А	в	в	В	В	А	_	_	_	_	_	_	 Supply pin 21 (Digital Ys) with 2.5V. Input 5V_{p-p} signal shown by (a) in the figure to pin 18 (Digital R IN). Referring to (b) of the following figure, measure T_{Rosh}, t_{PRoh}, T_{Fosh} and t_{PFoh} for output signal of pin 14 (R OUT). Input 5V_{p-p} signal shown by (a) in the figure to pin 19 (Digital G IN).
T ₄₇	OSD Hi DC Switching Rise-Up Transfer Time	Ť	Ť	Ť	Ť	Ť	Ţ	Ť	Ť	¢	_	_	_	_	_		 (5) Perform the same measurement as the above step 3 for pin 13 output (G OUT) referring to (b) of the following figure. (6) Input 5V_{p-p} signal shown by (a) in the figure to pin 20 (Digital B IN). (7) Perform the same measurement as the above step 3 for pin 12 output (B OUT) referring to (b) of the following figure.
T ₄₈	OSD Hi DC Switching Rise-Up Transfer Time, 3 Axes Difference	¢	¢	¢	¢	¢	¢	¢	Ť	¢	_	_	_	_	_		(8) Find maximum axes differences in t _{PRoh} and t _{PFoh} among the three outputs (Δt _{PRoh} , Δt _{PFoh}).
T ₄₉	OSD Hi DC Switching Breaking Time	Ť	Ţ	Ţ	¢	Ť	¢	Ť	Ţ	¢	_	_	_	_	_	_	(a) 50%
Т ₅₀	OSD Hi DC Switching Breaking Transfer Time	¢	Ţ	¢	Ť	Ţ	¢	¢	¢	¢	_	_	_	_	_	_	(b) 90%
T ₅₁	OSD Hi DC Switching Breaking Transfer Time, 3 Axes Difference	Ť	¢	¢	¢	Ť	¢	¢	Ţ	¢	_	_	_	_	_		$10\% - \frac{10\%}{\tau_{R}} + \frac{10\%}{\tau_{F}}$

					TEST	CON	DITIO	N (Unl	ess ot	herwis	se spe	cified :	H, RC	BB V _{CC}	; = 9V	; V _{DD}	Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta \equiv 25±3°C ; BUS = preset value)
NOTE	ITEM				SV	N MOI	DE				SU	JB-AD	DRES	S & Bl	JS DA	TA	
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	—	—	—	06H	—	—	—	—	—	MEROOR NO METHOD
Т ₅₃	Analog RGB AC Gain	В	A	В	В	В	А	_	_	_	_	_	_	_	_	_	In the setting condition of the Note T ₅₂ , calculate output / input gain (double) with contrast data being set maximum. G = Vc13mx / 0.5V
																	(1) Input 0.3V synchronizing signal to pin 51 (Sync IN).
																	(2) Supply 5V of external supply voltage to pin 22 (Analog Ys).
																	(3) Input TG7 sine wave signal (f = 100kHz, video amplitude = 0.5V) to pin 24 (Analog G IN).
T54	Analog RGB Frequency	↑	¢	↑	¢	↑	↑	_	_	_	FFH	_	_	_		_	(4) Set bus data so that contrast is maximum and drive is set at center value.
04	Characteristic																(5) Measure video amplitude of pin 13 (G OUT) and calculate output / input gain (double) (G6M).
																	(6) From measurement results of the above step 5 and the preceding Note 53, find frequency characteristic.
																	Gf = 20log (G6M / G)

					TEST	CON	DITIO	N (Unl	ess ot	herwis	se spe	cified :	H, RG	B V _{CC}	; = 9V	; V _{DD}	Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta
NOTE	ITEM				SV		DE	1	r	1	SI	JB-AD	DRES	S & Bl	JS DA	TA	
		S ₂₁	S ₂₂	S ₃₁	S33	S ₃₄	S ₅₁	—	—	—	01H	06H	—	—	—	—	
																	(1) Input 0.3V synchronizing signal to pin 51 (Sync IN).
																	(2) Supply 5V of external supply voltage to pin 22 (Analog Ys).
т	Analog RGB	Б	^	Б	Б	Б	^										(3) Set bus data so that contrast is minimum and drive is set at center value.
155	Dynamic Range	Б	A	Б	Б	Б	A	_	_	_		000	_	_	_	_	(4) While inputting stepping signal to pin 24 (Analog G IN), increase video amplitude gradually from 0.
																	(5) Measure video amplitude of pin 24 when video voltage of pin 13 (G OUT) does not change.
T ₅₆	RGB Brightness Control	î	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	_	_	_	FFH	_	_	_	_	_	(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
	Characteristic										0011						(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).
T ₅₇	RGB Brightness Center Voltage	Ŷ	¢	Ŷ	1	1	Ŷ	—	—	—	80H	_	_		—	—	(3) Set bus data on RGB cutoff at center value.
																	(4) Supply 5V of external supply voltage to pin 22 (Analog Ys).
																	(5) While changing data brightness from maximum to minimum, measure maximum and minimum voltages of pin 13 (G OUT) in video period. (max : Vbrmx, min : Vbrmn)
T ₅₈	RGB Brightness	¢	¢	Ŷ	¢	¢	Ť	_	_	_	_	_	_	_	_	_	(6) Set bus data on brightness at center value and measure video voltage of pin 13 (G OUT) (Vbcnt).
	Data Constituty																(7) On the condition that bus data with which Vbrmx is obtained in measurement of the above step 5 is Dbrmx and bus data with which Vbrmn is obtained in measurement of the above step 5 is Dbrmn, calculate sensitivity of brightness data (ΔVbrt).
																	Δ Vbrt = (Vbrmx - Vbrmn) / (Dbrmx - Dbrmn)
																	 Input TG7 sine wave signal (f = 100kHz, video amplitude = 0.3V) to pin 23 (Analog R IN).
Т ₅₉	Analog RGB Mode ON Voltage	¢	¢	Ŷ	Ŷ	Ŷ	Ŷ	_	_	_	80H	–	_	-	_	_	(2) Supply 5V of external supply voltage to pin 22 (Analog Ys) and raise the voltage gradually from 0V.
																	(3) Measure voltage at pin 22 when signal 1 is output from pin 14 (R OUT) (Vanath).

