1.1 Brief Description
The CMX469A is a single-chip CMOS LSI circuit which operates as a full-duplex 1200, 2400 or 4800 baud FFSK/MSK modem. The mark and space frequencies are 1200/1800, 1200/2400 and 2400/4800 Hz respectively. Tone frequencies are phase continuous; transitions occur at the zero crossing point. A common Xtal oscillator with a choice of two clock frequencies (1.008MHz or 4.032MHz) provides baud-rate, transmit frequencies, and Rx and Tx synchronization.

The transmitter and receiver operate entirely independently, including the individual section powersave functions. The CMX469A includes on-chip circuitry for Carrier Detect and Rx Clock recovery, both of which are made available as output pins. Rx, Tx and Carrier Detect paths contain bandpass filters to optimise signal conditions in each section of the modem. The CMX469A demonstrates good sensitivity and bit-error-rate under adverse signal conditions. The Carrier Detect time constant is set by an external capacitor, so that the product's performance can be optimised in high noise environments. This low-power device operates from a single supply between 2.7V and 5.5V, requires few external components and is available in a wide variety of plastic packages.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Features and Applications</td>
<td>2</td>
</tr>
<tr>
<td>1.1 Brief Description</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Block Diagram</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Signal List</td>
<td>5</td>
</tr>
<tr>
<td>1.4 External Components</td>
<td>7</td>
</tr>
<tr>
<td>1.5 General Description</td>
<td>8</td>
</tr>
<tr>
<td>1.6 Application Notes</td>
<td>9</td>
</tr>
<tr>
<td>1.7 Performance Specification</td>
<td>10</td>
</tr>
<tr>
<td>1.7.1 Electrical Performance</td>
<td>10</td>
</tr>
<tr>
<td>1.7.2 Packaging</td>
<td>16</td>
</tr>
</tbody>
</table>
1.2 Block Diagram

![Block Diagram Image]

