

Sample &

Buv

LM139-N, LM239-N, LM2901-N, LM3302-N, LM339-N

Support &

Community

20

SNOSBJ3E - NOVEMBER 1999-REVISED DECEMBER 2014

LMx39-N, LM2901-N, LM3302-N Low-Power Low-Offset Voltage Quad Comparators

Technical

Documents

1 Features

- Wide Supply Voltage Range
- LM139/139A Series 2 to 36 V_{DC} or ±1 to ±18 V_{DC}
- LM2901-N: 2 to 36 V_{DC} or ±1 to ±18 V_{DC}
- LM3302-N: 2 to 28 V_{DC} or ±1 to ±14 V_{DC}
- Very Low Supply Current Drain (0.8 mA) Independent of Supply Voltage
- Low Input Biasing Current: 25 nA
- Low Input Offset Current: ±5 nA
- Offset Voltage: ±3 mV
- Input Common-Mode Voltage Range Includes GND
- Differential Input Voltage Range Equal to the Power Supply Voltage
- Low Output Saturation Voltage: 250 mV at 4 mA
- Output Voltage Compatible With TTL, DTL, ECL, MOS, and CMOS Logic Systems
- Advantages:
 - High-Precision Comparators
 - Reduced V_{OS} Drift Overtemperature
 - Eliminates Need for Dual Supplies
 - Allows Sensing Near GND
 - Compatible With All Forms of Logic
 - Power Drain Suitable for Battery Operation

2 Applications

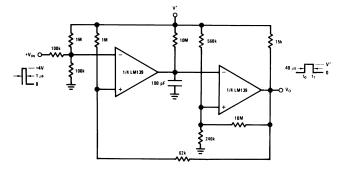
- Limit Comparators
- Simple Analog-to-Digital Converters (ADCs)
- Pulse, Squarewave, and Time Delay Generators
- Wide Range VCO; MOS Clock Timers
- Multivibrators and High-Voltage Digital Logic Gates

3 Description

Tools &

Software

The LMx39-N series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV maximum for all four comparators. These comparators were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though they are operated from a single power supply voltage.


The LMx39-N series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the devices directly interface with MOS logic— where the low power drain of the LM339 is a distinct advantage over standard comparators.

Device	Informa	tion ⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
LM139-N		10 FC mm + C C7 mm		
LM239-N	CDIP (14)	19.56 mm × 6.67 mm		
L M0004 N	SOIC (14)	8.65 mm × 3.91 mm		
LM2901-N	PDIP (14)	19.177 mm × 6.35 mm		
	CDIP (14)	19.56 mm × 6.67 mm		
LM339-N	SOIC (14)	8.65 mm × 3.91 mm		
	PDIP (14)	19.177 mm × 6.35 mm		

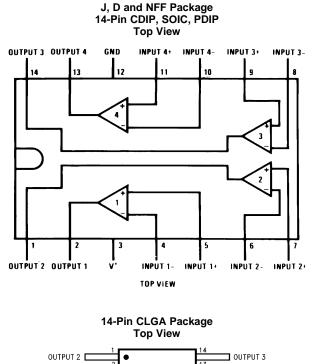
(1) For all available packages, see the orderable addendum at the end of the datasheet.

One-Shot Multivibrator With Input Lock Out

Table of Contents

1 2		tures 1 lications 1
3		cription 1
4	Rev	ision History 2
5	Pin	Configuration and Functions 3
6	Spe	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 5
	6.4	Thermal Information 5
	6.5	Electrical Characteristics: LM139A, LM239A, LM339A, LM139
	6.6	Electrical Characteristics: LM239, LM339, LM2901, LM3302
	6.7	Typical Characteristics 8
7	Deta	ailed Description 10
	7.1	Overview 10

	7.2	Functional Block Diagram	10
	7.3	Feature Description	10
	7.4	Device Functional Modes	11
8	App	lication and Implementation	12
	8.1	Application Information	12
	8.2	Typical Applications	12
9	Pow	er Supply Recommendations	19
10	Lay	out	19
		Layout Guidelines	
	10.2	Layout Example	19
11	Dev	ice and Documentation Support	20
	11.1	Related Links	20
	11.2	Trademarks	20
	11.3	Electrostatic Discharge Caution	20
	11.4	Glossary	20
12		hanical, Packaging, and Orderable mation	20


4 Revision History

C	hanges from Revision D (March 2013) to Revision E	Page
•	Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	
C	hanges from Revision C (March 2013) to Revision D	Page

2

5 Pin Configuration and Functions

Pin Functions

	PIN		DESCRIPTION			
NO.	NAME	I/O	DESCRIPTION			
1	OUTPUT2	0	Output, Channel 2			
2	OUTPUT1	0	Output, Channel 1			
3	V+	Р	Positive Supply			
4	INPUT1-	I	Inverting Input, Channel 1			
5	INPUT1+	I	Noninverting Input, Channel 1			
6	INPUT2-	I	rting Input, Channel 2			
7	INPUT2+	I	nverting Input, Channel 2			
8	INPUT3-	I	Inverting Input, Channel 3			
9	INPUT3+	I	Noninverting Input, Channel 3			
10	INPUT4-	I	Inverting Input, Channel 4			
11	INPUT4+	I	Noninverting Input, Channel 4			
12	GND	Р	round			
13	OUTPUT4	0	Output, Channel 4			
14	OUTPUT3	0	Output, Channel 3			

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

			MIN	MAX	UNIT
Supply Voltage V/t	LM139N, LM239N, LM339N,	LM2901N		36	
Supply Voltage, V ⁺	LM3302N	LM3302N			
	LM139N, LM239N, LM339N,	LM2901N ⁽²⁾		36	V
Differential Input Voltage	LM3302N ⁽²⁾			28	V _{DC}
lenut) (altana	LM139N, LM239N, LM339N,	LM2901N	-0.3	36	
Input Voltage	LM3302	-0.3	28		
Input Current (VIN<-0.3 V	(DC) ⁽³⁾	50 mA			mA
Power Dissipation ⁽⁴⁾	⁽⁴⁾ PDIP			1050	
Power Dissipation ⁽⁴⁾	Cavity DIP		1190	mW	
	SOIC Package		760		
Output Short-Circuit to GI	ND ⁽⁵⁾			Continuous	
Lead Temperature (Solde	ering, 10 seconds)			260	
	PDIP Package (10 seconds)			260	
Soldering Information		Vapor Phase (60 seconds)		215	°C
	SOIC Package	Infrared (15 seconds)		220	
Storage temperature, T _{stg}	1		-65	150	

(1) Refer to RETS139AX for LM139A military specifications and to RETS139X for LM139 military specifications.

