

Is Now Part of

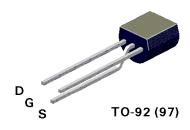
ON Semiconductor®

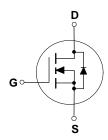
To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

BS270


N-Channel Enhancement Mode Field Effect Transistor


General Description

These N-Channel enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. They can be used in most applications requiring up to 500mA DC. These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications.

Features

- \blacksquare 400mA, 60V. $R_{\rm DS(ON)}$ = 2Ω @ $\rm V_{\rm GS}$ = 10V.
- High density cell design for low R_{DS(ON)}.
- Voltage controlled small signal switch.
- Rugged and reliable.
- High saturation current capability.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	BS270	Units
V _{DSS}	Drain-Source Voltage	60	V
V_{DGR}	Drain-Gate Voltage ($R_{gs} \le 1M\Omega$)	60	V
$V_{\rm GSS}$	Gate-Source Voltage - Continuous	±20	V
	- Non Repetitive (tp < 50µs)	<u>±</u> 40	
I _D	Drain Current - Continuous	400	mA
	- Pulsed	2000	
P _D	Maximum Power Dissipation	625	mW
	Derate Above 25°C	5	mW/°C
T_J , T_{STG}	Operating and Storage Temperature Range	-55 to 150	.€
T _L	Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 Seconds	300	°C
THERMA	L CHARACTERISTICS		
R _{eJA}	Thermal Resistacne, Junction-to-Ambient	200	°C/W

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHAI	RACTERISTICS	·					
3V _{DSS}	Drain-Source Breakdown Voltage	$V_{gs} = 0 \text{ V}, I_{D} = 10 \mu\text{A}$		60			V
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$				1	μΑ
			T _J = 125°C			500	μΑ
GSSF	Gate - Body Leakage, Forward	$V_{gs} = 20 \text{ V}, V_{DS} = 0 \text{ V}$				10	nA
GSSF	Gate - Body Leakage, Reverse	$V_{gs} = -20 \text{ V}, V_{ds} = 0 \text{ V}$				-10	nA
ON CHAR	ACTERISTICS (Note 1)	·					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$		1	2.1	2.5	V
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{gs} = 10 \text{ V}, I_{D} = 500 \text{ mA}$			1.2	2	Ω
			T _J = 125°C		2	3.5	
		$V_{gs} = 4.5 \text{ V}, I_{D} = 75 \text{ mA}$			1.8	3	
/ _{DS(ON)}	Drain-Source On-Voltage	$V_{GS} = 10 \text{ V}, I_{D} = 500 \text{ mA}$			0.6	1	V
		$V_{GS} = 4.5 \text{ V}, I_{D} = 75 \text{ mA}$			0.14	0.225	
D(ON)	On-State Drain Current	$V_{GS} = 10 \text{ V}, \ V_{DS} \ge 2 V_{DS(on)}$		2000	2700		mA
		$V_{GS} = 4.5 \text{ V}, \ V_{DS} \ge 2 V_{DS(on)}$		400	600		
) _{FS}	Forward Transconductance	$V_{DS} \ge 2 V_{DS(on)}, I_D = 200 \text{ mA}$		100	320		mS
OYNAMIC	CHARACTERISTICS						
O _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz			20	50	pF
O _{oss}	Output Capacitance				11	25	pF
O _{rss}	Reverse Transfer Capacitance				4	5	pF
SWITCHIN	G CHARACTERISTICS (Note 1)						
on	Turn-On Time	$V_{DD} = 30 \text{ V}, \ I_D = 500 \text{ m A}, \ V_{GS} = 10 \text{ V}, R_{GEN} = 25 \Omega$				10	ns
off	Turn-Off Time					10	ns
DRAIN-SO	URCE DIODE CHARACTERISTICS AND	MAXIMUM RATINGS					
S	Maximum Continuous Drain-Source Diode Forward Current					400	mA
SM	Maximum Pulsed Drain-Source Diode Forward Current				2000	mA	
/ _{SD}	Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V, I}_{S} = 400 \text{ mA (Note 1)}$			0.88	1.2	V	

Note: 1. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Typical Electrical Characteristics

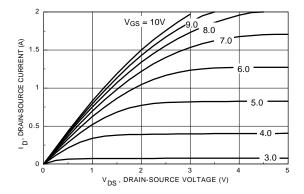


Figure 1. On-Region Characteristics.



Figure 2. On-Resistance Variation with Gate Voltage and Drain Current.

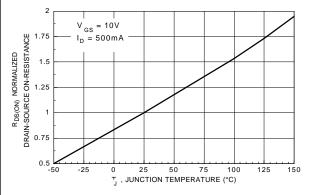


Figure 3. On-Resistance Variation with Temperature.

