RJP30H1DPD
Silicon N Channel IGBT
High speed power switching

Features
- Trench gate and thin wafer technology (G6H-II series)
- High speed switching: $t_i = 80 \text{ ns typ.}$, $t_f = 150 \text{ ns typ.}$
- Low collector to emitter saturation voltage: $V_{\text{CE(sat)}} = 1.5 \text{ V typ.}$
- Low leak current: $I_{\text{CES}} = 1 \mu\text{A max.}$

Outline

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector to emitter voltage</td>
<td>V_{CES}</td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Gate to emitter voltage</td>
<td>V_{GES}</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_C</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Collector peak current</td>
<td>$i_C(\text{peak})$</td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Collector dissipation</td>
<td>P_C</td>
<td>40</td>
<td>W</td>
</tr>
<tr>
<td>Junction to case thermal impedance</td>
<td>θ_j-c</td>
<td>3.13</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_j</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>–55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1. $PW \leq 10 \mu\text{s}$, duty cycle $\leq 1\%$
2. $T_c = 25\degree\text{C}$
Electrical Characteristics

\((T_j = 25^\circ C)\)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero gate voltage collector current</td>
<td>(I_{CES})</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>(\mu A)</td>
<td>(V_{CE} = 360, V, V_{GE} = 0)</td>
</tr>
<tr>
<td>Gate to emitter leak current</td>
<td>(I_{GES})</td>
<td>—</td>
<td>—</td>
<td>(\pm 100)</td>
<td>nA</td>
<td>(V_{GE} = \pm 30, V, V_{CE} = 0)</td>
</tr>
<tr>
<td>Gate to emitter cutoff voltage</td>
<td>(V_{GE(off)})</td>
<td>2.5</td>
<td>—</td>
<td>5</td>
<td>V</td>
<td>(V_{CE} = 10, V, I_C = 1, mA)</td>
</tr>
<tr>
<td>Collector to emitter saturation voltage</td>
<td>(V_{GE(sat)})</td>
<td>—</td>
<td>1.5</td>
<td>2</td>
<td>V</td>
<td>(I_C = 30, A, V_{GE} = 15, V^{Note3})</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{ies})</td>
<td>—</td>
<td>740</td>
<td>—</td>
<td>pF</td>
<td>(V_{CE} = 25, V)</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{oes})</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>pF</td>
<td>(V_{GE} = 0)</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{res})</td>
<td>—</td>
<td>17</td>
<td>—</td>
<td>pF</td>
<td>(f = 1, MHz)</td>
</tr>
<tr>
<td>Total gate charge</td>
<td>(Q_g)</td>
<td>—</td>
<td>23</td>
<td>—</td>
<td>nC</td>
<td>(V_{GE} = 15, V)</td>
</tr>
<tr>
<td>Gate to emitter charge</td>
<td>(Q_{ge})</td>
<td>—</td>
<td>4</td>
<td>—</td>
<td>nC</td>
<td>(V_{CE} = 150, V)</td>
</tr>
<tr>
<td>Gate to collector charge</td>
<td>(Q_{gc})</td>
<td>—</td>
<td>8</td>
<td>—</td>
<td>nC</td>
<td>(I_C = 30, A)</td>
</tr>
<tr>
<td>Switching time</td>
<td>(t_{d(on)})</td>
<td>—</td>
<td>0.02</td>
<td>—</td>
<td>(\mu s)</td>
<td>(I_C = 30, A)</td>
</tr>
<tr>
<td></td>
<td>(t_r)</td>
<td>—</td>
<td>0.08</td>
<td>—</td>
<td>(\mu s)</td>
<td>(R_L = 5, \Omega)</td>
</tr>
<tr>
<td></td>
<td>(t_{d(off)})</td>
<td>—</td>
<td>0.04</td>
<td>—</td>
<td>(\mu s)</td>
<td>(V_{GE} = 15, V)</td>
</tr>
<tr>
<td></td>
<td>(t_i)</td>
<td>—</td>
<td>0.15</td>
<td>—</td>
<td>(\mu s)</td>
<td>(R_G = 5, \Omega)</td>
</tr>
</tbody>
</table>

Notes: 3. Pulse test
Main Characteristics

Maximum Safe Operation Area

![Maximum Safe Operation Area Graph](image)

- Collector Current \(I_C \) (A) vs. Collector to Emitter Voltage \(V_{CE} \) (V)
- Ta = 25°C
- 1 shot pulse

Typical Output Characteristics (1)

![Typical Output Characteristics (1) Graph](image)

- Collector Current \(I_C \) (A) vs. Collector to Emitter Voltage \(V_{CE} \) (V)
- Ta = 25°C
- Pulse Test

Typical Output Characteristics (2)

![Typical Output Characteristics (2) Graph](image)

- Collector Current \(I_C \) (A) vs. Collector to Emitter Voltage \(V_{CE} \) (V)
- Ta = 25°C
- Pulse Test

Typical Transfer Characteristics

![Typical Transfer Characteristics Graph](image)

- Collector Current \(I_C \) (A) vs. Gate to Emitter Voltage \(V_{GE} \) (V)
- Ta = 25°C
- Pulse Test

Collector to Emitter Saturation Voltage vs. Gate to Emitter Voltage (Typical)

![Collector to Emitter Saturation Voltage Graph](image)

- Collector to Emitter Voltage \(V_{CE(sat)} \) (V) vs. Gate to Emitter Voltage \(V_{GE} \) (V)
- Ta = 25°C
- 1 shot pulse

Collector to Emitter Saturation Voltage vs. Collector Current (Typical)

![Collector to Emitter Saturation Voltage Graph](image)

- Collector to Emitter Voltage \(V_{CE(sat)} \) (V) vs. Collector Current \(I_C \) (A)
- VGE = 15 V
- Ta = 25°C
- Pulse Test

Collector to Emitter Voltage \(V_{CE} \) (V) vs. Gate to Emitter Voltage \(V_{GE} \) (V)

- Collector to Emitter Voltage \(V_{CE} \) (V) vs. Gate to Emitter Voltage \(V_{GE} \) (V)
- Ta = 25°C
- 1 shot pulse
Normalized Transient Thermal Impedance vs. Pulse Width

Switching Time Test Circuit

Waveform
Package Dimensions

<table>
<thead>
<tr>
<th>Package Name</th>
<th>JEITA Package Code</th>
<th>RENESAS Code</th>
<th>Previous Code</th>
<th>MASS [Typ.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-251</td>
<td>—</td>
<td>PRSS0004ZJA</td>
<td>—</td>
<td>0.319g</td>
</tr>
</tbody>
</table>

Unit: mm

Ordering Information

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Quantity</th>
<th>Shipping Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJP30H1DPD-00-J2</td>
<td>3000 pcs</td>
<td>Taping</td>
</tr>
</tbody>
</table>

EOL announced Product
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use any Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacturer, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics assumes no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design, and it is your responsibility to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product. Descriptions of design for hardware and software including but not limited to redundancy, the control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of computer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please consult a Renesas Electronics sales office for details as to environmental matters such as the environmental recyclability of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please consult a Renesas Electronics sales office if you have any questions regarding the information described in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority owned subsidiaries.

(Note 2) “Renesas Electronics products” means any product developed or manufactured by each Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation
http://www.renesas.com

Refer to “http://www.renesas.com” for the latest and detailed information.