					TEST	CON	DITIO	N (Unl	ess ot	herwis	se spe	cified :	H, RG	B V _{CC}	c = 9V	; V _{DD}	, Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta $\stackrel{\frown}{=}$ 25±3°C ; BUS = preset value)
NOTE	ITEM	\$21	622	C 21	SV	V MO	DE		1		SI	JB-AD	DRES	<u>S & Bl</u>	JS DA	TA	MEASURING METHOD
т ₆₀	Analog RGB Switching Rise-Up Time	B	A	В	В	В	A	_	_	_	_	_	_	_	_	_	 (1) Supply signal (2V_{p-p}) shown by (a) in the following figure to pin 22 (Analog Ys). (2) Referring to (b) of the following figure measure to a start and showing figure t
Т ₆₁	Analog RGB Switching Rise-Up Transfer Time	¢	¢	¢	¢	¢	¢	_	_	_	_	_	_	_	_	_	 (2) Relating to (b) of the following igule, measure (Rana, tPRan, 1Pana and tPFan for outputs of pin 14 (R OUT), pin 13 (G OUT) and pin 12 (B OUT). (3) Find maximum values of tPRan and tPFan respectively (ΔtPRan, ΔtPFan).
Т ₆₂	Analog RGB Switching Rise-Up Transfer Time, 3 Axes Difference	î	Ţ	¢	ţ	ţ	¢	_	_	_	_	_	_	_	_	_	1H1H
Т ₆₃	Analog RGB Switching Breaking Time	¢	¢	¢	¢	¢	¢	_	_	_	_	_	_	_	_	_	(a) 50%
Т ₆₄	Analog RGB Switching Breaking Transfer Time	¢	¢	¢	¢	¢	¢	_	_	_	_	_	_	_	_	_	(b) <u>tPR</u> <u>tPF</u>
Т ₆₅	Analog RGB Switching Breaking Transfer Time, 3 Axes Difference	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ				_			_	_		$ \begin{array}{c} 50\% \\ 90\% \\ (c) \\ 10\% \\ 0\% \\ \hline \tau_R \\ \hline \tau_F \\ \hline \hline \hline \tau_F \\ \hline \hline$

			TEST CONDITION (Unless otherwise specified : H, RGB V _{CC} SW MODE SUB-ADDRESS & BI													; V _{DE}	DD, Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta \equiv 25±3°C ; BUS = preset value)
NOTE	ITEM	S	8	8	SV	V MOI	DE	1	1	1	SI	JB-AD	DRES	<u>S & Bl</u>	JS DA	TA	MEASURING METHOD
Т ₆₆	Analog RGB Hi Switching Rise-Up Time	<u>з₂₁</u> В	A	<u>Зз</u> 1 В	В	B	A	_	_	_	_	_	_	_	_	_	 (1) Supply 2V to pin 22 (Analog Ys). (2) Input 0.5V_{p-p} signal shown by (a) in the following figure to pin 23 (Analog R IN).
Т ₆₇	Analog RGB Hi Switching Rise-Up Transfer Time	¢	¢	¢	¢	¢	¢	_	_	_	_	_	_	_	_	_	 (3) Referring to (b) of the following figure, measure T_{Ranh}, t_{PRah}, T_{Fanh} and t_{PFah} for output of pin 14 (R OUT). (4) Input 0.5V_{n-n} signal shown by (a) in the following figure to pin 24 (Analog
Т ₆₈	Analog RGB Hi Switching Rise-Up Transfer Time, 3 Axes Difference	ţ	Ţ	ţ	ţ	Ţ	ţ	_	_	_	_	_	_	_	_	_	 G IN). (5) Referring to (b) of the following figure, perform the same measurement as the above step 3 for output of pin 13 (G OUT).
Т ₆₉	Analog RGB Hi Switching Breaking Time	¢	¢	¢	¢	¢	¢	_	_	_	_	_	_	_	_	_	 (6) Input 0.5V_{p-p} signal shown by (a) in the following figure to pin 25 (Analog B IN). (7) Referring to (b) of the following figure, perform the same measurement as
Т ₇₀	Analog RGB Hi Switching Breaking Transfer Time	¢	¢	¢	¢	¢	¢	_	_	_	_	_	_	_	_	_	 the above step 3 for output of pin 12 (B OUT). (8) Find maximum axes difference in t_{PRoh} and t_{PFoh} among the three outputs (Δt_{PRah}, Δt_{PFah}).
T ₇₁	Analog RGB Hi Switching Breaking Transfer Time, 3 Axes Difference	Î	Î	Î	Î	Î	Î										$(a) \\ (b) \\ 90\% \\ 50\% \\ 50\% \\ 10\% \\ 7_{R} \\ 7_{F} \\ $

T (DS	HI	BA

					TEST	CON	DITIO	N (Unl	ess ot	herwis	e spe	cified :	H, RC	BB V _{CC}	; = 9V	; V _{DD}	Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta \exists 25±3°C ; BUS = preset value)
NOTE	ITEM		_	_	SV		DE				SL	JB-AD	DRES	S & Bl	JS DA	TA	
		S ₂₁	S ₂₂	S ₃₁	S33	S ₃₄	S ₅₁		—		—			—	—	—	
																	 Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to pin 31 (Y₂ IN).
																	(2) Short circuit pin 25 (Analog G IN) in AC coupling.
																	(3) Input 0.3V synchronizing signal to pin 51 (Sync IN).
																	(4) Set bus data so that contrast is maximum, Y sub contrast and drive are set at center value.
T ₇₂	TV-Analog RGB	в	А	в	в	в	А		_	_	_	_	_	_	_	_	(5) Supply pin 22 (Analog Ys) with 0V of external power supply.
	CIUSSIAIK																(6) Measure video voltage of output signal of pin 13 (G OUT) (Vtg).
																	(7) Supply pin 22 (Analog Ys) with 2V of external power supply.
																	(8) Measure video voltage of output signal of pin 13 (G OUT) (Vana).
																	(9) From measurement results of the above steps 5 and 7, calculate crosstalk from TV to analog RGB.
																	Crtva = 20log (Vana / Vtv)
																	(1) Short circuit pin 31 (Y ₂ IN), pin 34 (R-Y IN) and pin 33 (B-Y IN) in AC coupling.
																	(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).
																	(3) Set bus data so that contrast is maximum and drive is set at center value.
																	(4) Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to pin 24 (Analog G IN).
T ₇₃	Analog RGB-TV	↑	↑	↑	↑	↑	↑				_	_		_	_	_	(5) Supply pin 22 (Analog Ys) with 0V of external power supply.
	CIOSSIAIK				·												(6) Measure video voltage of output signal of pin 13 (G OUT) (Vant).
																	(7) Supply pin 22 (Analog Ys) with 2V of external power supply.
																	(8) Measure video voltage of output signal of pin 13 (G OUT) (Vtan).
																	(9) From measurement results of the above steps 6 and 8, calculate crosstalk from analog RGB to TV.
																	Crant = 20log (Vant / Vtan)

			TEST CONDITION (Unless otherwise specified : H, RGB V _{CC} SW MODE SUB-ADDRESS & BI													; V _{DE}	Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta $=$ 25±3°C ; BUS = preset value)
NOTE	ITEM	Sad	S	S	SV		DE			1		JB-ADI	DRES	5 & BL	JS DA	TA	MEASURING METHOD
		321	322	331	333	334	351					1311					 Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to pin 31 (Y₂ IN).
	ARI Doint											10H					(2) Short circuit pin 23 (Analog R IN), pin 25 (Analog G IN) and pin 26 (Analog B IN) in AC coupling.
T ₇₄	Characteristic	В	В	В	В	В	A	_	_		FFH	90H F0H	_		_	_	(3) Set bus data so that brightness is maximum and ABL gain is at center value, and supply pin 16 with external supply voltage. While turning dowr voltage supplied to pin 16 gradually from 7V, measure voltage at pin 16 when the voltage supplied to pin 12 decreases by 0.3V in three condition that data on ABL point is set at minimum, center and maximum values respectively. (Vablpl, Vablpc, Vablph)
																	 Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to pin 31 (Y₂ IN).
																	(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).
																	(3) Measure video amplitude at pin 12. (Vacl1)
Tar	ACL	↑	↑	↑	↑	↑	↑			_	_	_	_	_	_	_	(4) Measure DC voltage at pin 16 (ABCL).
175	Characteristic	I	1				I										(5) Supply pin 16 with a voltage that the voltage measured in the above step minus 2V.
																	(6) Measure video amplitude at pin 12 (Vacl2) and its ratio to the amplitude measured in the above step 3.
																	Vacl = 20log (Vacl2 / Vacl1)
																	 Short circuit pin 31 (Y₂ IN), pin 34 (R-Y IN) and pin 33 (B-Y IN) in AC coupling.
																	(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).
																	(3) Set bus data on brightness at maximum and measure video DC voltage a pin 12 (Vmax).
												00H					(4) Measure voltage at pin 16 which is being supplied with the voltage measured in the step 5 of the preceding Note 75.
Т ₇₆	ABL Gain Characteristic	¢	¢	¢	¢	¢	¢	—	_	_	FFH	10H 1CH	_	_		_	(5) Changing setting of bus data on ABL gain at minimum, center and maximum values one after another, measure video DC voltage at pin 12. (Vabl1, Vabl2, Vabl3)
																	(6) Find respective differences of Vabl1, Vabl2 and Vabl3 from the voltage measured in the above step 3.
																	Vabll = Vmax - Vabl1
																	Vablc = Vmax - Vabl2
																	Vablh = Vmax - Vabl3