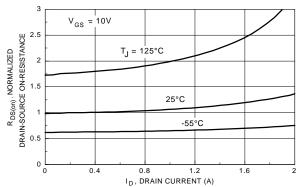


Figure 4. On-Resistance Variation with Drain Current and Temperature.

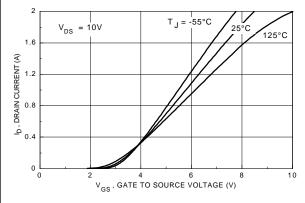


Figure 5. Transfer Characteristics.

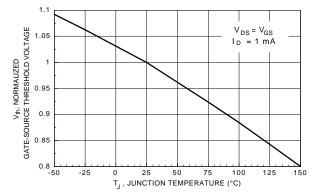


Figure 6. Gate Threshold Variation with Temperature.

Typical Electrical Characteristics (continued)

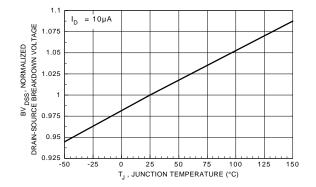


Figure 7. Breakdown Voltage Variation with Temperature.

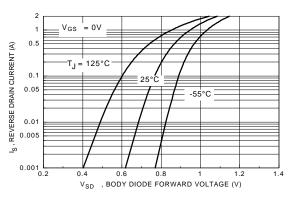


Figure 8. Body Diode Forward Voltage Variation with Current and Temperature.

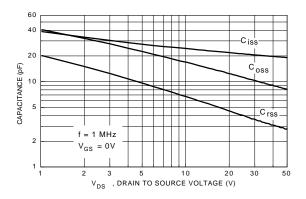


Figure 9. Capacitance Characteristics.

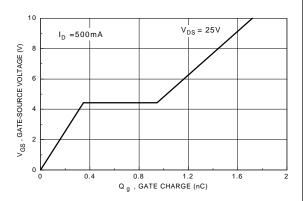


Figure 10. Gate Charge Characteristics.

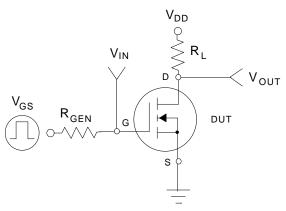


Figure 11. Switching Test Circuit.

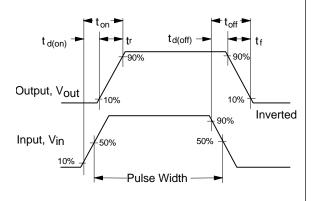


Figure 12. Switching Waveforms.

Typical Electrical Characteristics (continued)

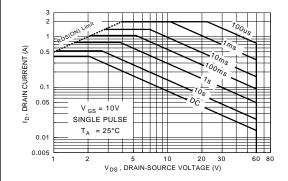
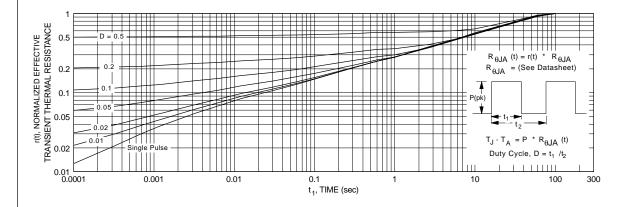
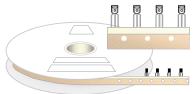


Figure 13. Maximum Safe Operating Area.



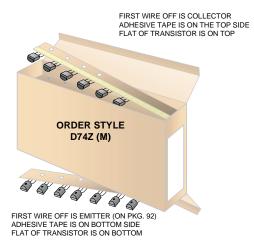

Figure 14. Transient Thermal Response Curve.

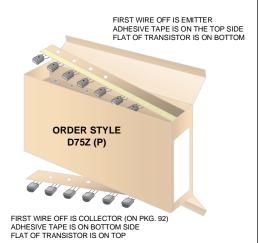
TO-92 Tape and Reel Data FAIRCHILD SEMICONDUCTOR TM **TO-92 Packaging** Configuration: Figure 1.0 **TAPE and REEL OPTION** FSCINT Label sample See Fig 2.0 for various Reeling Styles CBVK//418019 **FSCINT** Label 5 Reels per Intermediate Box Customized F63TNR Label sample Label F63TNR LOT: CBVK741B019 QTY: 2000 FSID: PN222N Customized QTY1: QTY2: Label 375mm x 267mm x 375mm Intermediate Box TO-92 TNR/AMMO PACKING INFROMATION **AMMO PACK OPTION** See Fig 3.0 for 2 Ammo Packing Style Quantity EOL code **Pack Options** 2,000 D26Z Е 2,000 D27Z Ammo М 2,000 D74Z D75Z 2,000 **FSCINT** Unit weight = 0.22 gm Reel weight with components = 1.04 kg Ammo weight with components = 1.02 kg Max quantity per intermediate box = 10,000 units Label 5 Ammo boxes per Intermediate Box 327mm x 158mm x 135mm Immediate Box Customized F63TNR Customized Label Label 333mm x 231mm x 183mm Intermediate Box (TO-92) BULK PACKING INFORMATION **BULK OPTION** See Bulk Packing DESCRIPTION QUANTITY Information table J18Z TO-18 OPTION STD 2.0 K / BOX Anti-static Bubble Sheets TO-5 OPTION STD NO LEAD CLIP 1.5 K / BOX J05Z **FSCINT Label** NO EOL TO-92 STANDARD STRAIGHT FOR: PKG 92, NO LEADCLIP 2.0 K / BOX 94 (NON PROELECTRON SERIES), 96 TO-92 STANDARD STRAIGHT FOR: PKG 94 (PROELECTRON SERIES BCXXX, BFXXX, BSRXXX), 97, 98 L34Z NO LEADCLIP 2.0 K / BOX 2000 units per 114mm x 102mm x 51mm EO70 box for std option Immediate Box 5 EO70 boxes per intermediate Box 530mm x 130mm x 83mm Customized Intermediate box Label FSCINT Label 10,000 units maximum per intermediate box for std option