(2) Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than −0.3 V_{DC} (or 0.3 V_{DC} below the magnitude of the negative power supply, if used) (at 25°C).

- (3) This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V⁺ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than −0.3 V_{DC} (at 25°C).
- (4) For operating at high temperatures, the LM339/LM339A, LM2901, LM3302 must be derated based on a 125°C maximum junction temperature and a thermal resistance of 95°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM239-N and LM139-N must be derated based on a 150°C maximum junction temperature. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps the chip dissipation very small (P_D≤100 mW), provided the output transistors are allowed to saturate.
- (5) Short circuits from the output to V⁺ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 20 mA independent of the magnitude of V⁺.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±600	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Submit Documentation Feedback

4

Copyright © 1999-2014, Texas Instruments Incorporated

Product Folder Links: LM139-N LM239-N LM2901-N LM3302-N LM339-N

5

www.ti.com

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
	Cingle Cupply	LM139N, LM239N, LM339N, LM2901N	2	36	
Supply Valtage	Single Supply	LM3302N	2	28	V
Supply Vollage	Dual Supply	LM139N, LM239N, LM339N, LM2901N	±1	±18	v
	Dual Supply	LM3302N	±1	±14	V °C
Supply Voltage Operating Temperature	LM139/LM139A		-55	125	
Operating Temperature	LM2901/LM3302		-40	85	°C
Operating remperature	LM239/LM239A		-25	85	C
	LM339/LM339A		0	70	

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	LM139-N, LM239-N, LM339-N	LM2901-N, LM339-N	LM2901-N, LM339-N	UNIT
		J	D	NFF	•••••
			14 PINS		
$R_{\theta J A}$	Junction-to-ambient thermal resistance	95	95	95	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

ISTRUMENTS

FXAS

6.5 Electrical Characteristics: LM139A, LM239A, LM339A, LM139

(V⁺=5 V_{DC}, $T_A = 25^{\circ}C^{(1)}$ unless otherwise stated)

DADAMETER	TEST CONDITIONS	LM139A			LM239A, LM339A			LM139			
PARAMETER		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Input Offset Voltage	See ⁽²⁾		1.0	2.0		1.0	2.0		2.0	5.0	mV _{DC}
Input Bias Current	$I_{IN(+)}$ or $I_{IN(-)}$ with Output in Linear Range ⁽³⁾ , V _{CM} =0 V		25	100		25	250		25	100	nA _{DC}
Input Offset Current	I _{IN(+)} - I _{IN(-)} , V _{CM} = 0 V		3.0	25		5.0	50		3.0	25	nA _{DC}
Input Common-Mode Voltage Range	$V^+=30 V_{DC}$ (LM3302, $V^+=28 V_{DC})^{(4)}$	0		V⁺−1.5	0		V⁺−1.5	0		V⁺−1.5	V _{DC}
Supply Current	(LM3302, V ⁺ = 28 V _{DC}), R _L = ∞ on all Comparators		0.8	2.0		0.8	2.0		0.8	2.0	mA _{DC}
	(LM3302, V ⁺ = 28 V _{DC}), R _L = ∞ , V ⁺ = 36 V					1.0	2.5		1.0	2.5	mA _{DC}
Voltage Gain	R_L ≥15 kΩ, V ⁺ = 15 V _{DC} V _O = 1 V _{DC} to 11 V _{DC}	50	200		50	200		50	200		V/mV
Large Signal Response Time	$V_{\text{IN}} = \text{TTL Logic Swing, } V_{\text{REF}} = 1.4 V_{\text{DC}}, V_{\text{RL}} = 5 V_{\text{DC}}, \\ R_{\text{L}} = 5.1 \text{k}\Omega$		300			300			300		ns
Response Time	$V_{RL} = 5 V_{DC}, R_L = 5.1 k\Omega^{(5)}$		1.3			1.3			1.3		μs
Output Sink Current	$V_{\text{IN}(-)} = 1 V_{\text{DC}}, V_{\text{IN}(+)} = 0,$ $V_{\text{O}} \le 1.5 V_{\text{DC}}$	6.0	16		6.0	16		6.0	16		mA _{DC}
Saturation Voltage	$\label{eq:VIN(-)} \begin{split} V_{IN(-)} &= 1 \ V_{DC}, \ V_{IN(+)} = 0, \\ I_{SINK} &\leq 4 \ mA \end{split}$		250	400		250	400		250	400	mV _{DC}
Output Leakage Current	$V_{IN(+)} = 1 V_{DC}, V_{IN(-)} = 0,$ $V_{O} = 5 V_{DC}$		0.1			0.1			0.1		nA _{DC}
Input Offset Voltage	See ⁽²⁾			4.0			4.0			9.0	mV_{DC}
Input Offset Current	$I_{IN(+)}-I_{IN(-)}, V_{CM} = 0 V$			100			150			100	nA_DC
Input Bias Current	$I_{\text{IN}(\text{+})} \text{ or } I_{\text{IN}(\text{-})} \text{ with Output in}$			300			400			300	nA_DC
	Linear Range, $V_{CM} = 0 V^{(3)}$										
Input Common-Mode	V ⁺ =30 V _{DC} (LM3302),	0		V+-2.0	0		V+-2.0	0		V+-2.0	V _{DC}
Voltage Range	$V^{+} = 28 V_{DC})^{(4)}$										*DC
Saturation Voltage				700			700			700	mV _{DC}
Output Leakage Current	$ \begin{array}{l} V_{IN(+)} = 1 \ V_{DC}, \ V_{IN(-)} = 0, \\ V_{O} = 30 \ V_{DC}, \ (LM3302, \\ V_{O} = 28 \ V_{DC}) \end{array} $			1.0			1.0			1.0	μΑ _{DC}
Differential Input Voltage	Keep all V_{IN} 's $\ge 0 V_{DC}$ (or V^- , if used) ⁽⁶⁾			36			36			36	V_{DC}

(1) These specifications are limited to −55°C ≤ T_A ≤ 125°C, for the LM139/LM139A. With the LM239/LM239A, all temperature specifications are limited to −25°C ≤ T_A ≤ 85°C, the LM339/LM339A temperature specifications are limited to 0°C ≤ T_A ≤ 70°C, and the LM2901, LM3302 temperature range is −40°C ≤ T_A ≤ 85°C.