<u>TOSHIBA</u>

AUDIO SECTION

NOTE ITEM SUB_ADDRESS A S27 SUB_ADDRESS A S28 SUB_ADDRESS A S29 MEASURING METHOD A1 Attenuator Max. Gain A 1 B A 1 B B 40H 0CH 77H (1) Input 1kHz. 500mV _{ms} signal to pin 27 (TV Audio IN). (2) Stabus data so that the audio switch is set at TV mode and ATT gain is maximum (7F). A2 Attenuator Center Gain 1 1 1 1 40H (2) Set bus data so that the audio switch is set at TV mode and ATT gain is maximum (7F). A2 Attenuator Center Gain 1 1 1 1 40H (2) Set bus data so that the audio switch is set at TV mode and ATT gain is center value (40). (2) Set bus data so that the audio switch is set at TV mode and ATT gain is center value (40). (3) Measure audio output level at pin 29 and find the gain (5orth). (4) Set bus data so that the audio switch is set at TV mode and ATT gain is minimum (00). A3 Attenuator Residual 1 1 1 (1) Input 1kHz. 500mV _{ms} signal to pin 27 (TV Audio IN). (2) Set bus data on the audio switch is set at TV mode and ATT gain is minimum (00). A4 Audio Mute Residual 1 1					TE	EST CONDIT	TION (Unles	s otherwise specified : H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
S27 S28 S29 S29 <td>NOTE</td> <td>ITEM</td> <td>S</td> <td>SW MOD</td> <td>E</td> <td>SUB-ADI</td> <td>DRESS &</td> <td></td>	NOTE	ITEM	S	SW MOD	E	SUB-ADI	DRESS &	
A1 Attenuator Max. Gain A 1 B B 40H B 1 Iput 1kHz. 500mVms signal to pin 27 (TV Audio IN). A1 Attenuator Max. Gain A B B B 40H CH 7FH (1) Iput 1kHz. 500mVms signal to pin 27 (TV Audio IN). A2 Attenuator Center Gain ↑ ↑ ↑ ↑ ↑ ↑ A2 Attenuator Center Gain ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ <td></td> <td></td> <td>\$27</td> <td>\$28</td> <td>\$20</td> <td>03H</td> <td></td> <td>MEASURING METHOD</td>			\$27	\$28	\$20	03H		MEASURING METHOD
A1 Attenuator Max. Gain A B A 40H - 7FH (2) Set bus data so that the audio switch is set at TV mode and ATT gain is maximum (7F). A2 Attenuator Center Gain 1			521	520	523	0011	0/11	
A1 Attenuator Max. Gain A B 40H TFH (2) Set bus data so that the audio switch is set at 1V mode and A11 gain is maximum (7F). (3) Measure audio output level at pin 29 and find the gain (Grwt). (4) Set bus data on that the audio switch is set at 1V mode and A11 gain is maximum (7F). (4) Set bus data on that the audio switch is set at 1V mode and A11 gain is maximum (7F). (5) (4) Attenuator Center Gain 1 1 1 (1) (2) Set bus data so that the audio switch is set at 1V mode and A1T gain is maximum (7F). (2) (2) Set bus data so that the audio switch is set at 1V mode and A1T gain is maximum (7F). (2) (3) Measure audio output level at pin 29 and find the gain (Grwth). (2) Set bus data so that the audio switch is set at 1V mode and A1T gain is minimum (00). (4) Input 14Hz, 500m Mms signal to pin 27 (TV Audio IN). (2) Set bus data so that the audio switch is set at 1V mode and A1T gain is minimum (00). (4) Attenuator Residual 1 1 1 (1) Input 14Hz, 500m Mms signal to pin 27 (TV Audio IN). (4) Audio Mute Residual 1 1 1 1 (1) Input 14Hz, 500m Mms signal to pin 28 (Ext. Audio IN). (2)				_				(1) Input 1kHz, 500mV _{rms} signal to pin 27 (1V Audio IN).
Alternation max. Usern B A B C OCH Fill (3) Measure audio output level at pin 29 and find the gain (Gmxt). (4) Set bus data on the audio switch to EXT mode. While inputting 1kHz, 500mV _{ms} signal to pin 28 (Ext. Audio 1N), perform the same measurement as the above step 3. (Gmxe) A2 Attenuator Center Gain 1 1 1 1 1 (1)	۸.	Attonuator Max, Gain	A	В	D	40H	754	(2) Set bus data so that the audio switch is set at TV mode and ATT gain is maximum (7F).
A2 Attenuator Center Gain 1 <td>~1</td> <td>Allenualui Max. Gain</td> <td>₿</td> <td>Å</td> <td>Б</td> <td>осн</td> <td>/111</td> <td>(3) Measure audio output level at pin 29 and find the gain (Gmxt).</td>	~1	Allenualui Max. Gain	₿	Å	Б	осн	/111	(3) Measure audio output level at pin 29 and find the gain (Gmxt).
A2 Attenuator Center Gain 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(4) Set bus data on the audio switch to EXT mode. While inputting 1kHz, 500mV_{rms} signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 3. (Gmxe)</td>								(4) Set bus data on the audio switch to EXT mode. While inputting 1kHz, 500mV _{rms} signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 3. (Gmxe)
A2 Attenuator Center Gain 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(1) Input 1kHz, 500mV_{rms} signal to pin 27 (TV Audio IN).</td>								(1) Input 1kHz, 500mV _{rms} signal to pin 27 (TV Audio IN).
A2 Attenuator Center Gain 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(2) Set bus data so that the audio switch is set at TV mode and ATT gain is center value (40).</td>								(2) Set bus data so that the audio switch is set at TV mode and ATT gain is center value (40).
A3 Attenuator Residual Sound 1	A ₂	Attenuator Center Gain	↑	↑	↑	↑	40H	(3) Measure audio output level at pin 29 and find the gain (Gcntt).
A3 Attenuator Residual Sound 1								(4) Set bus data on the audio switch to EXT mode. While inputting 1kHz, 500mV _{rms} signal to pin 28 (Ext.
A3 Attenuator Residual Sound 1								Audio IN), perform the same measurement as the above step 3. (Gcnte)
A3 Attenuator Residual Sound 1								(1) Input 1kHz, 500mV _{rms} signal to pin 27 (TV Audio IN).
A3 Attenuator Residual Sound 1								(2) Set bus data so that the audio switch is set at TV mode and ATT gain is minimum (00).
Ad Audio Mute Residual Sound 1	A ₂	Attenuator Residual	Ť	↑	↑ (↑	00H	(3) Measure audio output level at pin 29 and find the audio output level (Vmnt).
A4 Audio Mute Residual Sound 1 1 1 1 1 1 1 Input 1kHz, 500mV _{rms} signal to pin 27 (TV Audio IN). A4 Audio Mute Residual Sound 1 1 1 1 1 Input 1kHz, 500mV _{rms} signal to pin 27 (TV Audio IN). (2) Set bus data so that the audio switch is set at TV mode and ATT gain is maximum (7F). (3) Set bus data on audio mute to ON. (4) Measure audio output level at pin 29 (Mutt) (5) Set bus data on the audio switch to EXT mode. While inputting 1kHz, 500mV _{rms} signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 4. (Vmute) A5 Attenuator Gain Switching Offset A B B 40H 7FH (4) B A B A 7FH (2) Set bus data on the audio switch to TV mode. (3) Set bus data on the audio switch to TV mode. (3) Changing bus data on ATT gain from maximum (7F) to minimum (00), measure change in DC level of audio output of pin 29 (Audio OUT) at that time (ATToth). A6 Audio Mute Offset B B A A (A)		Sound	I			, i		(4) Set bus data on the audio switch to EXT mode. While inputting 1kHz, 500mV _{rms} signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 3. (Vmne)
A4 Audio Mute Residual Sound 1								(Note) For measuring signal level, use 1kHz band pass filter.
A4 Audio Mute Residual Sound 1								(1) Input 1kHz, 500mV _{rms} signal to pin 27 (TV Audio IN).
A4 Audio Mute Residual Sound 1								(2) Set bus data so that the audio switch is set at TV mode and ATT gain is maximum (7F).
A4 Audio Mule Residual 1		Audia Muta Desidual						(3) Set bus data on audio mute to ON.
Aftenuator Gain Switching Offset A B B A B B 40H COH 7FH COH (5) Set bus data on the audio switch to EXT mode. While inputting 1kHz, 500mV _{rms} signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 4. (Vmute) (Note) For measuring signal level, use 1kHz band pass filter. (5) Set bus data on the audio switch to EXT mode. While inputting 1kHz, 500mV _{rms} signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 4. (Vmute) (Note) For measuring signal level, use 1kHz band pass filter. (1) Short circuit pin 27 (TV Audio IN) in AC coupling. (2) (2) Set bus data on the audio switch to TV mode. (3) (3) Changing bus data on ATT gain from maximum (7F) to minimum (00), measure change in DC level of audio output of pin 29 (Audio OUT) at that time (ATToft). (4) (4) Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition perform the same measurement as the above step 3 (ATTofe). (2) Set bus data on the audio switch to TV mode. (3) (4) FFH (1) (5) Short circuit pin 28 (Ext. Audio IN) in AC coupling. (2) Set bus data on the audio switch to TV mode. (3) Changing bus data on audio mute from OFF to ON, measure change in DC level of audio output of pin 29 (Audio OUT) at that time (AMToft). (4)	A ₄	Sound	↑	↑	↑	1	FFH	(4) Measure audio output level at pin 29 (Vmutt)
Audio IN), perform the same measurement as the above step 4. (Write)A5Attenuator Gain Switching OffsetAB \downarrow BAAFH \downarrow OCH7FH OCH(1)Short circuit pin 27 (TV Audio IN) in AC coupling.(2)Set bus data on the audio switch to TV mode.(3)Changing bus data on ATT gain from maximum (7F) to minimum (00), measure change in DC level of audio output of pin 29 (Audio OUT) at that time (ATToft).A6Audio Mute OffsetBB \uparrow \downarrow \downarrow COH7FH \downarrow FFH(1)Short circuit pin 27 (TV Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition perform the same measurement as the above step 3 (ATTofe).A6Audio Mute OffsetBB \uparrow \downarrow \downarrow COH7FH \downarrow FFH(1)Short circuit pin 27 (TV Audio IN) in AC coupling.(2)Set bus data on the audio switch to EXT. mode. In this condition perform the same measurement as the above step 3 (ATTofe).(4)Short circuit pin 27 (TV Audio IN) in AC coupling.(2)Set bus data on the audio switch to TV mode.(3)Changing bus data on audio mute from OFF to ON, measure change in DC level of audio output of pin 29 (Audio OUT) at that time (AMToft).(4)Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition perform the componencement on the other performs th								 (5) Set bus data on the audio switch to EXT mode. While inputting 1kHz, 500mV_{rms} signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 4. (/mutp)
A5Attenuator Gain Switching OffsetA \downarrow BB \downarrow AB \downarrow OCH40H \downarrow OCH7FH \downarrow OCH(1)Short circuit pin 27 (TV Audio IN) in AC coupling. (2)(2)Set bus data on the audio switch to TV mode. (3)(3)Changing bus data on ATT gain from maximum (7F) to minimum (00), measure change in DC level of audio output of pin 29 (Audio OUT) at that time (ATToft).A6Audio Mute OffsetBB \uparrow \downarrow \downarrow COH7FH \downarrow COH(1)Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition perform the same measurement as the above step 3 (ATTofe).A6Audio Mute OffsetBB \uparrow \downarrow \downarrow COH7FH \downarrow FFH(1)Short circuit pin 27 (TV Audio IN) in AC coupling.(2)Set bus data on the audio switch to TV mode.(1)Short circuit pin 27 (TV Audio IN) in AC coupling.(2)Set bus data on the audio switch to TV mode.(3)Changing bus data on the audio switch to TV mode.(3)Changing bus data on the audio switch to TV mode.(3)Changing bus data on audio mute from OFF to ON, measure change in DC level of audio output of pin 29 (Audio OUT) at that time (AMToft).(4)Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition perform the came measurement on the above step 3 (ATTofe).								(Note) For measuring signal lovel, use 1kHz band pass filter
A5Attenuator Gain Switching OffsetA BB AB B $40H$ \downarrow OCH $7FH$ \downarrow OCH $7FH$ \downarrow OCH (1) Short circuit pin 27 (1V Addio IN) in AC coupling.(2)Set bus data on the audio switch to TV mode.(3)Changing bus data on ATT gain from maximum (7F) to minimum (00), measure change in DC level of audio output of pin 29 (Audio OUT) at that time (ATToft).(4)Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition perform the same measurement as the above step 3 (ATTofe).A6Audio Mute OffsetBB \uparrow $40H$ \downarrow COH $7FH$ \downarrow FFH(1)A6Audio Mute OffsetBB \uparrow $40H$ \downarrow COH $7FH$ \downarrow FFH(2)(4)Short circuit pin 27 (TV Audio IN) in AC coupling.(2)Set bus data on the audio switch to TV mode.(3)Changing bus data on the audio switch to TV mode.(3)Changing bus data on audio mute from OFF to ON, measure change in DC level of audio output of pin 29 (Audio OUT) at that time (AMToft).(4)Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In (Audio OUT) at that time (AMToft).(4)Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition perform the same measurement on the open other 2 (AMTofe).								(Note) To measuring signal level, use TK12 band pass litter.
A5Attenuator Gain Switching OffsetA \downarrow BB $40H$ \downarrow B $7FH$ $0CH$ (2) OCH Set bus data on the audio switch to 1V mode.A5Attenuator Gain Switching Offset A B \downarrow A B A^{-1} OCH γFH OCH (2) OCH Set bus data on the audio switch to 1V mode.(4) B A B A B A^{-1} OCH O^{-1} OCH O^{-1} OH (2) O^{-1} Set bus data on ATT gain from maximum (7F) to minimum (00), measure change in DC level of audio output of pin 29 (Audio OUT) at that time (ATToft).A6Audio Mute Offset B B \uparrow A^{-1} \downarrow COH $7FH$ \downarrow COH (2) FFH Set bus data on the audio switch to TV mode.A6Audio Mute Offset B B \uparrow A^{-1} \downarrow COH $7FH$ \downarrow FFH (2) \downarrow Set bus data on the audio switch to TV mode.A6Audio Mute Offset B B \uparrow A^{-1} \downarrow COH $7FH$ \downarrow FFH (2) \downarrow Set bus data on the audio switch to TV mode.A6Audio Mute Offset B B \uparrow A^{-1} \downarrow COH $7FH$ \downarrow FFH (2) \downarrow Set bus data on the audio switch to TV mode.A6 A B B \uparrow A^{-1} \downarrow COH $7FH$ \downarrow FFH (3) $Changing bus data on audio mute from OFF to ON, measure change in DC level of audio output of pin 29(Audio OUT) at that time (AMToft).A6$								(1) Short circuit pin 27 (1V Audio IN) in AC coupling.
A_5 Audio Mute Offset \downarrow B \downarrow A \downarrow OCH \downarrow OCH \downarrow OCH \downarrow OCH \downarrow OH \downarrow OH \downarrow (3)Changing bus data on ATT gain from maximum (7F) to minimum (00), measure change in DC level of audio output of pin 29 (Audio OUT) at that time (ATToft). A_6 Audio Mute OffsetBB \uparrow \downarrow \downarrow COH \uparrow \downarrow \uparrow \downarrow COH \uparrow \downarrow FFH \uparrow \downarrow (3)Changing bus data on ATT gain from maximum (7F) to minimum (00), measure change in DC level of audio output of pin 29 (Audio OUT) at that time (ATToft). A_6 Audio Mute OffsetBB \uparrow \downarrow COH \uparrow \downarrow FFH \uparrow \downarrow FFH(1)Short circuit pin 27 (TV Audio IN) in AC coupling. A_6 Audio Mute OffsetBB \uparrow \downarrow COH \uparrow $FFH\uparrow\downarrowCOH\uparrowFFH(2)\downarrowSet bus data on the audio switch to TV mode.A_6Audio Mute OffsetBB\uparrow\downarrow\downarrowCOH\uparrowFFH\uparrow\downarrow\downarrow(3)Changing bus data on the audio switch to TV mode.A_6Audio Mute OffsetBB\uparrow\downarrow\downarrow\uparrow\downarrow\downarrow\uparrow\downarrow\downarrow\uparrow\downarrow\downarrow\langle\langle\langle\langle\langle\langle\langleA_6Audio Mute OffsetBB\uparrow\downarrow\uparrow\downarrow\langle\langle\langle\langle\langle\langle\langle\langleA_6Audio Mute OffsetBB\uparrow\langle\langle\langle\langle\langle\langle\langle\langle\langle\langle$		Attenuator Gain	Α	В		40H	7FH	(2) Set bus data on the audio switch to 1 v mode.
A6 Audio Mute Offset B B ↑ 40H ↓ COH 7FH ↓ FFH (4) Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition perform the same measurement as the above step 3 (ATTofe). (4) Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition perform the same measurement as the above step 3 (ATTofe). (1) Short circuit pin 27 (TV Audio IN) in AC coupling. (2) Set bus data on the audio switch to TV mode. (3) Changing bus data on audio mute from OFF to ON, measure change in DC level of audio output of pin 29 (Autio OUT) at that time (AMToft). (4) Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition output of pin 29 (Autofo).	А ₅	Switching Offset	↓ B	Å	В	0ČH	оо́н	(3) Changing bus data on ATT gain from maximum (7F) to minimum (00), measure change in DC level of audio output of pin 29 (Audio OUT) at that time (ATToft).
A ₆ Audio Mute Offset B A 40H 7FH (1) Short circuit pin 27 (TV Audio IN) in AC coupling. (2) Set bus data on the audio switch to TV mode. (3) Changing bus data on audio mute from OFF to ON, measure change in DC level of audio output of pin 29 (Audio OUT) at that time (AMToft). (4) Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition perform the shown of the shown o								(4) Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition perform the same measurement as the above step 3 (ATTofe).
A_6 Audio Mute OffsetBB \uparrow $\frac{40H}{\downarrow}$ $7FH$ (2) Set bus data on the audio switch to TV mode. A_6 Audio Mute OffsetB \uparrow \downarrow \downarrow (2) Set bus data on the audio switch to TV mode. (3) COH FFH (3) Changing bus data on audio mute from OFF to ON, measure change in DC level of audio output of pin 29 (4) (4) (4) (4) (4) (4) (4) (5) (4) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(1) Short circuit pin 27 (TV Audio IN) in AC coupling.</td></t<>								(1) Short circuit pin 27 (TV Audio IN) in AC coupling.
A6Audio Mute OffsetBB \uparrow \downarrow \downarrow \downarrow \downarrow (3) Changing bus data on audio mute from OFF to ON, measure change in DC level of audio output of pin 29A6 $Audio Mute Offset$ B \uparrow \downarrow \downarrow (3) Changing bus data on audio mute from OFF to ON, measure change in DC level of audio output of pin 29 $(Audio OUT)$ at that time (AMToft). (4) Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. Inthis conditionthis condition participant on the approximation of the						4011	7511	(2) Set bus data on the audio switch to TV mode.
Audio Mute Onset B B F COH FFH (G) Sharing in 20 (C) at that time (AMToft). (Audio OUT) at that time (AMToft). (4) Short circuit pin 26 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition or data of the shore store store of the shore store store of the shore store of the shore st	Δ.	Audio Mute Offset	в	в	^	40H	/FH	 (3) Changing bus data on audio mute from OEE to ON measure change in DC level of audio output of pin 29
(4) Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition perform the same measurement as the shows step 3 (AMTefs)	~6		D		I.	со́н	FFH	(Audio OUT) at that time (AMToft).
unis condition periorin the same measurement as the above step 5 (AMTOR).								(4) Short circuit pin 28 (Ext. Audio IN) in AC coupling and set bus data on the audio switch to EXT. mode. In this condition perform the same measurement as the above step 3 (AMTofe).

				TE	EST CONDI	FION (Unles	; otherwise specified : H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	ę		E	SUB-ADI	DRESS &	
_		\$27	\$28	\$20	03H		MEASURING METHOD
		321	320	329	0311	0/11	(1) Input 1/Hz 500m)/ signal to pin 28 (Ext Audio IN)
		В	А				(2) Changing bus data on the audio switch from EXT. mode to TV mode, measure output level of pin 29 (Audi OUT) to find ratio between two outputs in the EXT mode and TV mode (CRtv).
A ₇	Audio Crosstalk	↓ Ă	↓ B	Ť	<u>↑</u>	7FH	(3) Change bus data on the audio switch from TV to EXT. mode and input 1kHz, 500mV _{rms} signal to pin 27 (TV Audio IN). In this condition measure output level of pin 29 (Audio OUT) to find ratio of this output to the output level measured in the above step 2. (Crext)
							(Note) For measuring signal level, use 1kHz band pass filter.
							(1) Input 1kHz signal to pin 27 (TV Audio IN).
		^	Р				(2) Set bus data so that the audio switch is set at TV mode and ATT gain is set at center value (40).
A ₈	Attenuator Max. Input Voltage	A ↓ B	⊢ ↓ A	¢	¢	40H	(3) While increasing amplitude of the signal, measure input amplitude just before output waveform of pin 29 (Audio OUT) is distorted (DItv).
							(4) Set bus data on the audio switch to EXT mode. While inputting 1kHz signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 3. (Dlext).
					40H		(1) Short circuit pin 27 (TV Audio IN) and pin 28 (Ext. Audio IN) in AC coupling.
A ₉	A-SW Switching Offset	В	В	В	C0H	7FH	(2) Changing bus data on the audio switch from TV mode to EXT. mode, measure change in DC level of output signal of pin 29 (Audio OUT) at that time (VSWof).
							(1) Input 500mV _{rms} signal to pin 27 (TV Audio IN).
			р				(2) Set bus data on the audio switch to TV mode.
A ₁₀	Attenuator Breaking Frequency	A ↓ B	⊢ ↓ A	¢	¢	¢	(3) While increasing the signal frequency from 1kHz, measure frequency when amplitude of pin 29 output (Audio OUT) is −3dB as low as the amplitude at 1kHz frequency (fctv).
							(4) Set bus data on the audio switch to EXT mode. While inputting 500mV _{rms} signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 3. (fcext)
							(1) Input 500mV _{rms} signal to pin 27 (TV Audio IN).
							(2) Set bus data on the audio switch to TV mode and measure output level of pin 29 (Audio OUT) (Vs).
					40H		(3) Short circuit pin 27 in AC coupling and measure noise level at pin 29 (Vn).
A ₁₁	Audio S / N Ratio	↑	Î	Î	↓ 0CH	↑	(SNtv = 20log (Vs / Vn))
					0011		(4) Change the setting of bus data on the audio switch to EXT. mode and change the 500mV _{rms} input from pi 27 to pin 28. Peform the same measurement as the above step 3. (SNext)
							(Note) For measuring output level, use 15kHz low pass filter.