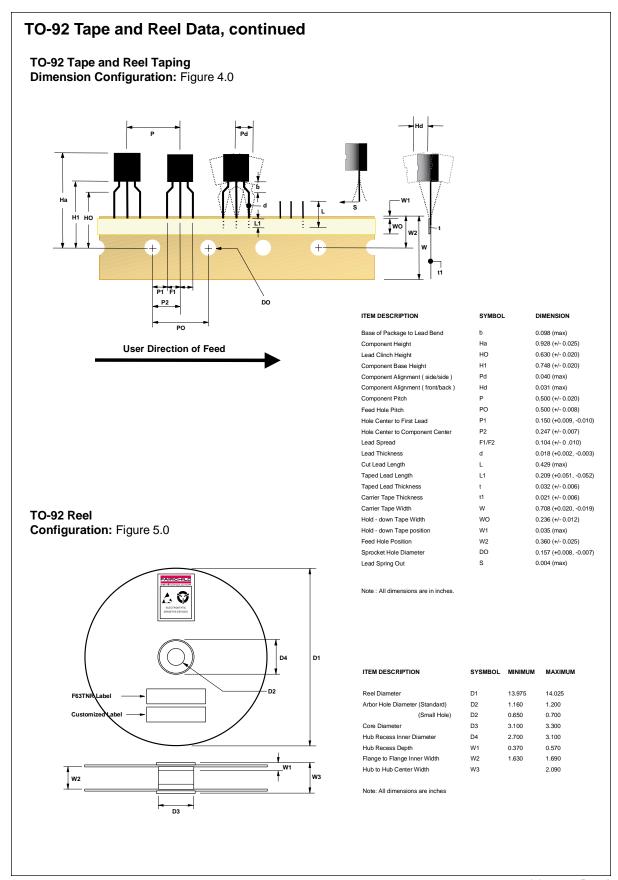
TO-92 Tape and Reel Data, continued

TO-92 Reeling Style Configuration: Figure 2.0

Machine Option "A" (H)

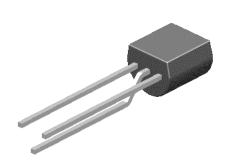


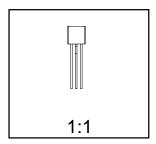

Style "A", D26Z, D70Z (s/h)


Machine Option "E" (J)

Style "E", D27Z, D71Z (s/h)

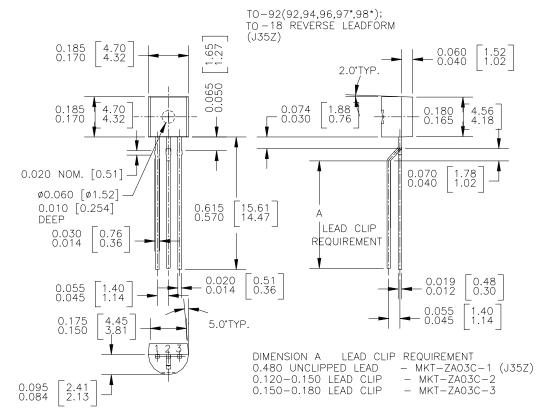
TO-92 Radial Ammo Packaging Configuration: Figure 3.0





TO-92 Package Dimensions

TO-92; TO-18 Reverse Lead Form (J35Z Option) (FS PKG Code 92, 94, 96)



Scale 1:1 on letter size paper

Dimensions shown below are in: inches [millimeters]

Part Weight per unit (gram): 0.22

Note: All package 97 or 98 transistors are leadformed to this configuration prior to bulk shipment. Order L34Z option if in-line leads are preferred on package 97 or 98.

^{*} Standard Option on 97 & 98 package code

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ Bottomless™ QFET™ TinyLogic™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative