

SN74LVC1G57

SCES414P - NOVEMBER 2002 - REVISED NOVEMBER 2016

SN74LVC1G57 Configurable Multiple-Function Gate

Features

- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
 - Supports Down Translation to V_{CC}
- Max t_{pd} of 6.3 ns at 3.3 V
- Schmitt-Triggered Inputs
- Low Power Consumption, 10-µA Maximum I_{CC}
- ±24-mA Output Drive at 3.3 V
- I_{off} Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- Available in the Texas Instruments NanoFree™ Package

Applications

- Active Noise Cancellation (ANC)
- **Barcode Scanners**
- **Blood Pressure Monitors**
- **CPAP Machines**
- Cable Solutions
- Embedded PCs
- Field Transmitter: Temperature or Pressure Sensors
- HVAC: Heating, Ventilating, and Air Conditioning
- TVs: High-Definition (HDTV), LCD, and Digital
- Video Communications Systems

3 Description

The SN74LVC1G57 device features configurable multiple functions. The output state is determined by eight patterns of 3-bit input. The user can choose the logic functions AND, OR, NAND, NOR, XNOR, inverter, and buffer. All inputs can be connected to V_{CC} or GND.

This device functions as an independent gate, but because of Schmitt action, it may have different input threshold levels for positive-going (V_{T+}) and negativegoing (V_{T_-}) signals.

This configurable multiple-function gate is designed for 1.65-V to 5.5-V V_{CC} operation.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.


NanoFree™ package technology is breakthrough in IC packaging concepts, using the die as the package.

Device Information⁽¹⁾

DEVICE NAME	PACKAGE	BODY SIZE (NOM)
SN74LVC1G57DBV	SOT-23 (6)	2.90 mm × 1.60 mm
SN74LVC1G57DCK	SC70 (6)	2.00 mm × 1.25 mm
SN74LVC1G57DRL	SOT (6)	1.60 mm × 1.20 mm
SN74LVC1G57DRY	SON (6)	1.45 mm × 1.00 mm
SN74LVC1G57DSF	SON (6)	1.00 mm × 1.00 mm
SN74LVC1G57YZP	DSBGA (6)	1.41 mm × 0.91 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

Copyright © 2016, Texas Instruments Incorporated

Page

Page

Table of Contents

1	Features 1	8.3 Feature Description 8
2	Applications 1	8.4 Device Functional Modes 8
3	Description 1	9 Application and Implementation 10
4	Revision History2	9.1 Application Information 10
5	Pin Configuration and Functions3	9.2 Typical Application 10
6	Specifications4	10 Power Supply Recommendations 12
٠	6.1 Absolute Maximum Ratings 4	11 Layout 12
	6.2 ESD Ratings	11.1 Layout Guidelines 12
	6.3 Recommended Operating Conditions	11.2 Layout Example 12
	6.4 Thermal Information	12 Device and Documentation Support 13
	6.5 Electrical Characteristics5	12.1 Documentation Support
	6.6 Switching Characteristics	12.2 Receiving Notification of Documentation Updates 13
	6.7 Typical Characteristics	12.3 Community Resources
7	Parameter Measurement Information	12.4 Trademarks 13
8	Detailed Description8	12.5 Electrostatic Discharge Caution
•	8.1 Overview 8	12.6 Glossary 13
	8.2 Functional Block Diagram	13 Mechanical, Packaging, and Orderable Information13

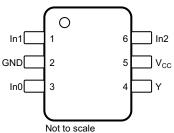
4 Revision History

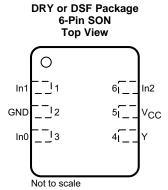
Changes from Revision O (December 2013) to Revision P

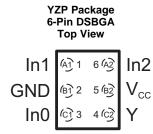
Changes from Revision L (January 2007) to Revision M

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

 Added Applications section, Device Information table, ESD Ratings table, Thermal Information Description section, Device Functional Modes, Application and Implementation section, Power Recommendations section, Layout section, Device and Documentation Support section, and M Packaging, and Orderable Information section 	Supply lechanical,
 Changed Package thermal impedance, R_{θJA}, values From: 165°C/W To: 223°C/W (DBV), From: 271.7°C/W (DCK), From: 142°C/W To: 252.5°C/W (DRL), and From: 123°C/W To: 124°C/W (Y 	n: 259°C/W To:
Changes from Revision N (April 2013) to Revision O	Page
Changed I _{off} in Features	1
Changed Operating temperature range	4
Changes from Revision M (October 2011) to Revision N	Page
Removed Ordering Information table; package updates now included in Package Ordering Add	dendum 1


Submit Documentation Feedback


Copyright © 2002–2016, Texas Instruments Incorporated



5 Pin Configuration and Functions

Pin Functions

	PIN I/O		DESCRIPTION
NO.	NAME	1/0	DESCRIPTION
1	In1	I	Logic input 1
2	GND	_	Ground
3	In0	I	Logic input 0
4	Y	0	Logic output
5	V _{CC}	_	Power
6	ln2	I	Logic input 2

Product Folder Links: SN74LVC1G57

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Supply voltage, V _{CC}		-0.5	6.5	V
Input voltage, V _I ⁽²⁾		-0.5	6.5	V
Valtage respect (applied to any extens) V	High-impedance or power-off state (2)	-0.5	6.5	
Voltage range (applied to any output), V _O	High or low state (2)(3)	-0.5	V _{CC} + 0.5	V
Input clamp current, I _{IK} (V _I < 0)			-50	mA
Output clamp current, I _{OK} (V _O < 0)			-50	mA
Continuous output current, I _O			±50	mA
Continuous current through V _{CC} or GND			±100	mA
Junction temperature, T _J			150	°C
Storage temperature, T _{stg}		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
.,		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	\ /
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V	Cumply valtage	Operating	1.65	5.5	V
V _{CC}	Supply voltage	Data retention only	1.5		V
VI	Input voltage		0	5.5	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 1.65 V		-4	
		V _{CC} = 2.3 V		-8	
I_{OH}	High-level output current	V _{CC} = 3 V		-16	mA
				-24	
		V _{CC} = 4.5 V		-32	
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V		8	
I_{OL}	Low-level output current	V 2 V		16	mA
		V _{CC} = 3 V		24	
		V _{CC} = 4.5 V		32	
-	Operation for a sin town part we	BGA package	-40	85	°C
T_A	Operating free-air temperature	All other packages	-40	125	3C

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation, see *Implications of Slow or Floating CMOS Inputs* (SCBA004).