Figure 1 Block Diagram
1.3 Signal List

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin No.</th>
<th>Pin No.</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>CLOCK/XTAL</td>
<td>I/P</td>
<td>The input to the on-chip inverter, for use with either a 1.008MHz or a 4.032MHz Xtal or an external clock. Clock frequency selection is by means of the CLOCK RATE pin. This affects the operational data rate of the device. Operation of any CML microcircuit without a Xtal or clock input may cause device damage.</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>XTALN</td>
<td>O/P</td>
<td>The output of the on-chip inverter.</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Tx SYNC O/P</td>
<td>O/P</td>
<td>A squarewave, produced on-chip, to synchronize the input of logic data and transmission of the FFSK/MSK signal.</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>Tx SIGNAL O/P</td>
<td>O/P</td>
<td>When the transmitter is enabled, this pin outputs the FFSK/MSK signal. With the transmitter disabled, this pin is set to a high-impedance state.</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>6</td>
<td>Tx DATA I/P</td>
<td>I/P</td>
<td>The serial logic data to be transmitted is input to this pin.</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>7</td>
<td>Tx ENABLEN</td>
<td>I/P</td>
<td>A logic ‘0’ will enable the transmitter. A logic ‘1’ at this input will put the transmitter into powersave whilst forcing Tx SYNC OUTPUT to a logic ‘1’ and Tx SIGNAL OUTPUT to a high-impedance state. This pin is internally pulled to V_{DD}.</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>8</td>
<td>BANDPASS O/P</td>
<td>O/P</td>
<td>The output of the Rx Bandpass Filter. This output impedance is typically 10k\Omega and may require buffering prior to use.</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>9</td>
<td>Rx ENABLE</td>
<td>I/P</td>
<td>The control of the Rx function</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>10</td>
<td>V_{BIAS}</td>
<td>BI</td>
<td>The output of the on-chip analogue bias circuitry. Held internally at V_{DD}/2, this pin should be decoupled to V_{SS} by a capacitor (C2). This bias voltage is maintained under all powersave conditions.</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>11</td>
<td>V_{SS}</td>
<td>PWR</td>
<td>Negative supply rail (GND).</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>12</td>
<td>UNCLOCKED DATA O/P</td>
<td>O/P</td>
<td>The recovered asynchronous serial data output from the receiver.</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>13</td>
<td>CLOCKED DATA O/P</td>
<td>O/P</td>
<td>The recovered synchronous serial data output from the receiver. Data is latched out by the recovered clock, available at the Rx SYNC O/P.</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Pin No.</td>
<td>Pin No.</td>
<td>Name</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>14</td>
<td>CARRIER DETECT O/P</td>
<td>O/P</td>
<td>When an FFSK/MSK signal is being received this output is a logic ‘1’.</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>15</td>
<td>Rx SIGNAL I/P</td>
<td>I/P</td>
<td>The FFSK/MSK signal input for the receiver. This input should be coupled via a capacitor, C3.</td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>17</td>
<td>Rx SYNC O/P</td>
<td>O/P</td>
<td>A flywheel squarewave output. This clock will synchronize to incoming Rx FFSK/MSK data.</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>16</td>
<td>1200/2400 BAUD SELECT</td>
<td>I/P</td>
<td>A logic ‘1’ on this pin selects the 1200 baud option. Tone frequencies are: one cycle of 1200Hz represents a logic ‘1,’ one-and-a-half cycles of 1800Hz represents a logic ‘0.’ A logic ‘0’ on this pin selects the 2400 baud option. Tone frequencies are: one-half cycle of 1200Hz represents a logic ‘1,’ one cycle of 2400Hz represents a logic ‘0.’ This function is also used, in part, to select the 4800 baud option. This pin has an internal 1MΩ pullup resistor.</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>18</td>
<td>4800 BAUD SELECT</td>
<td>I/P</td>
<td>A logic ‘1’ on this pin combined with a logic ‘0’ on the 1200/2400 BAUD SELECT pin will select the 4800 baud option (1MΩ pulldown resistor). Tone frequencies are: one-half cycle of 2400Hz represents a logic ‘1,’ one cycle of 4800Hz represents a logic ‘0.’ Operation at 4800 baud is only achieved by using a 4.032MHz Xtal or clock.</td>
</tr>
<tr>
<td>18</td>
<td>21</td>
<td>19</td>
<td>CLOCK RATE</td>
<td>I/P</td>
<td>A logic input to select and allow the use of either a 1.008MHz or 4.032MHz Xtal/clock. Logic ‘1’ = 4.032MHz, logic ‘0’ = 1.008MHz. This input has an internal pulldown resistor (1.008MHz).</td>
</tr>
<tr>
<td>19</td>
<td>22</td>
<td>20</td>
<td>CARRIER DETECT TIME CONSTANT</td>
<td>BI</td>
<td>Part of the carrier detect integration function. The value of C4 connected to this pin will affect the carrier detect response time and hence noise performance.</td>
</tr>
<tr>
<td>20</td>
<td>24</td>
<td>22</td>
<td>V_{DD}</td>
<td>PWR</td>
<td>Positive supply rail. A single 2.7 to 5.0 volt supply is required. This pin should be decoupled to V_{SS} by a capacitor (C5).</td>
</tr>
<tr>
<td>4, 6, 17, 23</td>
<td>4, 21</td>
<td></td>
<td></td>
<td></td>
<td>No internal connection, do not use.</td>
</tr>
</tbody>
</table>

Notes:

- I/P = Input
- O/P = Output
- BI = Bidirectional
- PWR = Power
1.4 External Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1.0MΩ</td>
</tr>
<tr>
<td>C1</td>
<td>33.0pF</td>
</tr>
<tr>
<td>C2</td>
<td>1.0µF</td>
</tr>
<tr>
<td>C3</td>
<td>0.1µF</td>
</tr>
<tr>
<td>C4</td>
<td>0.1µF</td>
</tr>
<tr>
<td>C5</td>
<td>1.0µF</td>
</tr>
<tr>
<td>C6</td>
<td>1.0µF</td>
</tr>
<tr>
<td>C7</td>
<td>33.0pF</td>
</tr>
<tr>
<td>X1</td>
<td>1.008MHz or 4.032MHz</td>
</tr>
</tbody>
</table>

Notes:

1. V_{BIAS} may be decoupled to V_{SS} and V_{DD} using C2 and C6 when input signals are referenced to the V_{BIAS} pin. For input signals referenced to V_{SS}, decouple V_{BIAS} to V_{SS} using C2 only.

2. The performance of the Carrier Detect function will be affected by the nature of the noise spectrum in the received channel. The value of C4 determines the Carrier Detect Time Constant. A long time constant results in improved noise immunity but increased response time. C4 may be varied to trade-off response time for noise immunity.

3. A 4.032MHz Xtal/clock is required for 4800 Baud operation.

Figure 2 Recommended External Components
1.5 General Description

The CMX469A has two sections, apart from the Xtal oscillator circuit and clock dividers. These sections may be independently powersaved.