				TI	EST CONDI	TION (Unles	s otherwise specified : H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V_{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM		SW MOD	E	SUB-AD	DRESS &	
					BUS	DATA	MEASURING METHOD
		S27	S28	S29	03H	07H	
							(1) Input 1kHz signal to pin 27 (TV Audio IN).
							(2) Set bus data so that the audio switch is set to TV mode and ATT gain is maximum (7F).
A ₁₂	Attenuator Max. Output Voltage	¢	¢	¢	↑	↑	(3) While increasing the signal amplitude, measure output amplitude just before output signal of pin 29 (Audio OUT) is distorted. (DO1v)
							(4) Set bus data so that the audio switch is set to EXT. mode and ATT gain is maximum (7F). While inputting 1kHz signal to pin 28 (Ext. Audio IN), perform the same measurement as the above step 3. (DOext)
							(Note) Output must be loaded with $5k\Omega$ or more resistance.

SECAM SECTION

								Т	EST	CON	DITIC	N (U	nless	s othe	erwis	e spe	ecifie	d : H	, RGI	3 V _C	c = 9	V ; V	dd, F	sc V _D	D, Y /	/ C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	s		BU	<u>S : T</u>	EST	ГМС	DDE			-			BL	JS : I	NOR	MAL	CON	ITRO	L MC	DDE					
		-	0	2H			071	H		0FH	D7			10H	60			D7			-	IFH	60			MEASURING METHOD
S ₁	Bell Monitor Output Amplitude	ON	0	1	0	<u>2 L</u>	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	 (1) Input 200mV_{p-p} (R-Y ID), 75% chroma color bar signal (SECAM system) to pin 42. (2) Measure amplitude of R-Y ID output of pin 36 as ebmo.
S ₂	Bell Filter f _o	Ť	¢	↑	ſ		¢	¢	ţ	Ţ	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	 While supplying 20mV_{p-p} CW sweep signal from network analyzer to pin 42 and monitoring output signal of pin 36 with the network analyzer, measure frequency having maximum gain as foBEL of the bell frequency characteristic. Find difference between foBEL and 4.286MHz as foB-C
S ₃	Bell Filter f _o Variable Range	↑	↑	↑	1		↑	¢	1		↑	¢	↑	↑	↑	↑	↑	↑	↑	↑	¢	↑	↑	Vari- able	Vari- able	 (1) The same procedure as the steps 1 and 2 of the Note S₂. (2) Measure foBEL in different condition that SUB (IF) D₁D₀ = (00) or (11), and find difference of
																										each measurement result from 4.286MHz as foB-L or foB-H.
																										(1) The same procedure as the step 1 of the Note S_2 .
S ₄	Bell Filter Q	¢	ſ	¢	¢		¢	ſ	1	Ť	¢	¢	¢	¢	Ţ	¢	¢	¢	¢	¢	¢	¢	¢	0	1	(2) While monitoring output signal of pin 36 with network analyzer, measure Q of bell frequency characteristic as QBEL.
																										QBEL = (QMAX - 3dB band width) / FoBEL
S ₅	Color Difference Output Amplitude	OFF	_	_			_	_	_	0	1	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	Ŷ	(1) Input 200mV _{p-p} (R-Y ID), 75% chroma color bar signal (SECAM system) to pin 42.
	Color Difference																									 (2) Measure color difference levels VRS and VBS with signals of pin 35 and pin 36.
S ₆	Amplitude	Î	-	-	-	- -	_	—	—	Î	Î	Î	Î	Î	Î	Î	Î	Î	Î	Î	Î	Î	Î	Î	Î	(3) Calculate relative amplitude from VRS / VBS.

							Т	EST	CONE	DITIO	N (U	nless	othe	erwise	e spe	cified	d : H,	RGE	3 V _{CC}	; = 9	V ; V	_{DD} , F	sc V _C), Y	(C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S		BUS	: TE	ST M	IODE						ΒL	JS : N	IORI	/AL (CON	TRO	L MC	DE					3
1.0.1			0	2H	D 0	0	7H		0FH	D 7			10H				D7			1	FH				MEASURING METHOD
┣───		20	D4	DS	DΖ	וט	05	D4	D4	וט	05	D4	DS	DΖ	וט	DU	וט	DQ	05	D4	DS	DΖ	וט	DU	
																									 The same procedure as the steps 1 and 2 of the Note S₅.
S ₇	Color Difference Attenuation Quantity	OFF	_	_	_	_	_	_	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	(2) In the condition that SUB (IF) $D_6 = 1$, measure amplitudes of color difference signals of pin 35 and pin 36 as VRSA and VBSA respectively, and find SATTR and SATTB from measurement results.
																									SATTR = 20log (VRSA / VRS), SATTB = 20log (VBSA / VBS)
																									(1) The same procedure as the steps 1 and 2 of the Note S_5 .
																									 Input non-modulated 200V_{p-p} (R-Y) chroma signal to pin 42.
S ₈	Color Difference S / N Ratio	Ŷ	_	_	_	_	_	_	¢	ſ	¢	¢	¢	Ŷ	¢	¢	î	0	î	¢	Ŷ	¢	¢	¢	(3) Measure noise amplitude nR and nB (mV _{p-p}) appearing in color difference signals of pin 35 and pin 36 respectively.
																									(4) Find S / N ratio by the following equation.
																									SNB - S = $20\ell \text{og} (2\sqrt{2} \times \text{VBS} / \text{nB} \times 10\text{E} - 3)$
																									$SNR - S = 20 \ell og (2\sqrt{2} \times VRS / nR \times 10E - 3)$
																									(1) The same procedure as the step 1 of the Note S_5 .
																									(2) Measure and calculate amplitude of black bar levels in output waveforms of pin 35 and pin 36 as shown below.
S ₉	Linearity	Ţ	_	_	_	_	_	_	Ţ	Ť	Ţ	Ţ	Ť	Ť	¢	¢	Ť	Ť	Ť	Ŷ	Ţ	Ť	Ţ	Ţ	LinB = V [cyan] / V [red] (Maximum positive) negative amplitudes in respective axes
																									LinR = V [yellow] / V [blue]

	TEST CONDITION (Unless otherwise specified : H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _D												_{DD} , Y	/ C V _{CC}											
NOTE	ITEM	s		BUS	: TEST MODE					BUS : NORMAL CONTROL MODE											3				
				<u>2H</u>	07H			0FH				10H	H						1	1FH				MEASURING METHOD	
<u> </u>	ļ	26	D4	D3	D2	Di	D5	D4	D4	Dr	D5	D4	D3	D2	D1	DU	Dr	D6	D5	D4	D3	D2	D1	DU	
S ₁₀	Rising-Fall Time (Standard De-Emphasis)	OFF	_	_	_	_	_	_	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	 (1) The same procedure as the step 1 of the Note S₅. (2) Measure output waveforms of pin 35 and pin 36
																									in the figure in time.
	Rising-Fall Time (Wide-Band De-Emphasis)					_	_											¢	Î			↑			Magenta
S ₁₁		ſ	_	_				_	¢	Ť	Ť	↑ (¢	Ŷ	Ť	Ŷ	Ť			¢	Ŷ		Ŷ	¢	90% 10% t _{rfB} , t _{rfR}
																									Green
																									 (3) In the condition that SUB (IF) D₅ = 1, perform the same measurement as the above step 2. Measurement results are expressed as t_{rfBW} and t_{rfRW}.
S12	Killer Operation Input Level	↑		_	_	_			¢	↑	↑	↑	↑	↑	↑	↑	↑	¢	1	↑	¢	¢	¢	↑	 Input 200mV_{p-p} (R-Y ID) standard 75% color bar signal (SECAM system) to pin 42.
- 12	(Standard Setting)															<u> </u>				1					(2) Attenuate the input signal to pin 42. Measure R-Y ID signal level at pin 42 that turns on / off the killer
	Killer Operation																								as eSK and eSC.
S ₁₃	Input Level (VID ON)	↑	-	-	-	-	-	-	↑	Î	↑	Î	↑	Î	↑	Î	↑	Î	0	↑	1	Î	Î	↑ ((3) In the condition that SUB (IF) $D_3 = 1$, perform the same measurement as the above step 2 and
	Killer Operation																								express the measurement results as eSFK and eSFC.
S ₁₄	Input Level (Low Sensitivity, VID OFF)	¢	_	-	-	-	_	-	¢	Ţ	Ţ	Ť	Ť	Ť	Ŷ	Ť	Ţ	¢	Ť	Ţ	0	1	Ť	¢	(4) In the condition that SUB (IF) $D_3 = 0$, $D_2 = 1$, perform the same measurement as the above step 2 and express the measurement results as eSWK and eSWC.

TEST CIRCUIT

APPLICATION CIRCUIT

PACKAGE DIMENSIONS

SDIP56-P-600-1.78

Unit : mm

ww.DataSheet4U.com

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.