Product Folder Links: SN74LVC1G57

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the Recommended Operating Conditions table.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

			SN74LVC1G57					
	THERMAL METRIC ⁽¹⁾	DBV (SOT)	DCK (SOT)	DRL (SOT)	YZP (DSGBA)	DSF (SON)	DRY (SON)	UNIT
		6 PINS	6 PINS	6 PINS	6 PINS	6 PINS	6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	223	271.7	252.5	124	360.1	332.5	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	174.4	129.8	111.6	1.4	158.8	198.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	71	73.1	118.5	29.7	213.5	189	°C/W
ΨЈТ	Junction-to-top characterization parameter	57.1	8.3	11.8	0.5	20.4	44.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	70.3	72.4	118.8	30.1	213.2	189.7	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

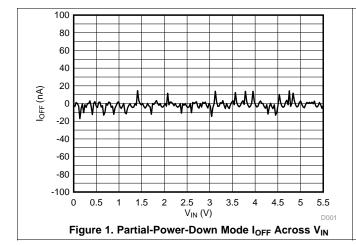
	PARAMETER	TEST COM	IDITIONS	MIN	TYP ⁽¹⁾ MAX	UNIT	
		V _{CC} = 1.65 V		0.79	1.16		
		V _{CC} = 2.3 V		1.11	1.56	.56	
V_{T+}	Positive-going input threshold voltage	V _{CC} = 3 V	V _{CC} = 3 V			V	
		V _{CC} = 4.5 V		2.16	2.74		
		V _{CC} = 5.5 V		2.61	3.33		
		V _{CC} = 1.65 V		0.35	0.62		
		V _{CC} = 2.3 V		0.58	0.87		
V_{T-}	Negative-going input threshold voltage	V _{CC} = 3 V		0.84	1.19	V	
		V _{CC} = 4.5 V		1.41	1.9		
		V _{CC} = 5.5 V		1.87	2.29		
		V _{CC} = 1.65 V		0.3	0.62		
		V _{CC} = 2.3 V		0.4	0.8		
ΔV_{T}	Hysteresis (V _{T+} – V _{T-})	V _{CC} = 3 V		0.53	0.87	V	
		V _{CC} = 4.5 V	0.71	1.04			
		V _{CC} = 5.5 V	0.71	1.11			
		V _{CC} = 1.65 V to 5.5 V, I _{OH} =	–100 μΑ	V _{CC} - 0.1			
		$V_{CC} = 1.65 \text{ V}, I_{OH} = -4 \text{ mA}$	1.2				
		V _{CC} = 2.3 V, I _{OH} = -8 mA		1.9			
V _{OH}		$V_{CC} = 3 \text{ V}, I_{OH} = -16 \text{ mA}$		2.4		V	
		$V_{CC} = 3 \text{ V}, I_{OH} = -24 \text{ mA}$		2.3			
		$V_{CC} = 4.5 \text{ V}, I_{OH} = -32 \text{ mA}$		3.8			
		$V_{CC} = 1.65 \text{ V to } 5.5 \text{ V, } I_{OL} =$	100 μΑ		0.1		
		V _{CC} = 1.65 V, I _{OL} = 4 mA			0.45		
		V _{CC} = 2.3 V, I _{OL} = 8 mA			0.3		
.,			$T_A = -40$ °C to 85°C		0.4	.,	
V_{OL}		$V_{CC} = 3 \text{ V}, I_{OL} = 16 \text{ mA}$	$T_A = -40^{\circ}C$ to 125°C		0.45	V	
		V _{CC} = 3 V, I _{OL} = 24 mA	+		0.55		
			$T_A = -40$ °C to 85°C		0.55		
		$V_{CC} = 4.5 \text{ V}, I_{OL} = 32 \text{ mA}$	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$		0.58		
l _l		V _{CC} = 0 V to 5.5 V, V _I = 5.5 V or GND			±1	μA	
I _{off}		$V_{CC} = 0 \text{ V}, V_{I} \text{ or } V_{O} = 5.5 \text{ V}$			±10	μA	
I _{CC}		$V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}, V_1 = 5.5 \text{ V or GND}, I_0 = 0$			10	μΑ	
ΔI_{CC}		$V_{CC} = 3 \text{ V to } 5.5 \text{ V, one input}$ other inputs at V_{CC} or GND		500	μΑ		
Ci		$V_{CC} = 3.3 \text{ V}, V_{I} = V_{CC} \text{ or GN}$	D		3.5	pF	

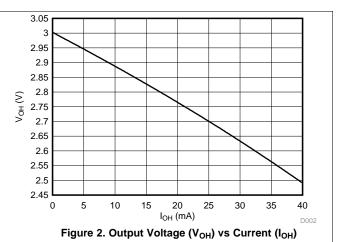
Product Folder Links: SN74LVC1G57

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C

Electrical Characteristics (continued)

over recommended operating free-air temperature range (unless otherwise noted)

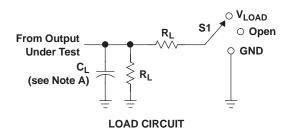

	PARAMETER	TEST CON	DITIONS	MIN TYP ⁽¹⁾ MAX	UNIT
			V _{CC} = 1.8 V	20	
	Dower dissination consistence	f 40 MH = T 25°C	V _{CC} = 2.5 V	20	
C_{pd}	Power dissipation capacitance	f = 10 MHz, T _A = 25°C	V _{CC} = 3.3 V	21	pF
		V _{CC} = 5 V	22		


6.6 Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted; see Figure 3)

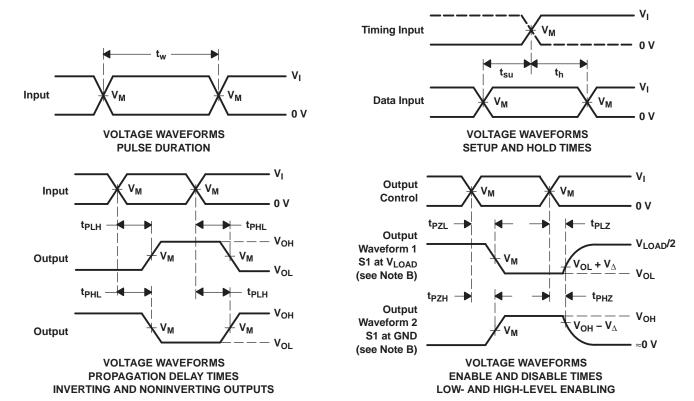
PARAMETER		TEST CONDITIONS		MIN	TYP MAX	UNIT
			$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$	3.2	14.4	
		T 4000 to 0500	$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	2	8.3	
		$T_A = -40$ °C to 85°C	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	6.3	†
	Any input to Y (output) $T_{A} = -40^{\circ}\text{C f}$		$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$	1.1	5.1	1
t _{pd}			$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$	3.2	16.4	+
		T 40°C to 105°C	$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	2	9.3	
		1 _A = -40°C to 125°C	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	7.3	
			$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$	1.1	6.1	

6.7 Typical Characteristics



Submit Documentation Feedback

Copyright © 2002–2016, Texas Instruments Incorporated



7 Parameter Measurement Information

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

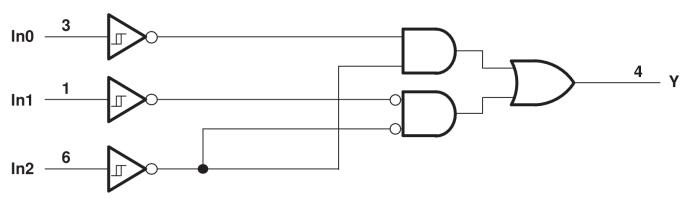
.,	INPUTS		.,	.,				
V _{CC}	V_{I}	t _r /t _f	V _M	V _{LOAD}	CL	R _L	V_{Δ}	
1.8 V ± 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V	
2.5 V \pm 0.2 V	v_{cc}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V	
3.3 V \pm 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V	
5 V ± 0.5 V	V _{CC}	≤2.5 ns	V _{CC} /2	2×V _{CC}	50 pF	500 Ω	0.3 V	

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

8 Detailed Description


8.1 Overview

The SN74LVC1G57 device features configurable multiple functions. The output state is determined by eight patterns of 3-bit input. The user can choose the logic functions AND, OR, NAND, NOR, XNOR, inverter, and buffer. All inputs can be connected to $V_{\rm CC}$ or GND.

The CMOS device has high output drive while maintaining low static power dissipation over a broad V_{CC} operating range.

This configurable multiple-function gate is designed for 1.65-V to 5.5-V V_{CC} operation.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Schmitt-Trigger Inputs

Schmitt-trigger inputs are designed to provide a minimum separation between positive and negative switching thresholds. This allows for noisy or slow inputs that would cause problems such as oscillation or excessive current draw with normal CMOS inputs

8.3.2 Inputs Accept Voltages to 5.5 V

The SN74LVC1G57 is a configurable multiple-function gate is designed for 1.65-V to 5.5-V V_{CC} operation. Inputs are over-voltage tolerant up to 5.5 V. This feature allows the use of this device as a translator in a mixed 1.8-V, 3.3-V, and 5-V system environment.

8.4 Device Functional Modes

Table 1 lists the functional modes of the SN74LVC1G57 and Table 2 lists the logic configuration images.

Table 1. Function Table

	INPUTS								
ln2	ln1	In0	Y						
L	L	L	Н						
L	L	Н	L						
L	Н	L	Н						
L	Н	Н	L						
Н	L	L	L						
Н	L	Н	L						
Н	Н	L	Н						
Н	Н	Н	Н						

Submit Documentation Feedback

Copyright © 2002–2016, Texas Instruments Incorporated

Table 2. Logic Configurations

LOGIC FUNCTION	FIGURE NO.
2-Input AND	Figure 4
2-Input AND with both inputs inverted	Figure 7
2-Input NAND with inverted input	Figure 5 and Figure 6
2-Input OR with inverted input	Figure 5 and Figure 6
2-Input NOR	Figure 7
2-Input NOR with both inputs inverted	Figure 4
2-Input XNOR	Figure 8

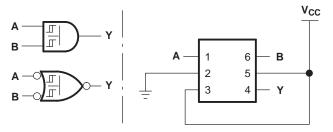
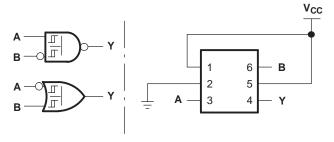



Figure 4. 2-Input AND Gate

Figure 5. 2-Input NAND Gate With Inverted A Input

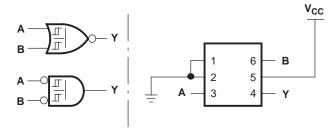


Figure 6. 2-Input NAND Gate With Inverted B Input

Figure 7. 2-Input NOR Gate

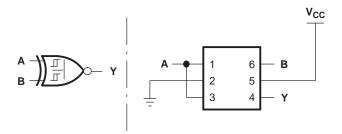


Figure 8. 2-Input XNOR Gate

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74LVC1G57 features configurable multiple functions. The output state is determined by eight patterns of 3-bit input. The user can choose the logic functions AND, NAND, NOR, XNOR, inverter, and buffer. All inputs can be connected to V_{CC} or GND.

9.2 Typical Application

This application shows the SN74LVC1G57 configured as an OR gate with an inverted input. This particular configuration is helpful for dual sensor or switch applications where one of the inputs is normally closed or a logic high 1. Normally this application would require two external gates, but because the SN74LVC1G57 can be configured to meet this function the application can be implemented with a single chip solution.

