DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4104B MSI
 Quadruple low to high voltage translator with 3-state outputs

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4104B quadruple low voltage to high voltage translator with 3-state outputs provides the capability of interfacing low voltage circuits to high voltage circuits, such as low voltage LOCMOS and TTL to high voltage LOCMOS. It has four data inputs (I_{0} to I_{3}), an active HIGH output enable input (EO), four data outputs $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{3}\right)$ and their complements ($\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{3}$).

With EO $\mathrm{HIGH}, \mathrm{O}_{0}$ to O_{3} and $\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{3}$ are in the low impedance ON -state, either HIGH or LOW as determined by I_{0} to I_{3}; with EO LOW, O_{0} to O_{3} and $\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{3}$ are in the high impedance OFF-state.

The device uses a common negative supply (V_{SS}) and separate positive supplies for inputs ($\mathrm{V}_{\mathrm{DII}}$) and outputs $\left(\mathrm{V}_{\mathrm{DDO}}\right)$. $\mathrm{V}_{\mathrm{DDI}}$ must always be less than or equal to $\mathrm{V}_{\mathrm{DDO}}$, even during power turn-on and turn-off. For the permissible operating range of $\mathrm{V}_{\mathrm{DDI}}$ and $\mathrm{V}_{\mathrm{DDO}}$ see graph Fig. 4.
Each input protection circuit is terminated between $\mathrm{V}_{\mathrm{DDO}}$ and V_{SS}. This allows the input signals to be driven from any potential between $\mathrm{V}_{\mathrm{DDO}}$ and V_{SS}, without regard to current limiting. When driving from potentials greater than $\mathrm{V}_{\text {DDO }}$ or less than V_{SS}, the current at each input must be limited to 10 mA .

Fig. 2 Pinning diagram.

HEF4104BP(N): 16-lead DIL; plastic
(SOT38-1)
HEF4104BD(F): 16-lead DIL; ceramic (cerdip)
(SOT74)
HEF4104BT(D): 16-lead SO; plastic
(SOT109-1)
(): Package Designator North America

PINNING

I_{0} to I_{3}	data inputs
EO	output enable input
O_{0} to O_{3}	data outputs
$\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{3}$	complementary data outputs

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

Quadruple low to high voltage translator

Fig. 3 Logic diagram.

Quadruple low to high voltage translator

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD}	TYPICAL FORMULA FOR P ($\mu \mathrm{W}$)	
Dynamic power dissipation per package (P)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 3000 f_{i}+\sum\left(f_{0} C_{L}\right) \times V_{D D^{2}} \\ 12200 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \\ 31000 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \end{array}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz) $\mathrm{f}_{\mathrm{O}}=$ output freq. (MHz) C_{L} = load capacitance (pF) $\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

Quadruple low to high voltage translator
 HEF4104B
 with 3-state outputs

Fig. $4 \mathrm{~V}_{\mathrm{DDO}}$ as a function of $\mathrm{V}_{\mathrm{DDI}}$; the shaded area shows the permissible operating range.