Transmitter
The transmitter is enabled by taking Tx EnableN low. Serial data applied to Tx Data Input is sampled internally and an FFSK/MSK sequence is generated. After filtering, this is output at Tx Signal O/P and the transmit clock derived from this signal is output at Tx Sync O/P.

Receiver
The receiver is enabled by taking Rx Enable high. The signal applied to Rx Signal I/P is filtered and recovered as serial data from the Unclocked Data O/P. A flywheel synchroniser is used to extract a clock from the recovered serial data stream. The clock is available at Rx Sync O/P and the retimed serial data is available at Clocked Data O/P.

The integrated peak values of the Rx amplitude are compared with out-of-band noise levels and used to make a signal-to-noise assessment, which is available at Carrier Detect O/P.

A Bandpass O/P is also available from the output of the first Rx filter stage, but will require buffering before use.
1.6 Application Notes

Rx Enable

The control of the relevant outputs with reference to the Rx Enable input is described below:

<table>
<thead>
<tr>
<th>Rx Enable</th>
<th>Rx Function</th>
<th>Clock Data O/P</th>
<th>Carrier Detect O/P</th>
<th>Rx Sync Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘1’</td>
<td>Enabled</td>
<td>Enabled</td>
<td>‘1’ or ‘0’</td>
<td>‘1’ or ‘0’</td>
</tr>
<tr>
<td>‘0’</td>
<td>Powersave</td>
<td>‘0’</td>
<td>‘1’ or ‘0’</td>
<td>‘1’ or ‘0’</td>
</tr>
</tbody>
</table>

After enabling the Receiver, a time of at least 8 bit periods plus 2ms should be allowed for the Carrier Detect circuit to stabilise and give a valid output.

Operational Data Rate Configurations

Operational Data Rate Configurations are as described below:

<table>
<thead>
<tr>
<th>Xtal/Clock Frequency</th>
<th>1.008MHz</th>
<th>4.032MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Rate</td>
<td>‘0’</td>
<td>‘0’</td>
</tr>
<tr>
<td>1200/2400 Select</td>
<td>‘1’</td>
<td>‘1’</td>
</tr>
<tr>
<td>4800 Select</td>
<td>‘0’</td>
<td>‘0’</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>1200</td>
<td>2400</td>
</tr>
</tbody>
</table>

Test Set Up

![Figure 3 Suggested CMX469A Test Set-Up](image-url)
1.7 Performance Specification

1.7.1 Electrical Performance

Absolute Maximum Ratings
Exceeding these maximum ratings can result in damage to the device.

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply ((V_{DD} - V_{SS}))</td>
<td>-0.3</td>
<td>7.0</td>
<td>V</td>
</tr>
<tr>
<td>Voltage on any pin to (V_{SS})</td>
<td>-0.3</td>
<td>(V_{DD} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>Current into or out of (V_{DD}) and (V_{SS}) pins</td>
<td>-30</td>
<td>+30</td>
<td>mA</td>
</tr>
<tr>
<td>Current into or out of any other pin</td>
<td>-20</td>
<td>+20</td>
<td>mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Allowable Power Dissipation at (T_{amb} = 25^\circ C)</td>
<td>800</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>... Derating</td>
<td>13</td>
<td></td>
<td>mW/°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Allowable Power Dissipation at (T_{amb} = 25^\circ C)</td>
<td>320</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>... Derating</td>
<td>5.3</td>
<td></td>
<td>mW/°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Allowable Power Dissipation at (T_{amb} = 25^\circ C)</td>
<td>800</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>... Derating</td>
<td>13</td>
<td></td>
<td>mW/°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
</tbody>
</table>
Operating Limits
Correct operation of the device outside these limits is not implied.

<table>
<thead>
<tr>
<th>Notes</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply (VDD - VSS)</td>
<td>2.7</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>Xtal Frequency</td>
<td>1</td>
<td>4.028</td>
<td>4.036</td>
</tr>
</tbody>
</table>

Note 1: A Xtal frequency of 1.008MHz (1200/2400 baud only) or 4.032MHz is required for correct operation. A frequency tolerance of ±0.1% is recommended, but ultimately the tolerance selected will depend upon system requirements.