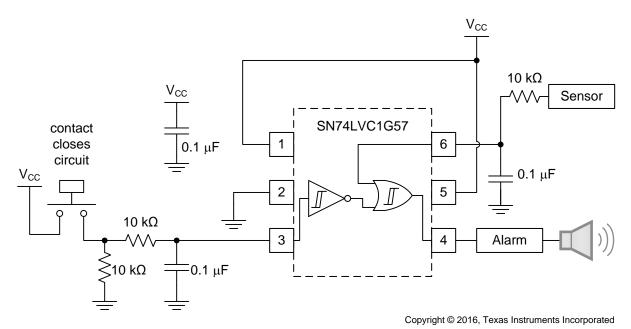


Figure 9. Dual-Sensor Alarm Trigger

Submit Documentation Feedback

Typical Application (continued)

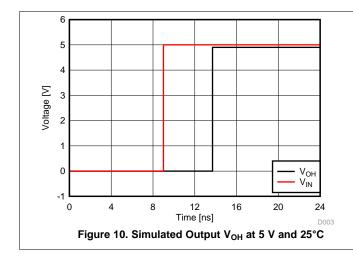
9.2.1 Design Requirements

9.2.1.1 Application Truth Table

Because we are working with two independent alarm triggers, we need to ensure that the alarm signal is only sent whenever either condition is met. Therefore our resulting truth table will look very much like a logic OR function. However, since we are also assuming one of the conditions to always be true, i.e. a door that should remain closed, we make use of the inverted input in Table 3.

INPUTS OUTPUT ALARM TRIGGER OR SWITCH **SENSOR** Χ Н L L L Н Χ Н Н

Table 3. Dual-Sensor Truth Table


9.2.1.2 Schmitt-Trigger Inputs

On a normal (non-Schmitt-Trigger) input the part will switch at the same point on the rising edge and falling edge. With a slow rising edge the part will switch at the threshold. When the switch occurs it will require current from V_{CC} . When current is forced from V_{CC} , the V_{CC} level can drop causing the threshold to shift. When the threshold shifts it will cross the input again causing the part to switch again. This can go on and on causing oscillation which can cause excessive current. The same thing can happen if there is noise on the input. The noise can cross the threshold multiple times and cause oscillation or multiple clocking. The solution to these problems is to use a Schmitt-Trigger type device to translate the slow or noisy edges into something faster that will meet the input rise and fall specs of the following device. A true Schmitt-Trigger input will not have rise and fall time limitations.

9.2.2 Detailed Design Procedure

- 1. Recommended Input conditions:
 - Specified high and low levels. See (V_{IH} and V_{IL}) in Recommended Operating Conditions.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.
- 2. Recommended output conditions:
 - Load currents should not exceed 20 mA on the output and 50 mA total for the part.
 - Outputs should not be pulled above V_{CC}.

9.2.3 Application Curves

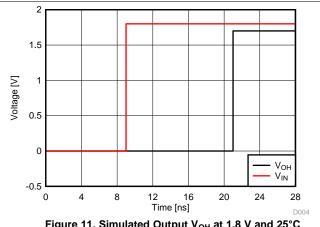


Figure 11. Simulated Output VOH at 1.8 V and 25°C

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F bypass capacitor is recommended. If there are multiple pins labeled V_{CC} , then a 0.01- μ F or 0.022- μ F capacitor is recommended for each V_{CC} because the V_{CC} pins will be tied together internally. For devices with dual supply pins operating at different voltages, for example V_{CC} and V_{DD} , a 0.1- μ F bypass capacitor is recommended for each supply pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

11 Layout

11.1 Layout Guidelines

Reflections and matching are closely related to the loop antenna theory but are different enough to be discussed separately from the theory. When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must turn corners. Figure 12 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

11.2 Layout Example

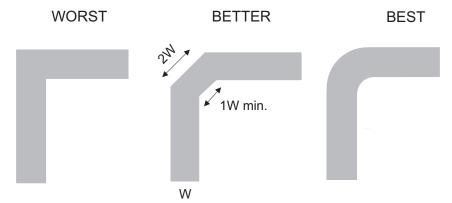


Figure 12. Trace Example

Submit Documentation Feedback

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

Implications of Slow or Floating CMOS Inputs (SCBA004)

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

NanoFree, E2E are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: SN74LVC1G57

3-Jul-2018

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LVC1G57DBVR	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(CA7O, CA7R)	Samples
SN74LVC1G57DBVRG4	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(CA7O, CA7R)	Samples
SN74LVC1G57DCKR	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(CL5, CLF, CLK, CL R)	Samples
SN74LVC1G57DCKRG4	ACTIVE	SC70	DCK	6	3000	TBD	Call TI	Call TI	-40 to 125	(CL5, CLF, CLK, CL R)	Samples
SN74LVC1G57DRLR	ACTIVE	SOT-5X3	DRL	6	4000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(CL7, CLR)	Samples
SN74LVC1G57DRY2	ACTIVE	SON	DRY	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	CL	Samples
SN74LVC1G57DRYR	ACTIVE	SON	DRY	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	CL	Samples
SN74LVC1G57DSFR	ACTIVE	SON	DSF	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	CL	Samples
SN74LVC1G57YZPR	ACTIVE	DSBGA	YZP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	CLN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

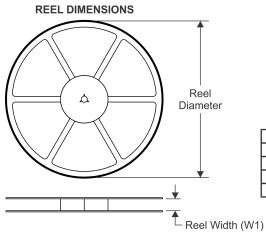
⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

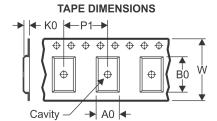
⁽³⁾ MSL. Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

3-Jul-2018

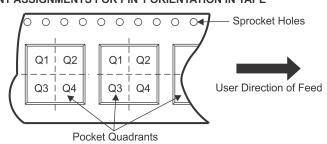
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

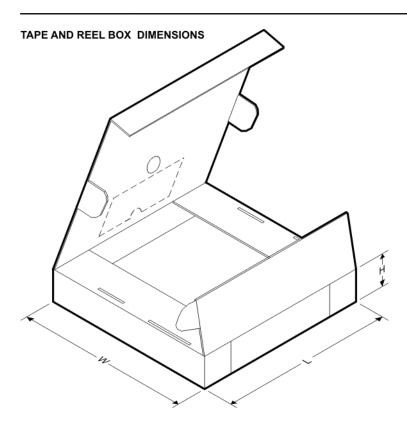

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017


TAPE AND REEL INFORMATION

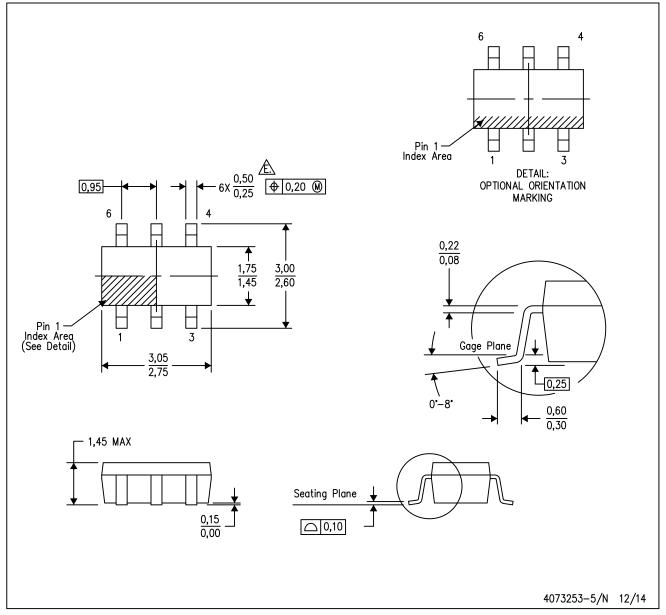
A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Davidas	D I	D I	D:	000	D 1	D I	4.0	Б0	1/0	D4	14/	Di-4
Device	Туре	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	(mm)	Pin1 Quadrant
SN74LVC1G57DBVR	SOT-23	DBV	6	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1G57DCKR	SC70	DCK	6	3000	180.0	9.2	2.3	2.55	1.2	4.0	8.0	Q3
SN74LVC1G57DCKR	SC70	DCK	6	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
SN74LVC1G57DCKR	SC70	DCK	6	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74LVC1G57DRLR	SOT-5X3	DRL	6	4000	180.0	8.4	1.98	1.78	0.69	4.0	8.0	Q3
SN74LVC1G57DRLR	SOT-5X3	DRL	6	4000	180.0	9.5	1.78	1.78	0.69	4.0	8.0	Q3
SN74LVC1G57DRY2	SON	DRY	6	5000	180.0	9.5	1.6	1.15	0.75	4.0	8.0	Q3
SN74LVC1G57DRYR	SON	DRY	6	5000	180.0	9.5	1.15	1.6	0.75	4.0	8.0	Q1
SN74LVC1G57DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74LVC1G57YZPR	DSBGA	YZP	6	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

www.ti.com 3-Aug-2017

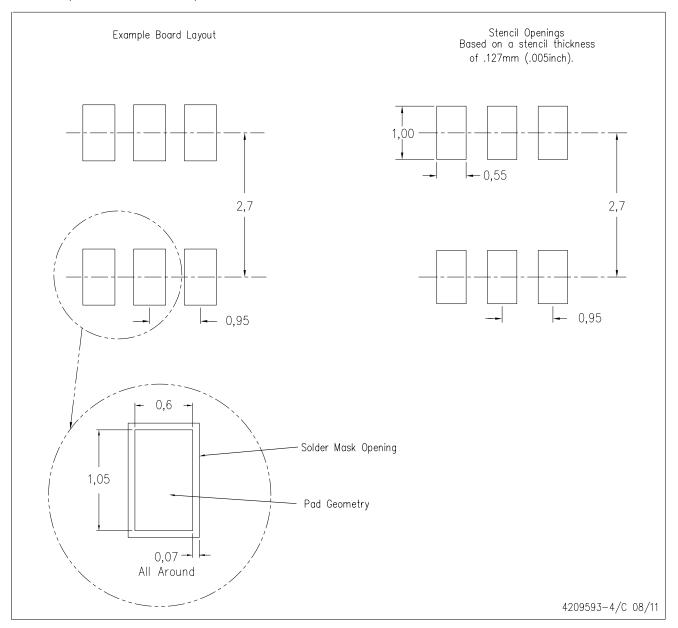


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC1G57DBVR	SOT-23	DBV	6	3000	202.0	201.0	28.0
SN74LVC1G57DCKR	SC70	DCK	6	3000	205.0	200.0	33.0
SN74LVC1G57DCKR	SC70	DCK	6	3000	202.0	201.0	28.0
SN74LVC1G57DCKR	SC70	DCK	6	3000	180.0	180.0	18.0
SN74LVC1G57DRLR	SOT-5X3	DRL	6	4000	202.0	201.0	28.0
SN74LVC1G57DRLR	SOT-5X3	DRL	6	4000	184.0	184.0	19.0
SN74LVC1G57DRY2	SON	DRY	6	5000	184.0	184.0	19.0
SN74LVC1G57DRYR	SON	DRY	6	5000	184.0	184.0	19.0
SN74LVC1G57DSFR	SON	DSF	6	5000	184.0	184.0	19.0
SN74LVC1G57YZPR	DSBGA	YZP	6	3000	220.0	220.0	35.0

DBV (R-PDSO-G6)

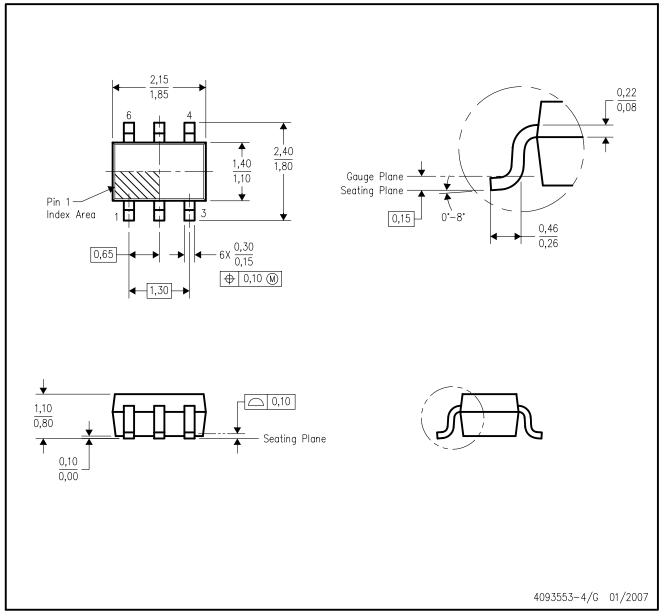
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- Falls within JEDEC MO-178 Variation AB, except minimum lead width.