(2) At output switch point, $V_0 \approx 1.4 V_{DC}$, $R_S = 0 \Omega$ with V⁺ from 5 V_{DC} to 30 V_{DC}; and over the full input common-mode range (0 V_{DC} to V⁺ -1.5 V_{DC}), at 25°C. For LM3302, V⁺ from 5 V_{DC} to 28 V_{DC}.

(3) The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.

(4) The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V⁺ −1.5V at 25°C, but either or both inputs can go to 30 V_{DC} without damage (25V for LM3302), independent of the magnitude of V⁺.

(5) The response time specified is a 100-mV input step with 5-mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.

(6) Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than −0.3 V_{DC} (or 0.3 V_{DC}below the magnitude of the negative power supply, if used) (at 25°C).

6.6 Electrical Characteristics: LM239, LM339, LM2901, LM3302

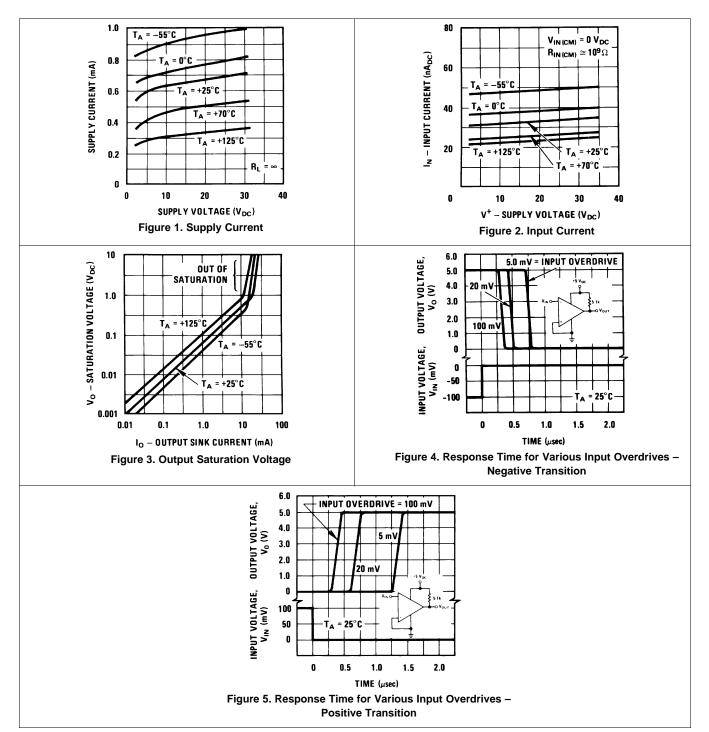
(V⁺ = 5 V_{DC}, T_A = $25^{\circ}C^{(1)}$ unless otherwise stated)

	TEST CONDITIONS		M239, I	LM339		LM29	01		LM33	02	
PARAMETER			TYP	MAX	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT
Input Offset Voltage	See ⁽²⁾		2.0	5.0		2.0	7.0		3	20	mV _{DC}
Input Bias Current	$I_{IN(+)}$ or $I_{IN(-)}$ with Output in Linear Range $^{(3)},$ V_CM=0 V		25	250		25	250		25	500	nA _{DC}
Input Offset Current	$I_{IN(+)} - I_{IN(-)}, V_{CM} = 0 V$		5.0	50		5	50		3	100	nA_DC
Input Common-Mode Voltage Range	$V^+ = 30 V_{DC} (LM3302, V^+ = 28 V_{DC})^{(4)}$	0		V ⁺ -1.5	0		V⁺−1.5	0		V ⁺ -1.5	V_{DC}
Supply Current	(LM3302, V ⁺ = 28 V _{DC}) $R_L = \infty$ on all Comparators		0.8	2.0		0.8	2.0		0.8	2.0	mA _{DC}
	(LM3302, V ⁺ = 28 V _{DC}) $R_L = \infty$, V ⁺ = 36 V		1.0	2.5		1.0	2.5		1.0	2.5	mA _{DC}
Voltage Gain	$R_L \ge 15 \text{ k}\Omega, V^+ = 15 \text{ V}_{DC}$ $V_O = 1 \text{ V}_{DC}$ to 11 V_{DC}	50	200		25	100		2	30		V/mV
Large Signal Response Time	$V_{IN} = TTL \text{ Logic Swing, } V_{REF} =$ 1.4 V _{DC} , V _{RL} = 5 V _{DC} , R _L = 5.1 kΩ,		300			300			300		ns
Response Time	$V_{RL} = 5 V_{DC}, R_L = 5.1 k\Omega^{(5)}$		1.3			1.3			1.3		μs
Output Sink Current	$V_{IN(-)}$ = 1 V_{DC} , $V_{IN(+)}$ = 0, $V_{O} \le 1.5 V_{DC}$	6.0	16		6.0	16		6.0	16		mA _{DC}
Saturation Voltage	$V_{IN(-)} = 1 V_{DC}, V_{IN(+)} = 0,$ $I_{SINK} \le 4 \text{ mA}$		250	400		250	400		250	500	$\mathrm{mV}_{\mathrm{DC}}$
Output Leakage Current	$V_{IN(+)} = 1 V_{DC}, V_{IN(-)} = 0,$ $V_O = 5 V_{DC}$		0.1			0.1			0.1		nA _{DC}
Input Offset Voltage	See ⁽²⁾			9.0		9	15			40	mV_{DC}
Input Offset Current	$I_{IN(+)} - I_{IN(-)}, V_{CM} = 0 V$			150		50	200			300	nA _{DC}
Input Bias Current	$I_{\text{IN}(+)} \text{ or } I_{\text{IN}(-)}$ with Output in			400		200	500			1000	nA _{DC}
	Linear Range, $V_{CM} = 0V^{(3)}$										
Input Common-Mode	$V^+ = 30 V_{DC} (LM3302, V^+ = 28 V_{DC})$			V+-2.0	0		V+-2.0	0		V+-2.0	V_{DC}
Voltage Range	See ⁽⁴⁾										
Saturation Voltage				700		400	700			700	mV_{DC}
Output Leakage Current	$V_{IN(+)} = 1 V_{DC}, V_{IN(-)} = 0, V_{O} = 30$ $V_{DC}, (LM3302, V_{O} = 28 V_{DC})$			1.0			1.0			1.0	μΑ _{DC}
Differential Input Voltage	Keep all V_{IN} 's $\geq 0 V_{DC}$ (or V ⁻ , if used) ⁽⁶⁾			36			36			28	V_{DC}

(1) These specifications are limited to −55°C ≤ T_A ≤ 125°C, for the LM139/LM139A. With the LM239/LM239A, all temperature specifications are limited to −25°C ≤ T_A ≤ 85°C, the LM339/LM339A temperature specifications are limited to 0°C ≤ T_A ≤ 70°C, and the LM2901, LM3302 temperature range is −40°C ≤ T_A ≤ 85°C.

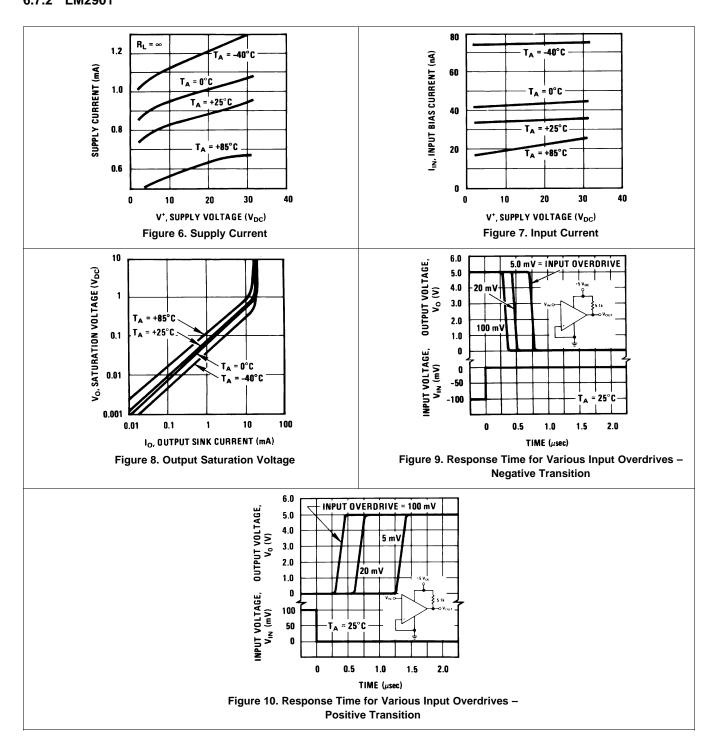
(2) At output switch point, $V_0 \approx 1.4 V_{DC}$, $R_s = 0 \Omega$ with V⁺ from 5 V_{DC} to 30 V_{DC} ; and over the full input common-mode range (0 V_{DC} to V⁺ -1.5 V_{DC}), at 25°C. For LM3302, V⁺ from 5 V_{DC} to 28 V_{DC} .

(3) The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.


(4) The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V⁺ −1.5V at 25°C, but either or both inputs can go to 30 V_{DC} without damage (25V for LM3302), independent of the magnitude of V⁺.

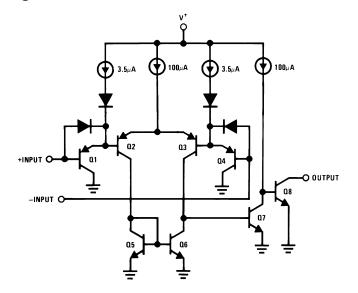
(5) The response time specified is a 100-mV input step with 5-mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.

(6) Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than −0.3 V_{DC} (or 0.3 V_{DC} below the magnitude of the negative power supply, if used) (at 25°C).


6.7 Typical Characteristics

6.7.1 LM139/LM239/LM339, LM139A/LM239A/LM339A, LM3302

8


7 Detailed Description

7.1 Overview

The LM139/LM239/LM339 family of devices is a monolithic quad of independently functioning comparators designed to meet the needs for a medium-speed, TTL compatible comparator for industrial applications. Since no antisaturation clamps are used on the output such as a Baker clamp or other active circuitry, the output leakage current in the OFF state is typically 0.1 nA. This makes the device ideal for system applications where it is desired to switch a node to ground while leaving it totally unaffected in the OFF state. Other features include single supply, low voltage operation with an input common mode range from ground up to approximately one volt below V_{CC} . The output is an uncommitted collector so it may be used with a pullup resistor and a separate output supply to give switching levels from any voltage up to 36V down to a V CE SAT above ground (approximately 100 mV), sinking currents up to 16 mA. The open collector output configuration allows the device to be used in wired-OR configurations, such as a window comparators.

In addition it may be used as a single pole switch to ground, leaving the switched node unaffected while in the OFF state. Power dissipation with all four comparators in the OFF state is typically 4 mW from a single 5-V supply (1 mW/comparator).

7.2 Functional Block Diagram

7.3 Feature Description

The LMx39-N series are high-gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs through stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Reducing the input resistors to < 10 k Ω reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

The differential input voltage may be larger than V⁺ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 V_{DC}$ (at 25°C). An input clamp diode can be used as shown in the applications section.

The output of the LMx39-N series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pullup resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V⁺ terminal of the LM139A package. The output can also be used as a simple SPST switch to ground (when a pullup resistor is not used).

11

Feature Description (continued)

The amount of current which the output device can sink is limited by the drive available (which is independent of V⁺) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately 60- Ω R_{SAT} of the output transistor. The low offset voltage of the output transistor (4 mV) allows the output to clamp essentially to ground level for small load currents.

7.4 Device Functional Modes

A basic comparator circuit is used for converting analog signals to a digital output. The output is HIGH when the voltage on the non-inverting (+IN) input is greater than the inverting (-IN) input. The output is LOW when the voltage on the noninverting (+IN) input is less than the inverting (-IN) input. The inverting input (-IN) is also commonly referred to as the "reference" or "VREF" input.

All pins of any unused comparators should be tied to the negative supply.

The bias network of the LMx39-N series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 2 V_{DC} to 30 V_{DC} .

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

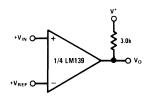
8.1 Application Information

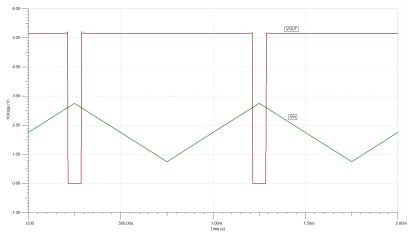
The LM139-N is specified for operation from 2.0 V to 36 V (\pm 1V to \pm 18V) over the temperature range of -55° C to 125°C. While it may seem like a comparator has a well-defined and somewhat limited functionality as a '1-bit ADC', a comparator is a versatile component which can be used for many functions.

Refer to AN-74 LM139/LM239/LM339 A Quad of Independently Functioning Comparators (SNOA654) for additional application information on use of the LM139-N.

8.2 Typical Applications

8.2.1 Basic Comparator




Figure 11. Basic Comparator Schematic

8.2.1.1 Design Requirements

The basic usage of a comparator is to indicate when a specific analog signal has exceeded some predefined threshold. In this application, the negative input is tied to a reference voltage, and the positive input is connected to the input signal. The output is pulled up with a resistor to the logic supply voltage, V+.

For an example application, the supply voltage is 5 V. The input signal varies between 1 V and 3 V, and we want to know when the input exceeds 2.5 V. For this example, we would set the V_{REF} to 2.5 V.

8.2.1.2 Application Curve

Typical Applications (continued)

8.2.2 System Examples

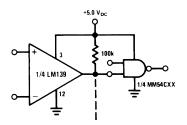


Figure 13. Driving CMOS $(V^+ = 5.0 V_{DC})$

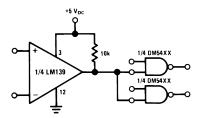
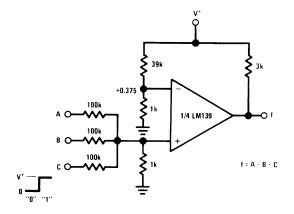
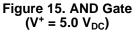
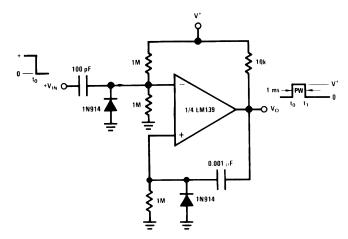
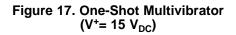
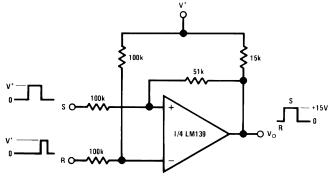
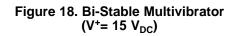






Figure 14. Driving TTL $(V^+ = 5.0 V_{DC})$





> 200k 36 +0.075V 100k \sim 1/4 LM139 100k B C \sim 100k f = A+B+C ş \sim 1k cΟ 0**----**"0" "1"

Figure 16. OR Gate $(V^+ = 5.0 V_{DC})$

Typical Applications (continued)

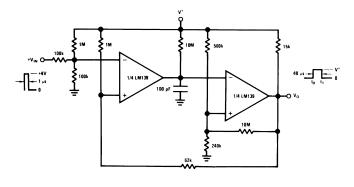


Figure 19. One-Shot Multivibrator with Input Lock

Out (V⁺= 15 V_{DC})

100k

36

 $V_{OUT} = \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} \cdot \mathbf{D}$

Vout

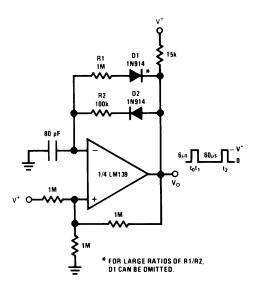
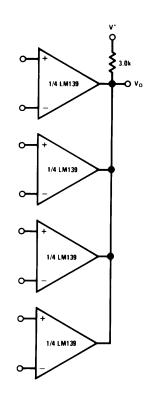
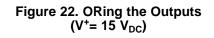
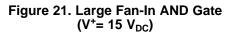
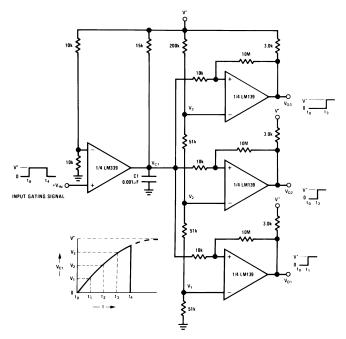





Figure 20. Pulse Generator (V⁺= 15 V_{DC})


"O"

Copyright © 1999–2014, Texas Instruments Incorporated

Product Folder Links: LM139-N LM239-N LM2901-N LM3302-N LM339-N

Typical Applications (continued)

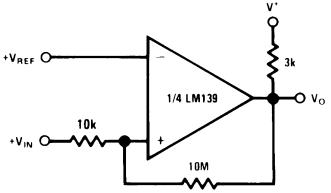
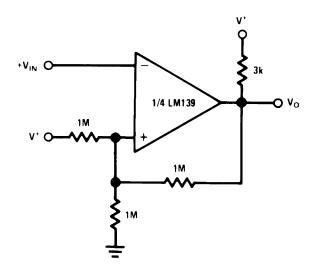



Figure 23. Time Delay Generator (V⁺= 15 V_{DC})