Operating Characteristics
For the following conditions unless otherwise specified:

\[V_{DD} = 2.7V \text{ at } T_{amb} = 25°C \text{ and } V_{DD} = 3.0V \text{ to } 5.5V \text{ at } T_{amb} = -40°C \text{ to } +85°C, \]

Xtal/Clock Frequency = 4.032MHz, Bit Rate = 1200 baud, Rx Input Level = 300mVrms.

<table>
<thead>
<tr>
<th>Notes</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\textsubscript{DD} Rx Enabled, Tx Disabled \ (V\textsubscript{DD} = 5.0V)</td>
<td>2</td>
<td>-</td>
<td>3.6</td>
<td>-</td>
</tr>
<tr>
<td>I\textsubscript{DD} Rx and Tx Enabled \ (V\textsubscript{DD} = 5.0V)</td>
<td>2</td>
<td>-</td>
<td>4.5</td>
<td>-</td>
</tr>
<tr>
<td>I\textsubscript{DD} Rx and Tx Disabled \ (V\textsubscript{DD} = 5.0V)</td>
<td>2</td>
<td>-</td>
<td>650</td>
<td>-</td>
</tr>
<tr>
<td>I\textsubscript{DD} Rx Enabled, Tx Disabled \ (V\textsubscript{DD} = 3.0V)</td>
<td>2</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>I\textsubscript{DD} Rx and Tx Enabled \ (V\textsubscript{DD} = 3.0V)</td>
<td>2</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>I\textsubscript{DD} Rx and Tx Disabled \ (V\textsubscript{DD} = 3.0V)</td>
<td>2</td>
<td>-</td>
<td>300</td>
<td>-</td>
</tr>
<tr>
<td>Logic ‘1’ Level</td>
<td>1</td>
<td>70%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Logic ‘0’ Level</td>
<td>1</td>
<td>-</td>
<td>30%</td>
<td>V\textsubscript{DD}</td>
</tr>
<tr>
<td>Digital Output Impedance</td>
<td>-</td>
<td>4.0</td>
<td>-</td>
<td>kΩ</td>
</tr>
<tr>
<td>Analogue and Digital Input Impedance</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>kΩ</td>
</tr>
<tr>
<td>Tx Output Impedance \ (V\textsubscript{DD} = 5.0V)</td>
<td>-</td>
<td>0.6</td>
<td>1.0</td>
<td>kΩ</td>
</tr>
<tr>
<td>Dynamic Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Input Dynamic Range SNR = 50dB</td>
<td>3, 4</td>
<td>100</td>
<td>230</td>
<td>1000</td>
</tr>
<tr>
<td>Bit Error Rate at SNR = 12dB</td>
<td>4, 5</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>1200 Baud</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>(10^{-3})</td>
</tr>
<tr>
<td>2400 Baud</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>(10^{-3})</td>
</tr>
<tr>
<td>4800 Baud</td>
<td>-</td>
<td><1.0</td>
<td>-</td>
<td>(10^{-4})</td>
</tr>
<tr>
<td>Bit Error Rate at SNR = 20dB</td>
<td>4, 5</td>
<td>-</td>
<td><1.0</td>
<td>-</td>
</tr>
<tr>
<td>1200/2400/4800 Baud</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Receiver Synchronization at SNR = 12dB probability of bit 16 being correct</td>
<td>7</td>
<td>-</td>
<td>0.995</td>
<td>-</td>
</tr>
</tbody>
</table>
Notes