DBV (R-PDSO-G6)

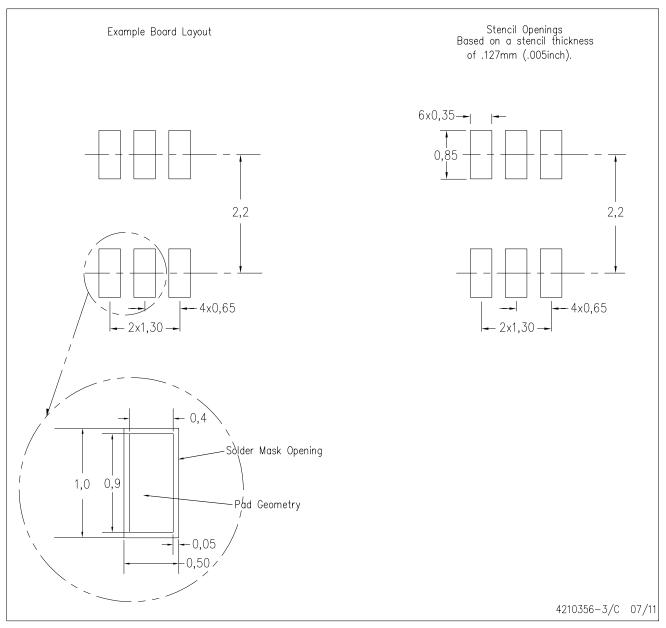
PLASTIC SMALL OUTLINE



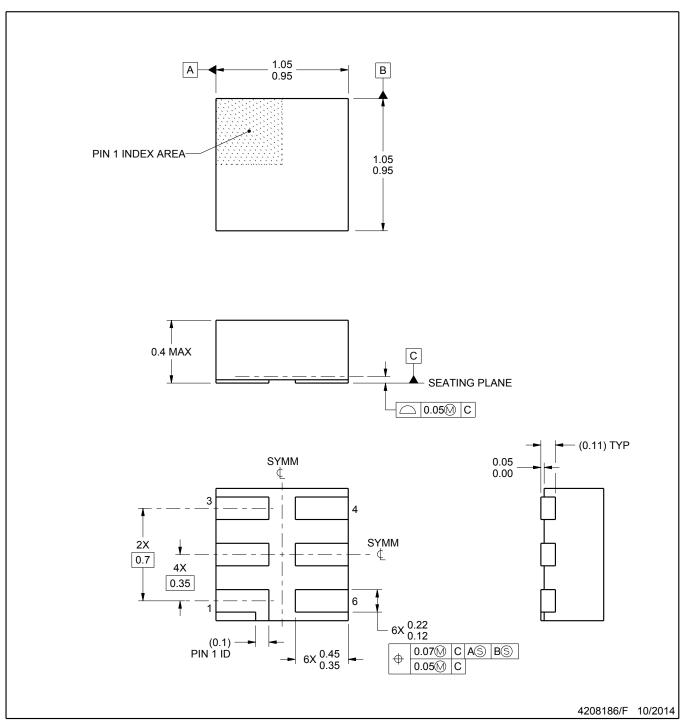
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DCK (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

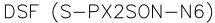

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AB.

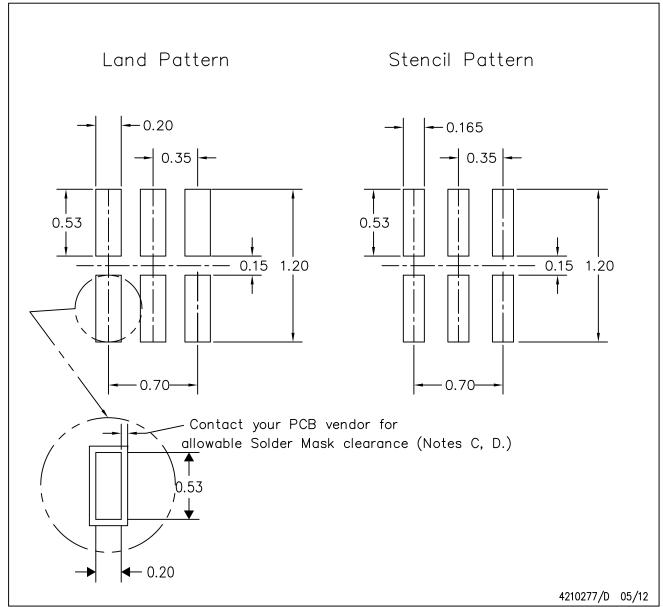

DCK (R-PDSO-G6)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

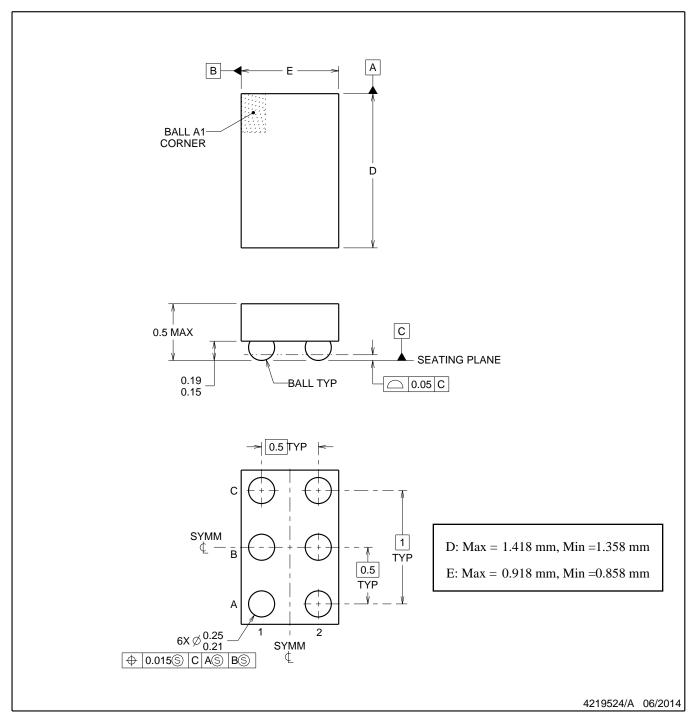


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


 2. This drawing is subject to change without notice.

 3. Reference JEDEC registration MO-287, variation X2AAF.

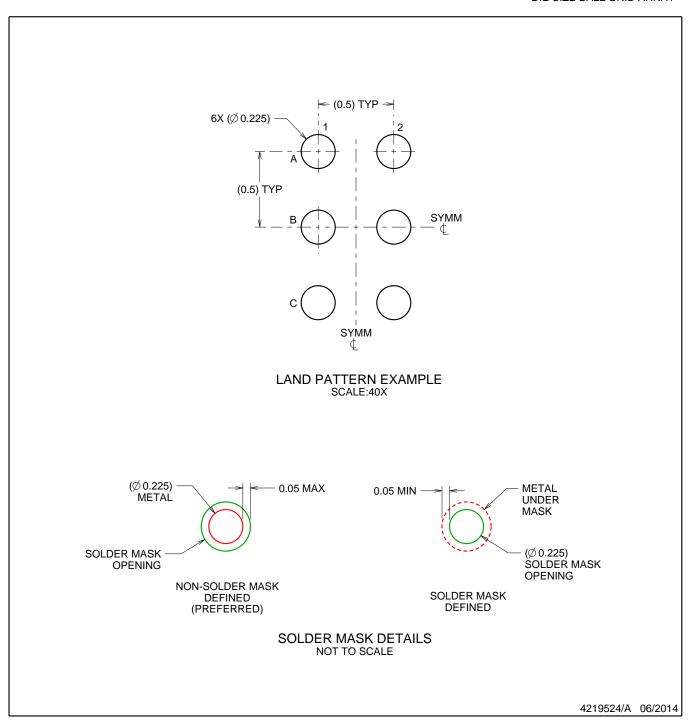
PLASTIC SMALL OUTLINE NO-LEAD



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask.
- E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy.
- H. Component placement force should be minimized to prevent excessive paste block deformation.

DIE SIZE BALL GRID ARRAY

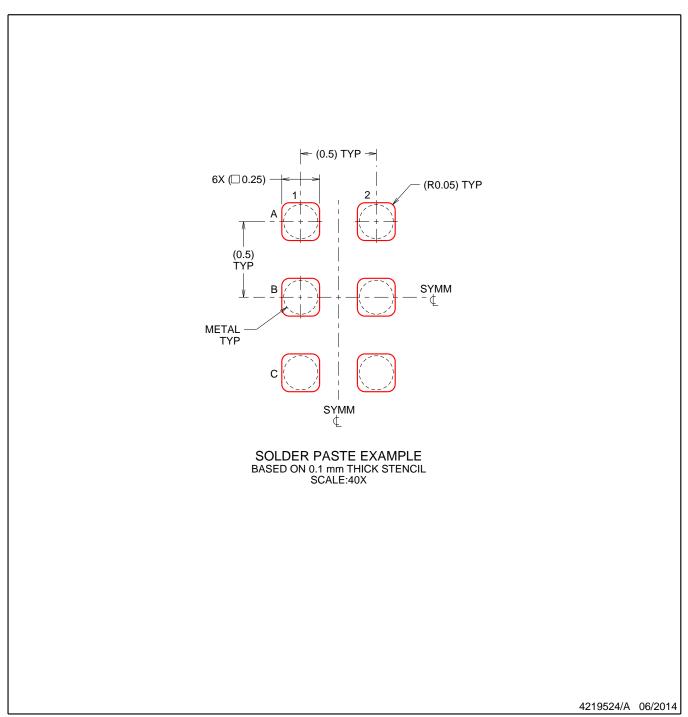
NOTES:


NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. NanoFree[™] package configuration.

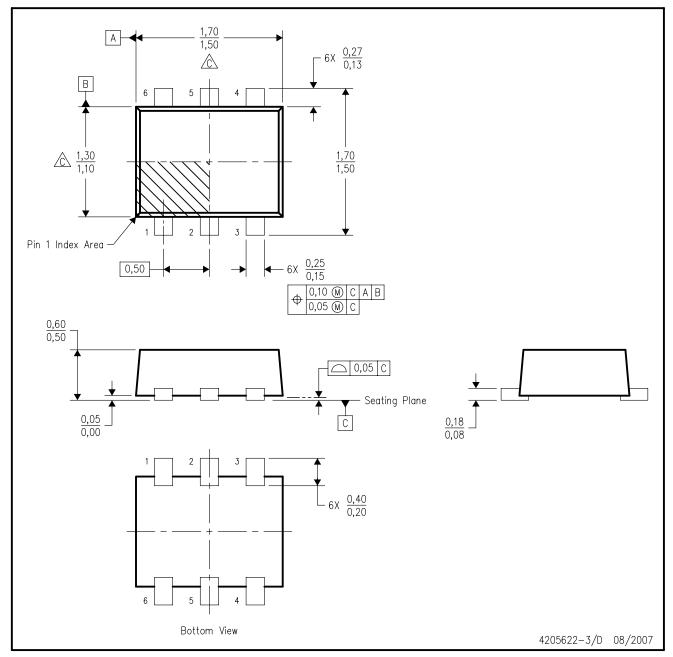
DIE SIZE BALL GRID ARRAY



NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).

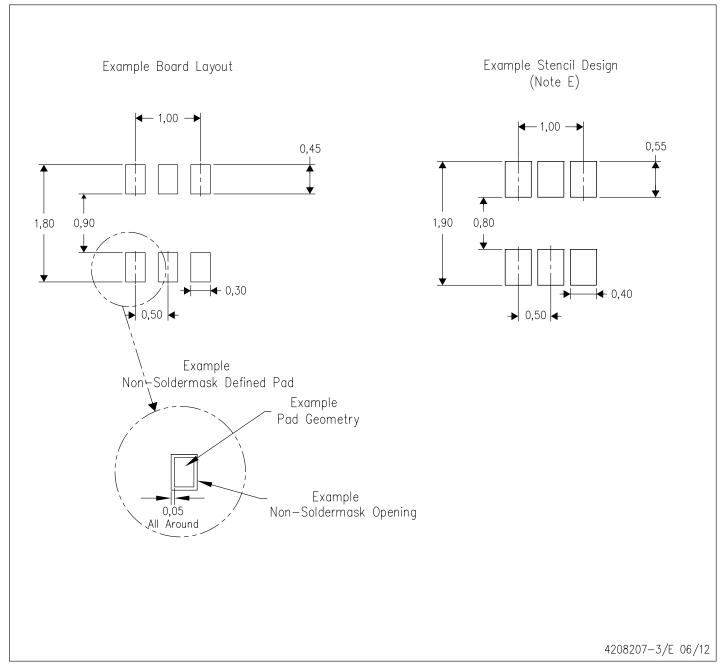
DIE SIZE BALL GRID ARRAY


NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

DRL (R-PDSO-N6)

PLASTIC SMALL OUTLINE


- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs.

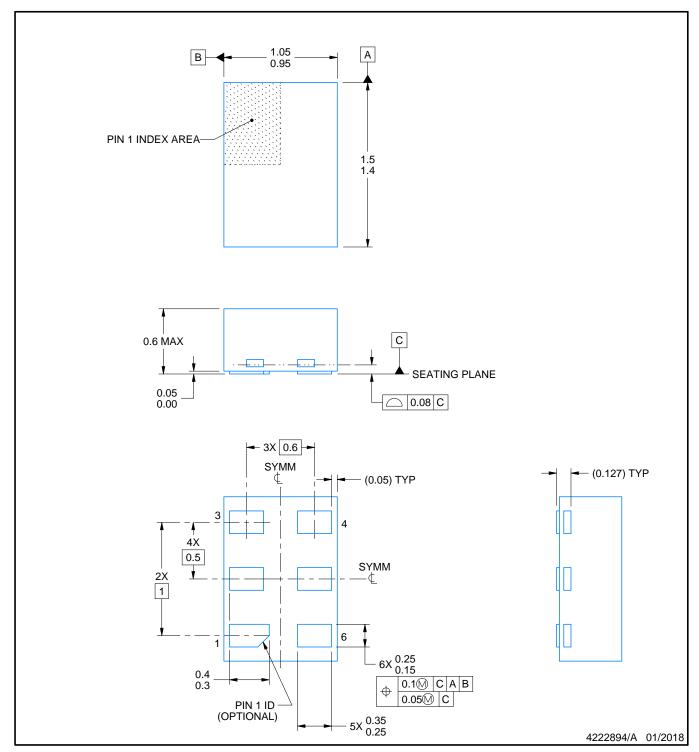
 Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side.
- D. JEDEC package registration is pending.

DRL (R-PDSO-N6)

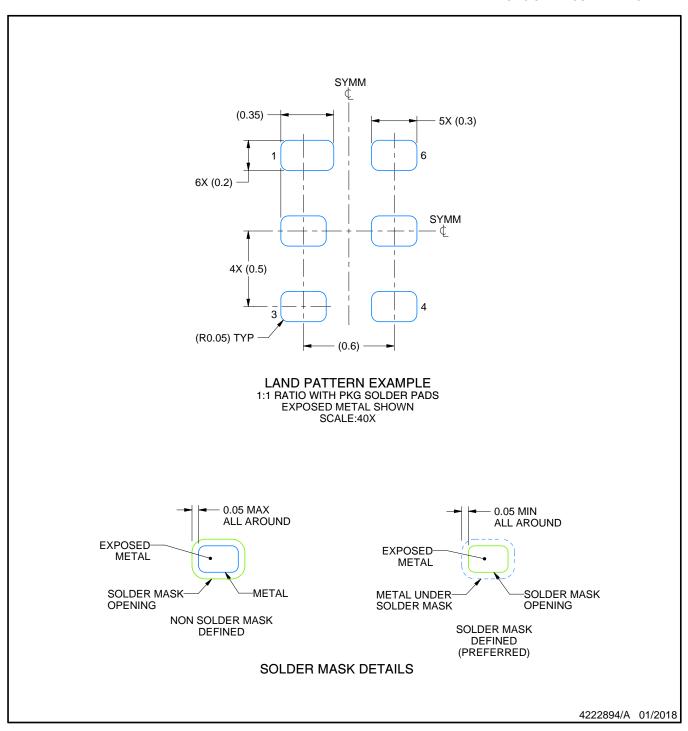
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

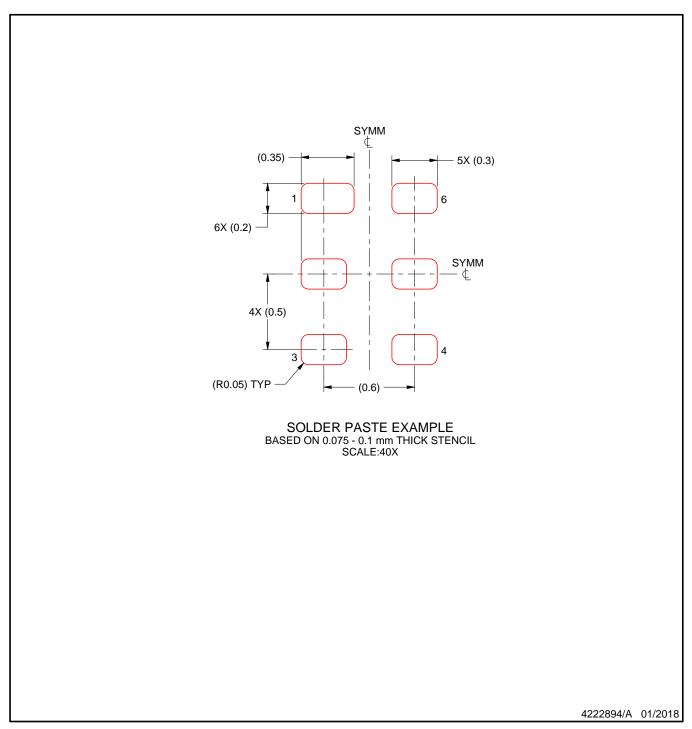
PLASTIC SMALL OUTLINE - NO LEAD



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.