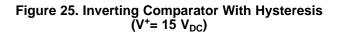
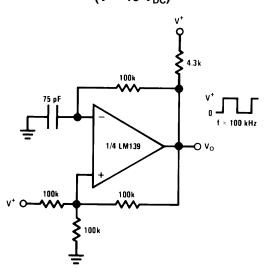
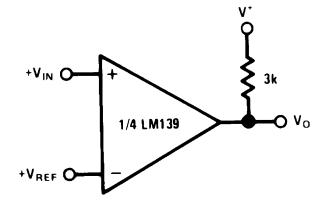
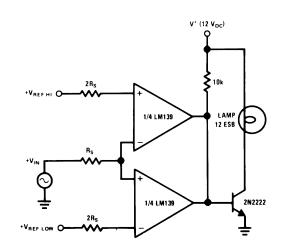
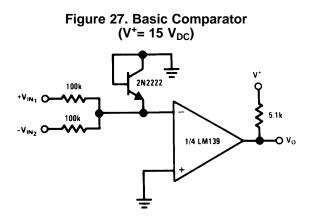
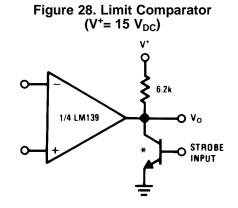


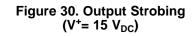
Figure 24. Non-Inverting Comparator with Hysteresis (V⁺= 15 V_{DC})

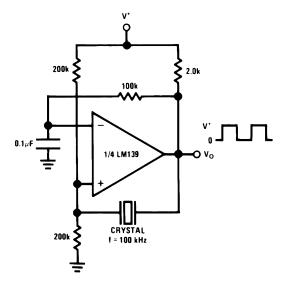

Figure 26. Squarewave Oscillator (V⁺= 15 V_{DC})

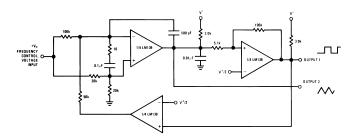


Typical Applications (continued)

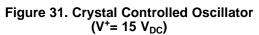


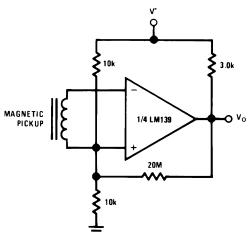
* Or open-collector logic gate without pullup resistor

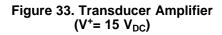

Figure 29. Comparing Input Voltages of Opposite Polarity $(V^+=15 V_{DC})$

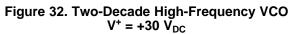


Product Folder Links: LM139-N LM239-N LM2901-N LM3302-N LM339-N




Typical Applications (continued)





 $250 \text{ mV}_{\text{DC}} \leq \text{V}_{\text{C}} \leq +50 \text{ V}_{\text{DC}}$ $700 \text{ Hz} \leq f_{\text{O}} \leq 100 \text{ kHz}$

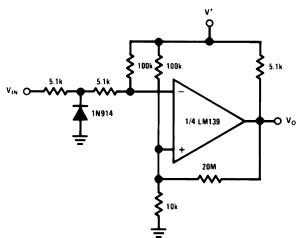
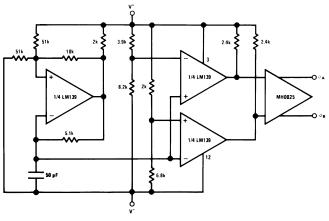



Figure 34. Zero Crossing Detector (Single Power Supply) (V⁺= 15 V_{DC})

Typical Applications (continued)

8.2.2.1 Split-Supply Applications

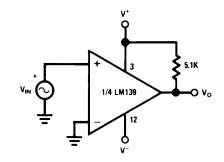
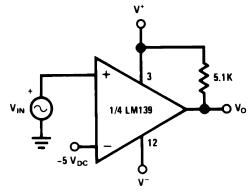
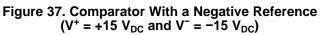




Figure 35. MOS Clock Driver (V⁺ = +15 V_{DC} and V⁻ = -15 V_{DC})

Figure 36. Zero Crossing Detector $(V^+ = +15 V_{DC} \text{ and } V^- = -15 V_{DC})$

9 Power Supply Recommendations

Even in low-frequency applications, the LM139-N can have internal transients which are extremely quick. For this reason, bypassing the power supply with 1.0 μ F to ground will provide improved performance; the supply bypass capacitor should be placed as close as possible to the supply pin and have a solid connection to ground. The bypass capacitors should have a low ESR.

10 Layout

10.1 Layout Guidelines

Try to minimize parasitic impedances on the inputs to avoid oscillation. Any positive feedback used as hysteresis should place the feedback components as close as possible to the input pins. Take care to ensure that the output pins do not couple to the inputs. This can occur through capacitive coupling if the traces are too close and lead to oscillations on the output.

The optimum bypass capacitor placement is closest to the V+ and ground pins. Take care to minimize the loop area formed by the bypass capacitor connection between V+ and ground. The ground pin should be connected to the PCB ground plane at the pin of the device. The feedback components should be placed as close to the device as possible minimizing strays.

10.2 Layout Example

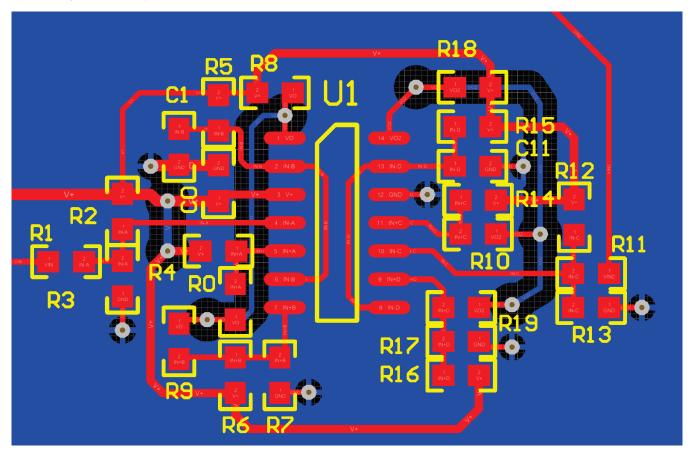


Figure 38. Layout Example

11 Device and Documentation Support

11.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
LM139-N	Click here	Click here	Click here	Click here	Click here
LM239-N	Click here	Click here	Click here	Click here	Click here
LM2901-N	Click here	Click here	Click here	Click here	Click here
LM3302-N	Click here	Click here	Click here	Click here	Click here
LM339-N	Click here	Click here	Click here	Click here	Click here

Table 1. Related Links

11.2 Trademarks

All trademarks are the property of their respective owners.

11.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: LM139-N LM239-N LM2901-N LM3302-N LM339-N

29-Jun-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM139AJ/PB	ACTIVE	CDIP	J	14	25	TBD	Call TI	Call TI	-55 to 125	LM139AJ	Samples
LM139J/PB	ACTIVE	CDIP	J	14	25	TBD	Call TI	Call TI	-55 to 125	LM139J	Samples
LM239J	ACTIVE	CDIP	J	14	25	TBD	Call TI	Call TI	-25 to 85	LM239J	Samples
LM2901M	ACTIVE	SOIC	D	14	55	TBD	Call TI	Call TI	-40 to 85	LM2901M	Samples
LM2901M/NOPB	ACTIVE	SOIC	D	14	55	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LM2901M	Samples
LM2901MX	NRND	SOIC	D	14	2500	TBD	Call TI	Call TI	-40 to 85	LM2901M	
LM2901MX/NOPB	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LM2901M	Samples
LM2901N/NOPB	ACTIVE	PDIP	NFF	14	25	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	-40 to 85	LM2901N	Samples
LM339AM	NRND	SOIC	D	14	55	TBD	Call TI	Call TI	0 to 70	LM339AM	
LM339AM/NOPB	ACTIVE	SOIC	D	14	55	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	LM339AM	Samples
LM339AMX	NRND	SOIC	D	14	2500	TBD	Call TI	Call TI	0 to 70	LM339AM	
LM339AMX/NOPB	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	LM339AM	Samples
LM339AN/NOPB	ACTIVE	PDIP	NFF	14	25	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 70	LM339AN	Samples
LM339M	NRND	SOIC	D	14	55	TBD	Call TI	Call TI	0 to 70	LM339M	
LM339M/NOPB	ACTIVE	SOIC	D	14	55	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	LM339M	Samples
LM339MX	NRND	SOIC	D	14	2500	TBD	Call TI	Call TI	0 to 70	LM339M	
LM339MX/NOPB	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	LM339M	Samples
LM339N/NOPB	ACTIVE	PDIP	NFF	14	25	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 70	LM339N	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

29-Jun-2017

PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

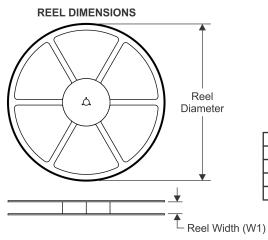
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

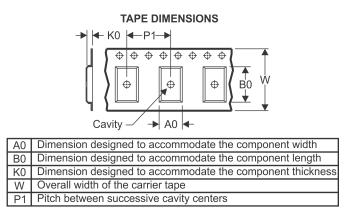
OTHER QUALIFIED VERSIONS OF LM139-N, LM2901-N :

• Automotive: LM2901-Q1

• Space: LM139-SP

NOTE: Qualified Version Definitions:


- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

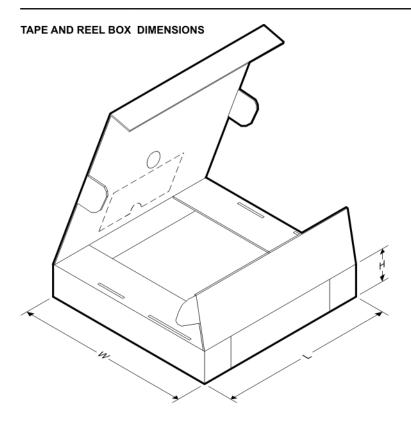

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

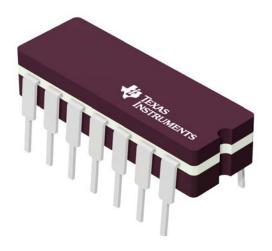

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM2901MX	SOIC	D	14	2500	330.0	16.4	6.5	9.35	2.3	8.0	16.0	Q1
LM2901MX/NOPB	SOIC	D	14	2500	330.0	16.4	6.5	9.35	2.3	8.0	16.0	Q1
LM339AMX	SOIC	D	14	2500	330.0	16.4	6.5	9.35	2.3	8.0	16.0	Q1
LM339AMX/NOPB	SOIC	D	14	2500	330.0	16.4	6.5	9.35	2.3	8.0	16.0	Q1
LM339MX	SOIC	D	14	2500	330.0	16.4	6.5	9.35	2.3	8.0	16.0	Q1
LM339MX/NOPB	SOIC	D	14	2500	330.0	16.4	6.5	9.35	2.3	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

7-Oct-2014


*All dimensions are nominal

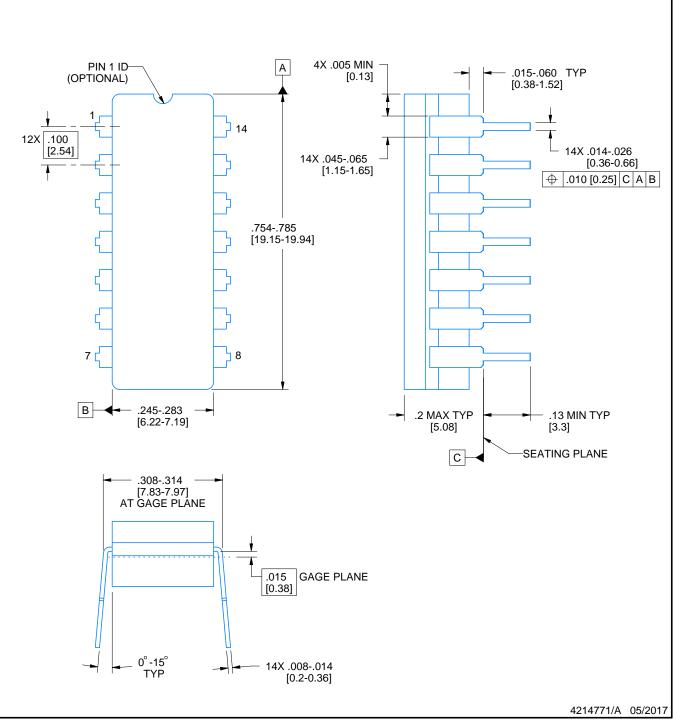
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2901MX	SOIC	D	14	2500	367.0	367.0	35.0
LM2901MX/NOPB	SOIC	D	14	2500	367.0	367.0	35.0
LM339AMX	SOIC	D	14	2500	367.0	367.0	35.0
LM339AMX/NOPB	SOIC	D	14	2500	367.0	367.0	35.0
LM339MX	SOIC	D	14	2500	367.0	367.0	35.0
LM339MX/NOPB	SOIC	D	14	2500	367.0	367.0	35.0

GENERIC PACKAGE VIEW

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


J0014A

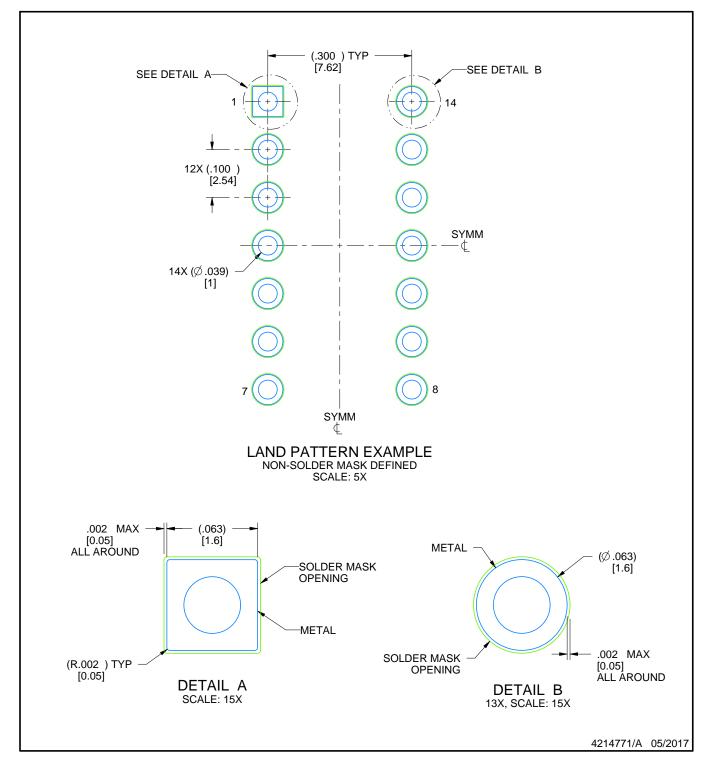
PACKAGE OUTLINE

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

NOTES:

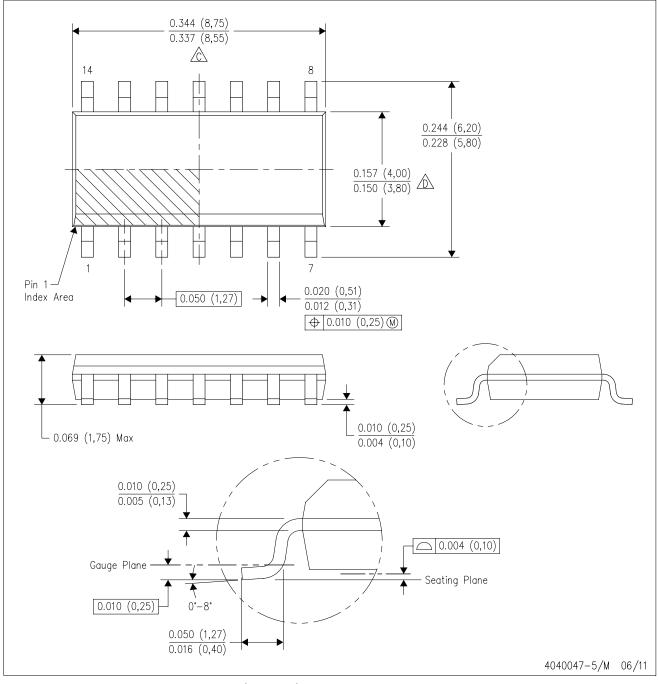
- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.



J0014A

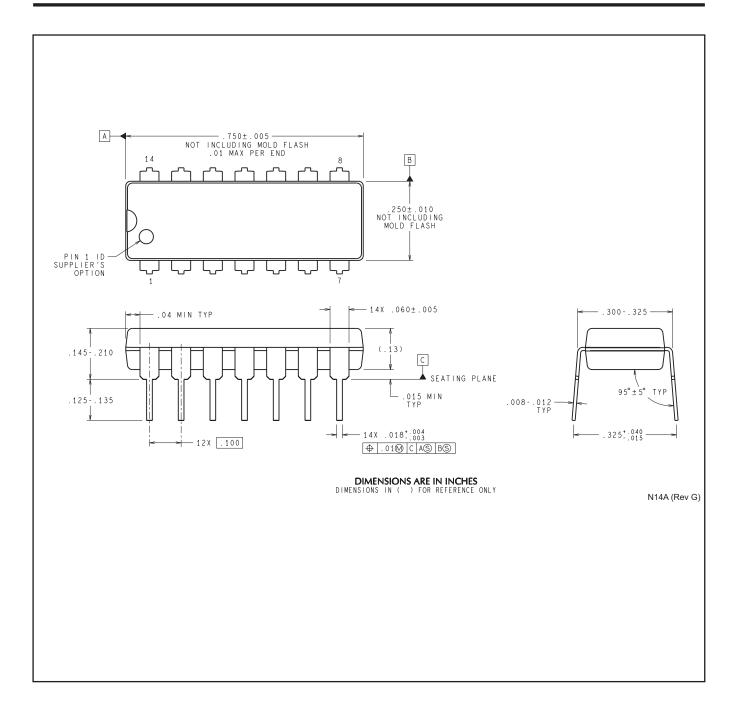
EXAMPLE BOARD LAYOUT

CDIP - 5.08 mm max height


CERAMIC DUAL IN LINE PACKAGE

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

MECHANICAL DATA

NFF0014A

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated