8 800 1000 321 - контакт центр

Синфазные дроссели TDK-EPCOS - Лента новостей


Синфазные дроссели TDK-EPCOS

30.10.2019

Синфазные дроссели — универсальное классическое средство, позволяющее решить задачи подавления электромагнитных помех (ЭМП) и, соответственно, выполнить требования по электромагнитной совместимости (ЭМС). Эти устройства настолько привычны, что воспринимаются как нечто, не создающее проблем. Но всегда ли синфазный дроссель синфазный? Вот в чем вопрос, но на него есть ответ. И дело здесь в правильном выборе не только дросселя, но и его изготовителя и поставщика.

Когда разработчику радиоэлектронной аппаратуры (РЭА) срочно приходится решать проблемы электромагнитной совместимости и подавления синфазных, а попутно и дифференциальных помех, он буквально хватается за синфазный дроссель. И это правильно. Казалось бы, тут все просто и понятно, про синфазные дроссели и их применение написано много, да и выбор их богатый, в конце концов, можно и самому сделать прибор, намотав, например, на ферритовое кольцо две проволочки. Однако проблемы, как и дьявол, всегда кроются в деталях. Вот на них-то мы и посмотрим.

В общем представлении синфазный дроссель — это связанная индуктивность, в нем на одном сердечнике намотаны как минимум две катушки (бывает, и три, и четыре). Кстати, для получения синфазного дросселя очень важна стратегия намотки (рис. 1), и это разработчикам РЭА хорошо известно. Для ясности и простоты остановимся на дросселе с двумя обмотками.

Рис. 1. Идеальный синфазный дроссель для дифференциальных токов (слева), синфазных токов (в середине) и его условное обозначение в схемах

Компактное электрическое и электронное оборудование в основном генерирует синфазные помехи. Для того чтобы оно соответствовало требованиям безопасности (не выходя за пределы тока утечки), необходимо использовать дроссели с высоким значением асимметричной эффективной индуктивности. Для этой цели оптимальны дроссели с компенсацией тока с топологией с закрытым сердечником. Проблема насыщения сердечника за счет полезного тока в этих конструкциях решается выбором материала сердечника, но самое главное — намоткой двух катушек с равным числом витков на сердечнике. Катушки связаны таким образом, что магнитный поток, индуцированный верхней катушкой, компенсируется нижней катушкой.

Для подобного идеального дросселя магнитный поток в сердечнике обусловлен тем, что токи дифференциального режима iDM (рис. 1, слева) компенсируют друг друга, что приводит к нулевому сопротивлению (точнее, импедансу) дросселя. Но магнитные потоки Φ1 и Φ2, вызванные синфазными токами iCM (рис. 1, в середине), суммируются, что значительно увеличивает полное сопротивление (импеданс). Для получения такого прекрасного со всех точек зрения эффекта важно правильно выполнить обмотки, поэтому в условном обозначении дросселя данного типа (рис. 1, справа) используется две точки, чтобы указать, как должны быть выполнены обмотки.

Подводя итог, отметим, что синфазный дроссель выглядит как простой проводник для дифференциальных сигналов и как индуктивность для синфазных сигналов. Одно из преимуществ этих видов дросселей заключается в том, что они не будут насыщаться токами дифференциального режима. Для этих связанных индуктивностей коэффициент связи k может быть рассчитан по формуле:

k = M/√(L1×L2), (1)

здесь M — коэффициент взаимной индуктивности, а L1, L2 — индуктивности для обеих обмоток.

Значения индуктивностей для синфазного и дифференциального режима могут быть получены по формулам:

LDM = 2×(L-M) и LCM = (L+M)/2 (2)

Учитывая, что индуктивности L1 и L2 равны L и для 100%-ной идеальной связи k = 1, взаимная индуктивность M из формулы (1) получается равной индуктивности L (M = L), а индуктивности дросселя для синфазного и дифференциального режимов, как следует из формул (2), соответственно равны LDM = 0 и LCM = L.

Таким образом, подтверждается, что мы не обнаружим наличие импеданса для сигналов дифференциального режима, но будем иметь некоторое, определяемое индуктивность LCM значение импеданса для сигналов синфазного режима.

На практике взаимная компенсация магнитного потока в дифференциальном режиме не идеальна, этот факт разработчикам РЭА хорошо известен и широко используется. В дифференциальном режиме импеданс не равен нулю, он определяется такой характеристикой, как индуктивность рассеяния, и полезен для фильтрации сигналов дифференциального режима. Однако нельзя забывать и том, что в приложениях с высоким током необходимо убедиться в отсутствии эффекта насыщения сердечника дросселя.

Обратимся к наглядному и поучительному примеру. Столкнулись с крайне неприятной ситуацией, когда устройство, проверенное им на прототипе в лаборатории, провалилось на сертификационных испытаниях. Причем все элементы и компоновка были те же, что и в прототипе. Чтобы проанализировать и понять ситуацию, измерили реакцию синфазных дросселей прототипа (условно названного CHKA) и заявленного на сертификацию изделия (условно названного CHKB) с помощью векторного анализатора цепей Bode 100. Упрощенное измерение синфазного дросселя было выполнено, как показано на рис. 2.

Рис. 2. Упрощенное измерение импедансов для синфазного дросселя

Результаты измерения дросселя, который удовлетворительно работал в приложении (CHKA), представлены на рис. 3.

Рис. 3. Характеристики дросселя CHKA

На рис. 3 можно увидеть, насколько велико различие импедансов синфазного режима по сравнению с дифференциальным. На втором дросселе (CHKB), снятом с изделия, на котором провалились испытания в сертификационной лаборатории, смог заметить очень тонкое отличие — на одной из катушек дросселя отсутствовал один виток (рис. 4).

Рис. 4. Дроссели, используемые в качестве примера 


У дросселя CHKA было 14 витков для L1 и L2, а у дросселя CHKB — 14 витков для L1 и 13 витков для L2. Это оказалось весьма существенной разницей. Если одна из катушек отличается от другой, то индуктивность для синфазного сигнала будет уменьшена (соответственно, плохая фильтрация синфазной ЭМП), а дифференциальная индуктивность увеличена. Когда речь идет о линиях передачи, это может привести к проблемам с целостностью сигналов (англ. Signal Integrity — наличие достаточных для безошибочной передачи качественных характеристик электрического сигнала), или если речь идет о цепях питания, то в приложениях с большим током сердечник, вероятно, может быть насыщен даже номинальным рабочим током.


Данный тип дросселей наматывается вручную, так что человеческие ошибки и/или некачественные проверки конечного продукта могут создать проблему, которую трудно будет сразу обнаружить и которая способна проявиться совершенно неожиданно.

Из приведенного примера ясно видно, насколько важна идеальная симметрия для двух катушек в дросселе. Даже в случае, когда в одной из катушек отсутствует лишь один виток, импеданс синфазного дросселя для синфазного режима резко уменьшается. Если говорить в целом, то несимметричность может быть вызвана не только пропуском полного витка, как в приведенном примере, но и просто нарушениями геометрии намотки. К сожалению, нередко этого нарушения шага намотки (не забываем, что в формулу для расчета индуктивности входит величина, обратная длине обмотки, так что при равных условиях неплотно намотанная катушка будет иметь меньшую индуктивность) или пропуска части витка при терминации просто не замечают. Вот почему для ответственных применений, особенно это касается высокочастотных приложений, не рекомендуется их самостоятельное, часто полукустарное, изготовление.

Результатом нарушения неидеальности исполнения синфазного дросселя будет низкая эффективность фильтрации синфазных сигналов ЭМП в области высоких частот — для чего, собственно, эти дроссели и используются. Таким же образом индуктивность в дифференциальном режиме увеличивается с типичным эффектом насыщения сердечника или нарушениями целостности сигнала из-за снижения частоты среза фильтра, образованного индуктивностью рассеяния и, в зависимости от включения дросселя, входной или выходной емкостью.

Отсюда следует вывод: будьте осторожны с недорогими и, как правило, не гарантирующими должного качества компонентами. Это касается не только идеальности намотки, но и материалов, из которых они изготовлены, поскольку последние влияют на точность соблюдения индуктивности и ток насыщения.

В качестве выхода из ситуации можно предложить использовать для критических приложений синфазные дроссели от поставщиков, имеющих надежную репутацию на рынке. (В противном случае, как известно, скупой заплатит дважды.) Одним из таких поставщиков является TDK Corporation — японская компания, занимающаяся производством электронных компонентов и носителей информации.Позиции компании по выпуску элементов из ферритовых материалов значительно усилились в 2008 году после приобретения 90% акций еще одной известной компании EPCOS AG (Electronic Parts and Components) — европейского лидера по производству пассивных электронных компонентов. Объединение таких брендов и их технологий позволило вывести на рынок изделия в качестве, надежности и технических характеристиках которых можно не сомневаться, в том числе синфазных дросселей, специально разработанных для подавления ЭМП и решения вопросов ЭМС.

Как уже было сказано, синфазные дроссели помогают решить две важные проблемы по ЭМС. Первая — очистить цепи питания от ЭМП, то есть уменьшить их излучение цепями питания и линиями их подключения, а вторая — защитить цепи или линии передачи сигнала от воздействия ЭМП. Эти проблемы очень различаются, соответственно, для их решения требуются разные типы синфазных дросселей. Компания TDK и ее структурное подразделение EPCOS предлагают универсальные решения для обеих проблем. В портфелях предложений компании имеются синфазные дроссели, как говорится, на любой вкус и цвет — от традиционных двух- и трех- до четырехобмоточных проволочных, рассчитанных на средние и большие токи, а также миниатюрные многослойные и тонкопленочные, предназначенные для сигнальных цепей, и сборки из нескольких дросселей, выполненные в одном корпусе.

Примеры конструктивного исполнения синфазных дросселей компании EPCOS для линий питания

Серия B82724J8*N

Серия B82732R

Серия B82732W

Серия B82724B

Серия B82747S6313

Серия B82725S2*

 

 

Синфазные дроссели компании EPCOS для линий питания

Тип

Индуктивность, мГн

Номинальный ток, A

Максимальная рабочая температура, °C

Номинальное рабочее напряжение, В (AC)

Номинальное рабочее напряжение, В (DC)

B82724J8*N

0,5–47

1,6–10

70

250

800

B82732R, B82732W

3,3–100

0,4–2,2

40

250

-

B82734R, B82734W

3,3–68

0,7–4,6

40,  60

250

-

B82731H, B82731M

3,3–100

0,35–1,8

40

250

-

B82731T

3,3–100

0,3–1,8

40

250

-

B82733F, B82733V

10–100

0,7–2,3

40

300

-

B82732F

10–100

0,45–1,6

40

250

-

B82726S3223A340

1,7

25

70

300

550

B82725A

0,56–82

1–16

40,  45,  55,  60

250

B82791G, B82791H, B82791K

4,7–47

0,25–0,9

40,  60

250

B82721A, B82721J, B82721K

0,2–47

0,3–6

40,  50,  60,  70

250

B82726S22*3

0,75, 1,6

20, 24

60

250

B82720S

1,1–22

0,3–2

40

250

B82726S3543

0,19

54

75

300

700

B82726S61*3

2,2, 3,3

10, 12

85

250

750

B82720A, B82720K

1,1–22

0,3–2

40

250

B82724B

1,8–100

0,5–6

40,  50,  60

250

B82722A, B82722J

1,2–68

0,3–3

40,  60

250

B82726S2183

1,3

18

50

250

B82724A, B82724J

1–82

0,5–6

40,  45,  50,  60,  70

250

B82723A, B82723J

0,45–56

0,5–8

40,  60,  70

250

B82726S2163

1,4, 2,2

16

60

250

B82725S2*

1,4–7,8

6–13

60,  70

250

B82725J

1,8–68

1–10

60

250

B8272xE6

0,42–3,3

20–50

70

600

1000

B82724J2*U

0,5–6,8

4,3–10

70,  80

250

B82721K2*U*

0,4–47

0,4–2,8

70

250

B82767S4

0,43–1,45

12–26

70

500/300

B82748F4183

1,5

18

40

480/275

B82748F6233

1,5

23

40

690/400

B82748S6623

1,1

62

40

690/400

B82745S6123

0,35

12

85

440/250

B82746S4103A02*

1,7, 2

10

70

500/300,  520/300

B82747S4203A

1,3

20

60

520/300

B82747S4183

1,8

18

70

440/250

B82747S6313

0,95

31

70

440/250

B82747S4423

1,5

42

50

440/250

B82748S4503

0,8

50

60

520/300

B82746S

3,2, 6,2

8, 13

70

550/320

B82746S4

0,75, 1,15

20

70

500/300

B82747S4

0,82, 0,85

30, 35

70

500/300

B82747E6

0,57–2,2

16–35

70

600/350

B82730G, B82730U

0,33–15

0,4–2,6

40

300

B82614R

0,5–3

0,8–2,7

40

250

B82623G

0,033–1,2

0,3–3

60

250

350

B82625B

0,25–5

1–5

40

250

350

B82622S

0,0021

30

85

B82615B

0,7–20

1–6

40

250

350

Купить синфазные дроссели можно в каталоге на сайте. 
  Наименование   Примечание Корпус Производитель Оптовая цена, руб. Розн. цена, руб. Всего Розн. маг. Краткое описание
B82793C0105N265 2x1mH 700mA SMD 9x6x4.8 EPCOS 50.19 руб. 69.50 руб. 644 99 Фильтр синфазной/дифференциальной помехи сигнальный Lr=1mH, Lstr=70nH, Ir=700mA
B82793S0513N201 2x51uH 0.8A SMD 9x6x4.8 EPCOS 33.41 руб. 47.67 руб. 1253 - Дроссель на тороидальном ферритовом сердечнике с секторной обмоткой для подавления асимметричной и симметричной интерференций 2x51uH 100kHz 800mA 140mOhm, SMD исполнения, T/R
B82724J2402N001 2x3.3mH 4A   EPCOS 87.33 руб. 116.94 руб. 1330 11 Дроссель силовой 2x3.3mH 4A 0.065Om 250VAC тококомпенсирующий двойной с кольцевым сердечником, вертикальный
B82724A2602N041 2х3.3mH 6А   EPCOS 147.38 руб. 192.32 руб. 535 10 Дроссель силовой с кольцевым ферритовым сердечником (с токовой компенс.) 2х3.3mH, 6А, 25 мОм, 250В, 20 x 30 (мм), горизонтального исполнения,
B82724A2302N021 2х12mH 3А   EPCOS 157.53 руб. 204.95 руб. 68 13 Дроссель силовой с кольцевым ферритовым сердечником (с токовой компенс.) 2х12mH, 3А, 125 мОм, 250В, 20 x 30 (мм), горизонтального исполнения,
B82724J2142N001 2x27mH 1.4A   EPCOS 88.71 руб. 118.68 руб. - - Дроссель силовой 2x27mH 1.4A 0.46 Om 250VAC тококомпенсирующий двойной с кольцевым сердечником, вертикальный
B82732R2112B030 2х15mH 1.1А 24x16.5x23.5 EPCOS 43.01 руб. 53.00 руб. 782 7 Фильтр синфазных помех 2х15 мГн, 1.1А, 440 мОм, 250В, 10 x 12.5 (мм), вертикального исполнения.
B82732R2901B030 2х27mH 0.9А 24x16.5x23.5 EPCOS 78.05 руб. 105.17 руб. 507 - Фильтр синфазных помех 2х27 мГн, 0.9А, 0.75 Ом, 250В, 11 x 12.5 (мм), вертикального исполнения,
B82732R2142B030     EPCOS 0.00 руб. 0.00 руб. - - Common Mode Chokes Dual 10mH 10kHz 1.4A 300mOhm DCR Thru-Hole Box

Продукцию компании  Вы можете заказать, сделав заявку:

  • через Интернет-магазин на сайте www.promelec.ru компании "Промэлектроника";
  • по электронному почтовому адресу order@promelec.ru;
  • по единому телефону отдела продаж: 8 800 1000 321.

Последние новости - одной лентой: 


сообщение об ошибке