<table>
<thead>
<tr>
<th>Notes</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Detect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability of CD being High after bit 16:</td>
<td></td>
<td></td>
<td></td>
<td>mVrms</td>
</tr>
<tr>
<td>with SNR = 12dB</td>
<td>9</td>
<td>0.995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with 230mVrms Noise and No Signal</td>
<td>9</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmitter Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tx Output Level</td>
<td>1</td>
<td>-</td>
<td>775</td>
<td>-</td>
</tr>
<tr>
<td>Output Level Variation for 1200/1800Hz or 1200/2400Hz or 2400/4800Hz</td>
<td>0</td>
<td>-</td>
<td>+/-1.0</td>
<td>dB</td>
</tr>
<tr>
<td>Output Level Variation</td>
<td>10</td>
<td>-</td>
<td>3.0</td>
<td>5.0</td>
</tr>
<tr>
<td>3rd Harmonic Distortion</td>
<td>10</td>
<td>-</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Isochronous Distortion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200Hz - 1800Hz/1800Hz - 1200Hz</td>
<td>-</td>
<td>25.0</td>
<td>40.0</td>
<td>μs</td>
</tr>
<tr>
<td>1200Hz - 2400Hz/2400Hz - 1200Hz</td>
<td>-</td>
<td>20.0</td>
<td>30.0</td>
<td>μs</td>
</tr>
<tr>
<td>2400Hz - 4800Hz/4800Hz - 2400Hz</td>
<td>-</td>
<td>10.0</td>
<td>20.0</td>
<td>μs</td>
</tr>
<tr>
<td>Logic ‘1’ Carrier Frequency 1200 Baud</td>
<td>6</td>
<td>-</td>
<td>1200</td>
<td>-</td>
</tr>
<tr>
<td>2400 Baud</td>
<td>6</td>
<td>-</td>
<td>1200</td>
<td>-</td>
</tr>
<tr>
<td>4800 Baud</td>
<td>6</td>
<td>-</td>
<td>2400</td>
<td>-</td>
</tr>
<tr>
<td>Logic ‘0’ Carrier Frequency 1200 Baud</td>
<td>6</td>
<td>-</td>
<td>1800</td>
<td>-</td>
</tr>
<tr>
<td>2400 Baud</td>
<td>6</td>
<td>-</td>
<td>2400</td>
<td>-</td>
</tr>
<tr>
<td>4800 Baud</td>
<td>6</td>
<td>-</td>
<td>4800</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:

1. Measured at $V_{DD} = 5.0$ volts. Signal levels and thresholds are proportional to V_{DD}.
2. Excludes any current drawn by external components, but includes current drawn by the crystal components.
3. See Figure 6 (Typical Variation of BER with Input Signal Level).
4. SNR = Signal-to-Noise Ratio in the Bit-Rate Bandwidth.
5. See Figure 7 (Typical Rx BER vs Signal-to-Noise Ratio).
6. Dependent upon Xtal tolerance.
7. With an alternating (1010...) pattern.
8. Measured with a 150mVrms input signal (no noise).
9. A signal level of 230mVrms is used in C.D. probability measurements. Noise bandwidth is 5kHz (1200/2400 baud operation) or 8kHz (4800 baud operation). See Section 1.4, Note 2 for details on optimising noise immunity.
10. For an unmodulated carrier.
Interface Timing Diagrams

TX DATA must be valid at the time of the rising edge of TX SYNC. Therefore the optimum time to change TX DATA is on the falling edge of TX SYNC.

Figure 4 Transmitter Timing

The optimum time to sample the CLOCKED DATA O/P is on the falling edge of RX SYNC O/P.

Figure 5 Receiver Timing
1.7.1 Electrical Performance (continued)

<table>
<thead>
<tr>
<th>Interface Timings</th>
<th>Notes</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t<sub>ESET</sub></td>
<td>Tx Delay, Signal to Disable Time</td>
<td>2</td>
<td>2.0</td>
<td>-</td>
<td>800 µs</td>
</tr>
<tr>
<td>t<sub>DSET</sub></td>
<td>Data Set-Up Time</td>
<td>1</td>
<td>2.0</td>
<td>-</td>
<td>µs</td>
</tr>
<tr>
<td>t<sub>DH</sub></td>
<td>Data Hold Time</td>
<td></td>
<td>2.0</td>
<td>-</td>
<td>µs</td>
</tr>
<tr>
<td>t<sub>TXD</sub></td>
<td>Tx Delay to O/P Time</td>
<td>-</td>
<td></td>
<td>1.2</td>
<td>µs</td>
</tr>
<tr>
<td>t<sub>TDR</sub></td>
<td>Tx Data Rate Period</td>
<td>2</td>
<td></td>
<td>833</td>
<td>µs</td>
</tr>
<tr>
<td>t<sub>RDR</sub></td>
<td>Rx Data Rate Period</td>
<td>2</td>
<td>800</td>
<td>-</td>
<td>865 µs</td>
</tr>
<tr>
<td>Undetermined State (see Figure 5)</td>
<td>-</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
<td>µs</td>
</tr>
<tr>
<td>t<sub>ID</sub></td>
<td>Internal Rx Delay</td>
<td>-</td>
<td></td>
<td>1.5</td>
<td>ms</td>
</tr>
</tbody>
</table>

Notes:
1. Consider the Xtal/Clock tolerance.
2. 1200 Baud example.

Figure 6 Typical Variation of Bit Error Rate with Input Level
Figure 7 Typical Rx Bit Error Rate vs Signal-to-Noise Ratio
1.7.2 Packaging

<table>
<thead>
<tr>
<th>PIN 1</th>
<th>D3 Mechanical Outline: Order as part no. CMX469AD3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Figure 8 D3 Mechanical Outline: Order as part no. CMX469AD3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIM.</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.496 (12.57)</td>
<td>0.510 (12.95)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.286 (7.25)</td>
<td>0.299 (7.65)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.033 (2.36)</td>
<td>0.035 (2.67)</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.390 (9.90)</td>
<td>0.419 (10.64)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.46 (11.43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.000 (0.00)</td>
<td>0.020 (0.51)</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>0.013 (0.33)</td>
<td>0.020 (0.51)</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.041 (1.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>0.041 (1.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.06 (1.6)</td>
<td>0.060 (1.27)</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.050 (1.27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>46°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>0°</td>
<td>10°</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>7°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:

* A & B are reference datum and do not include mold flash or protrusions.

All dimensions in inches (mm.)

Angles are in degrees

<table>
<thead>
<tr>
<th>PIN 1</th>
<th>E2 Mechanical Outline: Order as part no. CMX469AE2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Figure 9 E2 Mechanical Outline: Order as part no. CMX469AE2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIM.</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.30 (7.62)</td>
<td>0.311 (7.90)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.168 (4.26)</td>
<td>0.177 (4.50)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.004 (0.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.246 (6.25)</td>
<td>0.256 (6.50)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.286 (7.25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.002 (0.05)</td>
<td>0.006 (0.15)</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>0.007 (0.17)</td>
<td>0.010 (0.25)</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.020 (0.50)</td>
<td>0.020 (0.50)</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.026 (0.65)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0.003 (0.08)</td>
<td>0.008 (0.20)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>0°</td>
<td>12°</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>7°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:

* A & B are reference datum and do not include mold flash or protrusions.

All dimensions in inches (mm.)

Angles are in degrees

© 2001 Consumer Microcircuits Limited
Handling precautions: This product includes input protection, however, precautions should be taken to prevent device damage from electro-static discharge. CML does not assume any responsibility for the use of any circuitry described. No IPR or circuit patent licences are implied. CML reserves the right at any time without notice to change the said circuitry and this product specification. CML has a policy of testing every product shipped using calibrated test equipment to ensure compliance with this product specification. Specific testing of all circuit parameters is not necessarily performed.

Figure 12 P6 Mechanical Outline: Order as part no. CMX469AP6

<table>
<thead>
<tr>
<th>DIM.</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.090 (27.63)</td>
<td>1.19 (27.69)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.310 (7.87)</td>
<td>0.360 (9.14)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.170 (4.32)</td>
<td>0.196 (4.98)</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.420 (10.67)</td>
<td>0.480 (12.19)</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>0.390 (9.90)</td>
<td>0.420 (10.67)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1.0 (25.40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.020 (0.51)</td>
<td>0.045 (1.14)</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>0.015 (0.38)</td>
<td>0.020 (0.51)</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.036 (0.88)</td>
<td>0.074 (1.88)</td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>0.000 (0.00)</td>
<td>0.074 (1.88)</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.121 (3.07)</td>
<td>0.180 (4.57)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>0.046 (1.14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.100 (2.54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0.038 (0.97)</td>
<td>0.015 (0.38)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>7°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>4°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
* A & B are reference datum's and do not include underfill or protrusions.
All dimensions in Inches (mm.)
Angles are in degrees
CML Product Data

In the process of creating a more global image, the three standard product semiconductor companies of CML Microsystems Plc (Consumer Microcircuits Limited (UK), MX-COM, Inc (USA) and CML Microcircuits (Singapore) Pte Ltd) have undergone name changes and, whilst maintaining their separate new names (CML Microcircuits (UK) Ltd, CML Microcircuits (USA) Inc and CML Microcircuits (Singapore) Pte Ltd), now operate under the single title CML Microcircuits.

These companies are all 100% owned operating companies of the CML Microsystems Plc Group and these changes are purely changes of name and do not change any underlying legal entities and hence will have no effect on any agreements or contacts currently in force.

CML Microcircuits Product Prefix Codes

Until the latter part of 1996, the differentiator between products manufactured and sold from MXCOM, Inc. and Consumer Microcircuits Limited were denoted by the prefixes MX and FX respectively. These products use the same silicon etc. and today still carry the same prefixes. In the latter part of 1996, both companies adopted the common prefix: CMX.

This notification is relevant product information to which it is attached.

Company contact information is as below: